1
|
Arnholdt-Schmitt B, Noceda C, Germano TA, Aziz S, Thiers KLL, Oliveira M, Bharadwaj R, Mohanapriya G, Sircar D, Costa JH. Validating alternative oxidase (AOX) gene family as efficient marker consortium for multiple-resilience in Xylella fastidiosa-infected Vitis holobionts. PLANT CELL REPORTS 2024; 43:236. [PMID: 39313563 DOI: 10.1007/s00299-024-03327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
KEY MESSAGE AOX gene family in motion marks in-born efficiency of respiration adjustment; can serve for primer screening, genotype ranking, in vitro-plant discrimination and a SMART perspective for multiple-resilient plant holobiont selection. The bacteria Xylella fastidiosa (Xf) is a climate-dependent, global threat to many crops of high socio-economic value, including grapevine. Currently designed breeding strategies for Xf-tolerant or -resistant genotypes insufficiently address the danger of biodiversity loss by focusing on selected threats, neglecting future environmental conditions. Thus, breeding strategies should be validated across diverse populations and acknowledge temperature changes and drought by minimizing the metabolic-physiologic effects of multiple stress-induced oxygen shortages. This research hypothesizes that multiple-resilient plant holobionts achieve lifelong adaptive robustness through early molecular and metabolic responses in primary stress target cells, which facilitate efficient respiration adjustment and cell cycle down-regulation. To validate this concept open-access transcriptome data were analyzed of xylem tissues of Xf-tolerant and -resistant Vitis holobionts from diverse trials and genetic origins from early hours to longer periods after Xf-inoculation. The results indicated repetitive involvement of alternative oxidase (AOX) transcription in episodes of down-regulated transcripts of cytochrome c oxidase (COX) at various critical time points before disease symptoms emerged. The relation between transcript levels of COX and AOX ('relCOX/AOX') was found promising for plant discrimination and primer screening. Furthermore, transcript levels of xylem-harbored bacterial consortia indicated common regulation with Xf and revealed stress-induced early down-regulation and later enhancement. LPS priming promoted the earlier increase in bacterial transcripts after Xf-inoculation. This proof-of-principle study highlights a SMART perspective for AOX-assisted plant selection towards multiple-resilience that includes Xf-tolerance. It aims to support timely future plant diagnostics and in-field substitution, sustainable agro-management, which protects population diversity and strengthens both conventional breeding and high-tech, molecular breeding research. Furthermore, the results suggested early up-regulation of bacterial microbiota consortia in vascular-enriched tissues as a novel additional trait for future studies on Xf-tolerance.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal.
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil.
| | - Carlos Noceda
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de La Vida y de La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, 171103, Ecuador
- Facultad de Ingeniería, Universidad Estatal de Milagro (UNEMI), Guayas, 091050, Ecuador
| | - Thais Andrade Germano
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Shahid Aziz
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Karine Leitão Lima Thiers
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Manuela Oliveira
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Department of Mathematics and CIMA -Center for Research On Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Revuru Bharadwaj
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
| | - Gunasekaran Mohanapriya
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- School of Biotechnology, A.V.P. College of Arts and Science, Tiruppur, 641652, India
| | - Debabrata Sircar
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - José Hélio Costa
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal.
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil.
| |
Collapse
|
2
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Arnholdt-Schmitt B, Sircar D, Aziz S, Germano TA, Thiers KLL, Noceda C, Bharadwaj R, Mohanapriya G, Costa JH. Transcriptome Analyses in Adult Olive Trees Indicate Acetaldehyde Release and Cyanide-Mediated Respiration Traits as Critical for Tolerance against Xylella fastidiosa and Suggest AOX Gene Family as Marker for Multiple-Resilience. Pathogens 2024; 13:227. [PMID: 38535570 PMCID: PMC10975381 DOI: 10.3390/pathogens13030227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 02/11/2025] Open
Abstract
Xylella fastidiosa (Xf) is a global bacterial threat for a diversity of plants, including olive trees. However, current understanding of host responses upon Xf-infection is limited to allow early disease prediction, diagnosis, and sustainable strategies for breeding on plant tolerance. Recently, we identified a major complex trait for early de novo programming, named CoV-MAC-TED, by comparing early transcriptome data during plant cell survival with SARS-CoV-2-infected human cells. This trait linked ROS/RNS balancing during first hours of stress perception with increased aerobic fermentation connected to alpha-tubulin-based cell restructuration and control of cell cycle progression. Furthermore, our group had advanced concepts and strategies for breeding on plant holobionts. Here, we studied tolerance against Xf-infection by applying a CoV-MAC-TED-related gene set to (1) progress proof-of-principles, (2) highlight the importance of individual host responses for knowledge gain, (3) benefit sustainable production of Xf-threatened olive, (4) stimulate new thinking on principle roles of secondary metabolite synthesis and microbiota for system equilibration and, (5) advance functional marker development for resilience prediction including tolerance to Xf-infections. We performed hypothesis-driven complex analyses in an open access transcriptome of primary target xylem tissues of naturally Xf-infected olive trees of the Xf-tolerant cv. Leccino and the Xf-susceptible cv. Ogliarola. The results indicated that cyanide-mediated equilibration of oxygen-dependent respiration and carbon-stress alleviation by the help of increased glycolysis-driven aerobic fermentation paths and phenolic metabolism associate to tolerance against Xf. Furthermore, enhanced alternative oxidase (AOX) transcript levels through transcription Gleichschaltung linked to quinic acid synthesis appeared as promising trait for functional marker development. Moreover, the results support the idea that fungal endophytes strengthen Xf-susceptible genotypes, which lack efficient AOX functionality. Overall, this proof-of-principles approach supports the idea that efficient regulation of the multi-functional AOX gene family can assist selection on multiple-resilience, which integrates Xf-tolerance, and stimulates future validation across diverse systems.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shahid Aziz
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil
| | - Thais Andrade Germano
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil
| | - Karine Leitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador
- Facultad de Ingeniería, Universidad Estatal de Milagro (UNEMI), Guayas 091050, Ecuador
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Alentejo, Portugal; (D.S.); (S.A.); (T.A.G.); (K.L.L.T.); (C.N.); (R.B.); (G.M.)
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil
| |
Collapse
|
4
|
Malarz J, Yudina YV, Stojakowska A. Hairy Root Cultures as a Source of Phenolic Antioxidants: Simple Phenolics, Phenolic Acids, Phenylethanoids, and Hydroxycinnamates. Int J Mol Sci 2023; 24:ijms24086920. [PMID: 37108084 PMCID: PMC10138958 DOI: 10.3390/ijms24086920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived antioxidants are intrinsic components of human diet and factors implicated in tolerance mechanisms against environmental stresses in both plants and humans. They are being used as food preservatives and additives or ingredients of cosmetics. For nearly forty years, Rhizobium rhizogenes-transformed roots (hairy roots) have been studied in respect to their usability as producers of plant specialized metabolites of different, primarily medical applications. Moreover, the hairy root cultures have proven their value as a tool in crop plant improvement and in plant secondary metabolism investigations. Though cultivated plants remain a major source of plant polyphenolics of economic importance, the decline in biodiversity caused by climate changes and overexploitation of natural resources may increase the interest in hairy roots as a productive and renewable source of biologically active compounds. The present review examines hairy roots as efficient producers of simple phenolics, phenylethanoids, and hydroxycinnamates of plant origin and summarizes efforts to maximize the product yield. Attempts to use Rhizobium rhizogenes-mediated genetic transformation for inducing enhanced production of the plant phenolics/polyphenolics in crop plants are also mentioned.
Collapse
Affiliation(s)
- Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Yulia V Yudina
- Educational and Scientific Medical Institute, National Technical University "Kharkiv Polytechnic Institute", Kyrpychova Street 2, 61002 Kharkiv, Ukraine
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
5
|
Kianersi F, Amin Azarm D, Fatemi F, Jamshidi B, Pour-Aboughadareh A, Janda T. The Influence of Methyl Jasmonate on Expression Patterns of Rosmarinic Acid Biosynthesis Genes, and Phenolic Compounds in Different Species of Salvia subg. Perovskia Kar L. Genes (Basel) 2023; 14:genes14040871. [PMID: 37107629 PMCID: PMC10137496 DOI: 10.3390/genes14040871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Salvia yangii B.T. Drew and Salvia abrotanoides Kar are two important fragrant and medicinal plants that belong to the subgenus Perovskia. These plants have therapeutic benefits due to their high rosmarinic acid (RA) content. However, the molecular mechanisms behind RA generation in two species of Salvia plants are still poorly understood. As a first report, the objectives of the present research were to determine the effects of methyl jasmonate (MeJA) on the rosmarinic acid (RA), total flavonoid and phenolic contents (TFC and TPC), and changes in the expression of key genes involved in their biosynthesis (phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), and rosmarinic acid synthase (RAS)). The results of High-performance liquid chromatography (HPLC) analysis indicated that MeJA significantly increased RA content in S. yungii and S. abrotanoides species (to 82 and 67 mg/g DW, respectively) by 1.66- and 1.54-fold compared with untreated plants. After 24 h, leaves of Salvia yangii and Salvia abrotanoides species treated with 150 M MeJA had the greatest TPC and TFC (80 and 42 mg TAE/g DW, and 28.11 and 15.14 mg QUE/g DW, respectively), which was in line with the patterns of gene expression investigated. Our findings showed that MeJA dosages considerably enhanced the RA, TPC, and TFC contents in both species compared with the control treatment. Since increased numbers of transcripts for PAL, 4CL, and RAS were also detected, the effects of MeJA are probably caused by the activation of genes involved in the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Farzad Kianersi
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Davood Amin Azarm
- Department of Horticulture Crop Research, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan P.O. Box 81785-199, Iran
| | - Farzaneh Fatemi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan P.O. Box 6517838695, Iran
| | - Bita Jamshidi
- Department of Food Security and Public Health, Khabat Technical Institute, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3158854119, Iran
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary
| |
Collapse
|
6
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
7
|
Kianersi F, Amin Azarm D, Pour-Aboughadareh A, Poczai P. Change in Secondary Metabolites and Expression Pattern of Key Rosmarinic Acid Related Genes in Iranian Lemon Balm ( Melissa officinalis L.) Ecotypes Using Methyl Jasmonate Treatments. Molecules 2022; 27:1715. [PMID: 35268816 PMCID: PMC8911715 DOI: 10.3390/molecules27051715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
The medicinal herb, lemon balm (Melissa officinalis L.), which is high in rosmarinic acid (RA), has well-known therapeutic value. The goals of this study were to investigate the effects of methyl jasmonate (MeJA) on RA content, total phenolic content (TPC), and total flavonoid content (TFC), as well as changes in expression of their biosynthesis-related key genes (MoPAL, Mo4CL, and MoRAS) in Iranian lemon balm ecotypes, as first reported. Our results revealed that MeJA doses significantly increase the RA content, TPC, and TFC in both ecotypes compared with the control samples. Additionally, the higher expression levels of MoPAL, Mo4CL, and MoRAS following treatment were linked to RA accumulation in all treatments for both Iranian lemon balm ecotypes. After 24 h of exposure to 150 µM MeJA concentration, HPLC analysis showed that MeJA significantly increased RA content in Esfahan and Ilam ecotypes, which was about 4.18- and 7.43-fold higher than untreated plants. Our findings suggested that MeJA has a considerable influence on RA, TPC, and TFC accumulation in MeJA-treated Iranian M. officinalis, which might be the result of gene activation from the phenylpropanoid pathway. As a result of our findings, we now have a better understanding of the molecular processes behind RA production in lemon balm plants.
Collapse
Affiliation(s)
- Farzad Kianersi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan P.O. Box 6517838695, Iran
| | - Davood Amin Azarm
- Department of Horticulture Crop Research, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan P.O. Box 81785199, Iran;
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3158854119, Iran;
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
| |
Collapse
|
8
|
Costa JH, Aziz S, Noceda C, Arnholdt-Schmitt B. Major Complex Trait for Early De Novo Programming 'CoV-MAC-TED' Detected in Human Nasal Epithelial Cells Infected by Two SARS-CoV-2 Variants Is Promising to Help in Designing Therapeutic Strategies. Vaccines (Basel) 2021; 9:1399. [PMID: 34960145 PMCID: PMC8708361 DOI: 10.3390/vaccines9121399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Early metabolic reorganization was only recently recognized as an essentially integrated part of immunology. In this context, unbalanced ROS/RNS levels connected to increased aerobic fermentation, which is linked to alpha-tubulin-based cell restructuring and control of cell cycle progression, were identified as a major complex trait for early de novo programming ('CoV-MAC-TED') during SARS-CoV-2 infection. This trait was highlighted as a critical target for developing early anti-viral/anti-SARS-CoV-2 strategies. To obtain this result, analyses had been performed on transcriptome data from diverse experimental cell systems. A call was released for wide data collection of the defined set of genes for transcriptome analyses, named 'ReprogVirus', which should be based on strictly standardized protocols and data entry from diverse virus types and variants into the 'ReprogVirus Platform'. This platform is currently under development. However, so far, an in vitro cell system from primary target cells for virus attacks that could ideally serve for standardizing the data collection of early SARS-CoV-2 infection responses has not been defined. RESULTS Here, we demonstrate transcriptome-level profiles of the most critical 'ReprogVirus' gene sets for identifying 'CoV-MAC-TED' in cultured human nasal epithelial cells infected by two SARS-CoV-2 variants differing in disease severity. Our results (a) validate 'Cov-MAC-TED' as a crucial trait for early SARS-CoV-2 reprogramming for the tested virus variants and (b) demonstrate its relevance in cultured human nasal epithelial cells. CONCLUSION In vitro-cultured human nasal epithelial cells proved to be appropriate for standardized transcriptome data collection in the 'ReprogVirus Platform'. Thus, this cell system is highly promising to advance integrative data analyses with the help of artificial intelligence methodologies for designing anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
- Plant Molecular and Cellular Biotechnology/Industrial Biotechnology and Bioproducts, Department of Life and Agricultural Sciences, Universidad de las Fuerzas Armadas-ESPE, Quito 171103, Ecuador
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, Brazil;
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, 7050-704 Montemor-o-Novo, Portugal;
| |
Collapse
|
9
|
Campos MD, Campos C, Nogales A, Cardoso H. Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112369. [PMID: 34834732 PMCID: PMC8625938 DOI: 10.3390/plants10112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 05/28/2023]
Abstract
Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Amaia Nogales
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| |
Collapse
|
10
|
Bharadwaj R, Noceda C, Mohanapriya G, Kumar SR, Thiers KLL, Costa JH, Macedo ES, Kumari A, Gupta KJ, Srivastava S, Adholeya A, Oliveira M, Velada I, Sircar D, Sathishkumar R, Arnholdt-Schmitt B. Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota Effectiveness. FRONTIERS IN PLANT SCIENCE 2021; 12:686274. [PMID: 34659277 PMCID: PMC8518632 DOI: 10.3389/fpls.2021.686274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/10/2021] [Indexed: 05/05/2023]
Abstract
Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Gunasekharan Mohanapriya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Sarma Rajeev Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Karine Leitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Aprajita Kumari
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
11
|
Amani S, Mohebodini M, Khademvatan S, Jafari M. Agrobacterium rhizogenes mediated transformation of Ficus carica L. for the efficient production of secondary metabolites. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2185-2197. [PMID: 31901132 DOI: 10.1002/jsfa.10243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ficus carica L., an ancient source of food and medicines, is rich in valuable nutritional and secondary compounds with antioxidant, antimicrobial, and anticancer effects. The present study is the first attempt to examine hairy root (HR) induction of F. carica (Sabz and Siah) by inoculating the 3-week-old shoots and leaves with different strains of Agrobacterium rhizogenes and also to investigate methyl jasmonate (MeJA) elicitation of HRs to produce a fast and high-yield production method for secondary metabolites. RESULTS The maximum transformation rate (100%) was achieved by inoculating the shoots with Agrobacterium rhizogenes strain A7. Siah HRs elicited with 100 and 200 μmol L-1 MeJA and Sabz HRs with 100 μmol L-1 MeJA showed the highest total phenolic content. The highest flavonoid content was 3.935 mg QE g-1 DW in Siah HRs treated with 200 μmol L-1 MeJA and 2.762 mg QE g-1 DW in Sabz HRs treated with 300 μmol L-1 MeJA. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and ferric reducing antioxidant power (FRAP) value of HRs were affected by MeJA treatments. Methyl jasmonate elicitation also significantly enhanced the content of six phenolic acids (gallic acid, caffeic acid, chlorogenic acid, coumaric acid, rosmarinic acid, and cinnamic acid) and three flavonoids (rutin, quercetin, and apigenin). Thymol, a monoterpene phenol, was the main HR compound detected in gas chromatography mass spectrometry (GC-MS) analysis of the essential oils. CONCLUSION Induction of HRs and elicitation of F. carica HRs by MeJA resulted in a significant increase in the production of important phenolic compounds and a significant increase in antioxidant capacity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahla Amani
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehdi Mohebodini
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Jafari
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Exogenous adenosine triphosphate application retards cap browning in Agaricus bisporus during low temperature storage. Food Chem 2019; 293:285-290. [PMID: 31151613 DOI: 10.1016/j.foodchem.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Exogenous adenosine triphosphate (ATP) treatment at 0, 250, 500, 750, and 1000 µM retarded cap browning in mushrooms by 0, 34, 26, 51 and 32 %, respectively, during storage at 4 °C for 18 days. Triggering signaling H2O2 accumulation arising from elevating NADPH oxidase enzyme activity during 6 days of storage at 4 °C may be pivotal for promoting shikimate dehydrogenase enzyme activity in mushrooms treated with ATP during 18 days of storage at 4 °C. Promoting melatonin accumulation (390 µg kg-1 FW vs. 160 µg kg-1 FW) in mushrooms treated with ATP during cold storage may attribute to signaling H2O2 accumulation. Higher DPPH scavenging capacity (72 % vs. 65 %) in mushrooms treated with ATP may attribute to higher phenols accumulation arising from higher phenylalanine ammonialyase/polyphenol oxidase enzymes activity concomitant with higher alternative oxidase gene expression during 18 days of storage at 4 °C.
Collapse
|
13
|
Sarkate A, Saini SS, Teotia D, Gaid M, Mir JI, Roy P, Agrawal PK, Sircar D. Comparative metabolomics of scab-resistant and susceptible apple cell cultures in response to scab fungus elicitor treatment. Sci Rep 2018; 8:17844. [PMID: 30552373 PMCID: PMC6294756 DOI: 10.1038/s41598-018-36237-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/16/2018] [Indexed: 01/13/2023] Open
Abstract
Apple scab disease caused by the fungus Venturia inaequalis is a devastating disease that seriously affects quality and yield of apples. In order to understand the mechanisms involved in scab resistance, we performed gas chromatography-mass spectrometry based metabolomics analysis of the cell culture of scab resistant cultivar 'Florina' and scab susceptible cultivar 'Vista Bella' both prior -to and -following treatment with V. inaequalis elicitor (VIE). A total 21 metabolites were identified to be altered significantly in 'Florina' cell cultures upon VIE-treatment. Among 21 metabolites, formation of three new specialized metabolites aucuparin, noraucuparin and eriobofuran were observed only in resistant cultivar 'Florina' after the elicitor treatment. The score plots of principal component analysis (PCA) exhibited clear discrimination between untreated and VIE-treated samples. The alteration in metabolite levels correlated well with the changes in the transcript levels of selected secondary metabolite biosynthesis genes. Aucuparin, noraucuparin and eriobofuran isolated from the 'Florina' cultures showed significant inhibitory effect on the conidial germination of V. inaequalis. The results expand our understanding of the metabolic basis of scab-resistance in apple and therefore are of interest in apple breeding programs to fortify scab resistance potential of commercially grown apple cultivars.
Collapse
Affiliation(s)
- Amol Sarkate
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Deepa Teotia
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Javid Iqbal Mir
- Plant Biotechnology Department, Central Institute of Temperate Horticulture (ICAR-CITH) Srinagar, 190 005, J&K, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Debabrata Sircar
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
14
|
Wang G, Huang W, Li M, Xu Z, Wang F, Xiong A. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot. Acta Biochim Biophys Sin (Shanghai) 2016; 48:795-803. [PMID: 27325823 DOI: 10.1093/abbs/gmw058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/18/2016] [Indexed: 11/14/2022] Open
Abstract
Jasmonates (JAs) are recognized as essential regulators in response to environmental stimuli and plant development. Carrot is an Apiaceae vegetable with great value and undergoes significant size changes over the course of plant growth. However, JA accumulation and its potential roles in carrot growth remain unclear. Here, methyl JA (MeJA) levels and expression profiles of JA-related genes were analyzed in carrot roots and leaves at five developmental stages. MeJA levels in the roots and leaves were the highest at the first stage and decreased as carrot growth proceeded. Transcript levels of several JA-related genes (Dc13-LOX1, Dc13-LOX2, DcAOS, DcAOC, DcOPR2, DcOPR3, DcOPCL1, DcJAR1, DcJMT, DcCOI1, DcJAZ1, DcJAZ2, DcMYC2, DcCHIB/PR3, DcLEC, and DcVSP2) were not well correlated with MeJA accumulation during carrot root and leaf development. In addition, some JA-related genes (DcJAR1, DcJMT, DcCOI1, DcMYC2, and DcVSP2) showed differential expression between roots and leaves. These results suggest that JAs may regulate carrot plant growth in stage-dependent and organ-specific manners. Our work provides novel insights into JA accumulation and its potential roles during carrot growth and development.
Collapse
Affiliation(s)
- Guanglong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhisheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Mukherjee C, Samanta T, Mitra A. Redirection of metabolite biosynthesis from hydroxybenzoates to volatile terpenoids in green hairy roots of Daucus carota. PLANTA 2016; 243:305-320. [PMID: 26403287 DOI: 10.1007/s00425-015-2403-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
A metabolic shift in green hairy root cultures of carrot from phenylpropanoid/benzenoid biosynthesis toward volatile isoprenoids was observed when compared with the metabolite profile of normal hairy root cultures. Hairy roots cultures of Daucus carota turned green under continuous illumination, while the content of the major phenolic compound p-hydroxybenzoic acid (p-HBA) was reduced to half as compared to normal hairy roots cultured in darkness. p-Hydroxybenzaldehyde dehydrogenase (HBD) activity was suppressed in the green hairy roots. However, comparative volatile analysis of 14-day-old green hairy roots revealed higher monoterpene and sesquiterpene contents than found in normal hairy roots. Methyl salicylate content was higher in normal hairy roots than in green ones. Application of clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), reduced the amount of total monoterpenes and sesquiterpenes in green hairy roots compared to normal hairy roots. However, methyl salicylate content was enhanced in both green and normal hairy roots treated with clomazone as compared to their respective controls. Because methyl-erythritol 4-phosphate (MEP) and phenylpropanoid pathways, respectively, contribute to the formation of monoterpenes and phenolic acids biosynthesis, the activities of enzymes regulating those pathways were measured in terms of their in vitro activities, in both green and normal hairy root cultures. These key enzymes were 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an early regulatory enzyme of the MEP pathway, pyruvate kinase (PK), an enzyme of primary metabolism related to the MEP pathway, shikimate dehydrogenase (SKDH) which is involved in biosynthesis of aromatic amino acids, and phenylalanine ammonia-lyase (PAL) that catalyzes the first step of phenylpropanoid biosynthesis. Activities of DXR and PK were higher in green hairy roots as compared to normal ones, whereas the opposite trend was observed for SKDH and PAL activities. Gene expression analysis of DXR and PAL showed trends similar to those for the respective enzyme activities. Based on these observations, we suggest a possible redirection of metabolites from the primary metabolism toward isoprenoid biosynthesis, limiting the phenolic biosynthetic pathway in green hairy roots grown under continuous light.
Collapse
Affiliation(s)
- Chiranjit Mukherjee
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Tanmoy Samanta
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
| |
Collapse
|
16
|
Arnholdt-Schmitt B, Ragonezi C, Cardoso H. Do Mitochondria Play a Central Role in Stress-Induced Somatic Embryogenesis? Methods Mol Biol 2016; 1359:87-100. [PMID: 26619859 DOI: 10.1007/978-1-4939-3061-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review highlights a four-step rational for the hypothesis that mitochondria play an upstream central role for stress-induced somatic embryogenesis (SE): (1) Initiation of SE is linked to programmed cell death (PCD) (2) Mitochondria are crucially connected to cell death (3) SE is challenged by stress per se (4) Mitochondria are centrally linked to plant stress response and its management. Additionally the review provides a rough perspective for the use of mitochondrial-derived functional marker (FM) candidates to improve SE efficiency. It is proposed to apply SE systems as phenotyping tool for identifying superior genotypes with high general plasticity under severe plant stress conditions.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal.
| | - Carla Ragonezi
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal
| | - Hélia Cardoso
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal
| |
Collapse
|
17
|
Abstract
Philasterides dicentrarchi causes a severe disease in turbot, and at present there are no drugs available to treat infected fish. We have previously demonstrated that, in addition to the classical respiratory pathway, P. dicentrarchi possesses an alternative mitochondrial respiratory pathway that is cyanide-insensitive and salicylhydroxamic acid (SHAM)-sensitive. In this study, we found that during the initial phase of growth in normoxia, ciliate respiration is sensitive to the natural polyphenol resveratrol (RESV) and to Antimycin A (AMA). However, under hypoxic conditions, the parasite utilizes AMA-insensitive respiration, which is completely inhibited by RESV and by the antioxidant propyl gallate (PG), an alternative oxidase (AOX) inhibitor. PG caused significantly dose-dependent inhibition of the in vitro growth of the parasite under normoxia and hypoxia and an over-expression of heat shock proteins of the Hsp70 subfamily. RESV and PG may affect the protective role of the AOX against mitochondrial oxidative stress, leading to an impaired mitochondrial membrane potential and mitochondrial dysfunction, which the parasite attempts to neutralize by increasing the expression of Hsp70. In view of the antiparasitic effects induced by AOX inhibitors and the absence of AOX in their host, this enzyme constitutes a potential target for the development of new drugs against scuticociliatosis.
Collapse
|
18
|
Cavalcanti JHF, Oliveira GM, Saraiva KDDC, Torquato JPP, Maia IG, de Melo DF, Costa JH. Identification of duplicated and stress-inducible Aox2b gene co-expressed with Aox1 in species of the Medicago genus reveals a regulation linked to gene rearrangement in leguminous genomes. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1609-19. [PMID: 23891563 DOI: 10.1016/j.jplph.2013.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/08/2013] [Accepted: 06/21/2013] [Indexed: 05/24/2023]
Abstract
In flowering plants, alternative oxidase (Aox) is encoded by 3-5 genes distributed in 2 subfamilies (Aox1 and Aox2). In several species only Aox1 is reported as a stress-responsive gene, but in the leguminous Vigna unguiculata Aox2b is also induced by stress. In this work we investigated the Aox genes from two leguminous species of the Medicago genus (Medicago sativa and Medicago truncatula) which present one Aox1, one Aox2a and an Aox2b duplication (named here Aox2b1 and Aox2b2). Expression analyses by semi-quantitative RT-PCR in M. sativa revealed that Aox1, Aox2b1 and Aox2b2 transcripts increased during seed germination. Similar analyses in leaves and roots under different treatments (SA, PEG, H2O2 and cysteine) revealed that these genes are also induced by stress, but with peculiar spatio-temporal differences. Aox1 and Aox2b1 showed basal levels of expression under control conditions and were induced by stress in leaves and roots. Aox2b2 presented a dual behavior, i.e., it was expressed only under stress conditions in leaves, and showed basal expression levels in roots that were induced by stress. Moreover, Aox2a was expressed at higher levels in leaves and during seed germination than in roots and appeared to be not responsive to stress. The Aox expression profiles obtained from a M. truncatula microarray dataset also revealed a stress-induced co-expression of Aox1, Aox2b1 and Aox2b2 in leaves and roots. These results reinforce the stress-inducible co-expression of Aox1/Aox2b in some leguminous plants. Comparative genomic analysis indicates that this regulation is linked to Aox1/Aox2b proximity in the genome as a result of the gene rearrangement that occurred in some leguminous plants during evolution. The differential expression of Aox2b1/2b2 suggests that a second gene has been originated by recent gene duplication with neofunctionalization.
Collapse
MESH Headings
- Chromosomes, Plant/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Gene Rearrangement/genetics
- Genes, Duplicate/genetics
- Genes, Plant/genetics
- Genome, Plant/genetics
- Germination/genetics
- Medicago/drug effects
- Medicago/enzymology
- Medicago/genetics
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Molecular Sequence Data
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phylogeny
- Plant Growth Regulators/pharmacology
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
|
19
|
Santos Macedo E, Sircar D, Cardoso HG, Peixe A, Arnholdt-Schmitt B. Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism. PLANT CELL REPORTS 2012; 31:1581-90. [PMID: 22544084 DOI: 10.1007/s00299-012-1272-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/15/2012] [Indexed: 05/05/2023]
Abstract
UNLABELLED Alternative oxidase (AOX) has been proposed as a functional marker candidate in a number of events involving cell differentiation, including rooting efficiency in semi-hardwood shoot cuttings of olive (Olea europaea L.). To ascertain the general importance of AOX in olive rooting, the auxin-induced rooting process was studied in an in vitro system for microshoot propagation. Inhibition of AOX by salicylhydroxamic acid (SHAM) significantly reduced rooting efficiency. However, the inhibitor failed to exhibit any effect on the preceding calli stage. This makes the system appropriate for distinguishing dedifferentiation and de novo differentiation during root induction. Metabolite analyses of microshoots showed that total phenolics, total flavonoids and lignin contents were significantly reduced upon SHAM treatment. It was concluded that the influence of alternative respiration on root formation was associated to adaptive phenylpropanoid and lignin metabolism. Transcript profiles of two olive AOX genes (OeAOX1a and OeAOX2) were examined during the process of auxin-induced root induction. Both genes displayed stable transcript accumulation in semi-quantitative RT-PCR analysis during all experimental stages. In contrary, when the reverse primer for OeAOX2 was designed from the 3'-UTR instead of the ORF, differential transcript accumulation was observed suggesting posttranscriptional regulation of OeAOX2 during metabolic acclimation. This result confirms former observations in olive semi-hardwood shoot cuttings on differential OeAOX2 expression during root induction. It further points to the importance of future studies on the functional role of sequence and length polymorphisms in the 3'-UTR of this gene. KEY MESSAGE The manuscript reports the general importance of AOX in olive adventitious rooting and the association of alternative respiration to adaptive phenylpropanoid and lignin metabolism.
Collapse
Affiliation(s)
- E Santos Macedo
- Laboratory of Molecular Biology, ICAAM, University of Évora, 7002-554, Évora, Portugal
| | | | | | | | | |
Collapse
|