1
|
Mohagheghian B, Saeidi G, Arzani A. Phenolic compounds, antioxidant enzymes, and oxidative stress in barley (Hordeum vulgare L.) genotypes under field drought-stress conditions. BMC PLANT BIOLOGY 2025; 25:709. [PMID: 40426053 PMCID: PMC12108047 DOI: 10.1186/s12870-025-06750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Climate change has exacerbated drought, making water scarcity a significant constraint on crop production. This study aimed to evaluate drought stress responses of 21 barley cultivars and breeding lines, using various traits of leaf oxidative stress [DPPH radical scavenging, malondialdehyde (MDA), and hydrogen peroxide (H2O2)], antioxidants (enzymes and polyphenols), photosynthetic pigments and chlorophyll fluorescence (F) [carotenoid (Car), chlorophyll (Chl), Fm, F0, and Fv/Fm], relative water content (RWC), electrolyte leakage (EL), proline (Pro), protein content (PC), and grain yield. Field experiments were conducted under both normal and drought stress conditions. Significant effects of moisture conditions were observed for most of the traits, except for Chla/b, carotenoids, and EL. Syringic acid, gallic acid, chlorogenic acid, ferulic acid, ellagic acid, caffeic acid, vanillic acid, and p-coumaric acid were the prominent phenolic acids in barley genotypes. The predominant leaf flavonoids were luteolin, apigenin, and rutin. There was significant genetic variation among genotypes for all traits except Chla/b. Drought stress caused significant increases in DPPH, MDA, H2O2, total phenolic content, total flavonoid content, peroxidase, and Pro. While catalase, ascorbate peroxidase, Chla, Chlb, Tchl, Fv/Fm, F0, Fm, RWC, PC, and grain yield were significantly decreased due to water stress. These findings offer key insights into barley genotypes' drought stress response, aiding breeders in identifying key physiological and biochemical traits as markers for developing drought-tolerant cultivars.
Collapse
Affiliation(s)
- Behnaz Mohagheghian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
2
|
Okon K, Zubik-Duda M, Nosalewicz A. Light-driven modulation of plant response to water deficit. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24295. [PMID: 40261980 DOI: 10.1071/fp24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
The dependence of agriculture on water availability is an important premise justifying attempts to enhance water use efficiency for plant production. Photosynthetic efficiency, directly impacts biomass production, is dependent on both water availability and the quality and quantity of light. Understanding how these factors interact is crucial for improving crop yields. Many overlapping signalling pathways and functions of common bioactive molecules that shape plant responses to both water deficit and light have been identified and discussed in this review. Separate or combined action of these environmental factors include the generation of reactive oxygen species, biosynthesis of abscisic acid, stomatal functioning, chloroplast movement and alterations in the levels of photosynthetic pigments and bioactive molecules. Plant response to water deficit depends on light intensity and its characteristics, with differentiated impacts from UV, blue, and red light bands determining the strength and synergistic or antagonistic nature of interactions. Despite its significance, the combined effects of these environmental factors remain insufficiently explored. The findings highlight the potential for optimising horticultural production through controlled light conditions and regulated deficit irrigation. Future research should assess light and water manipulation strategies to enhance resource efficiency and crop nutritional value.
Collapse
Affiliation(s)
- K Okon
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - M Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - A Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
3
|
Neyshabouri FA, Ghotbi-Ravandi AA, Shariatmadari Z, Tohidfar M. Cadmium toxicity promotes hormonal imbalance and induces the expression of genes involved in systemic resistances in barley. Biometals 2024; 37:1147-1160. [PMID: 38615113 DOI: 10.1007/s10534-024-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Cadmium (Cd) is a widely distributed pollutant that adversely affects plants' metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g-1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.
Collapse
Affiliation(s)
- Fatemeh Alzahra Neyshabouri
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Ferioun M, bouhraoua S, Srhiouar N, Tirry N, Belahcen D, Siang TC, Louahlia S, El Ghachtouli N. Optimized drought tolerance in barley (Hordeum vulgare L.) using plant growth-promoting rhizobacteria (PGPR). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Physiological and biochemical changes in Moroccan barley ( Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon 2023; 9:e13643. [PMID: 36873157 PMCID: PMC9975271 DOI: 10.1016/j.heliyon.2023.e13643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Barley (Hordeum vulgare L.) is the second most consumed and cultivated cereal by the Moroccan population. However, it is predicted that frequent drought periods, caused by climate change, can cause problems in plant growth. Thus, the selection of drought-tolerant barley cultivars is essential to ensure the security of barley's needs. We aimed to screen drought stress tolerance in Moroccan barley cultivars. We tested the drought tolerance of nine Moroccan barley cultivars ('Adrar', 'Amalou', 'Amira', 'Firdaws', 'Laanaceur', 'Massine', 'Oussama', 'Taffa', and 'Tamellalt') based on physiological and biochemical parameters. Drought stress was applied by maintaining field capacity at 40% (90% for the control), and plants were randomly arranged in a greenhouse at 25 °C under natural light conditions. Drought stress decreased relative water content (RWC), shoot dry weight (SDW), and chlorophyll content (SPAD index), but significantly increased electrolyte leakage, hydrogen peroxide, malondialdehyde (MDA), water-soluble carbohydrates, and soluble protein contents, as well as catalase (CAT) and ascorbate peroxidase (APX) activities. High levels of SDW, RWC, CAT, and APX activities were recorded in 'Firdaws', 'Laanaceur', 'Massine', 'Taffa', and 'Oussama', which can be interpreted by high drought tolerance. On the other hand, 'Adrar', 'Amalou', 'Amira', and 'Tamellalt' showed higher values of MDA and H2O2 content, which can be linked with drought sensitivity. Physiological and biochemical parameter changes are discussed in terms of barley's tolerance to drought. Tolerant cultivars could be a good background for barley breeding in areas known for the alternative of long dry spells.
Collapse
|
6
|
Gao H, Yu W, Yang X, Liang J, Sun X, Sun M, Xiao Y, Peng F. Silicon enhances the drought resistance of peach seedlings by regulating hormone, amino acid, and sugar metabolism. BMC PLANT BIOLOGY 2022; 22:422. [PMID: 36045325 PMCID: PMC9434905 DOI: 10.1186/s12870-022-03785-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drought is one of the main concerns worldwide and restricts the development of agriculture. Silicon improves the drought resistance of plants, but the underlying mechanism remains unclear. RESULTS We sequenced the transcriptomes of both control and silicon-treated peach seedlings under drought stress to identify genes or gene networks that could be managed to increase the drought tolerance of peach seedlings. Peach (Prunus persica) seedlings were used to analyse the effects of silicon on plant growth and physiological indexes related to drought resistance under drought stress. The results showed that silicon addition improved the water use efficiency, antioxidant capacity, and net photosynthetic rate, inhibition of stomatal closure, promoted the development of roots, and further regulated the synthesis of hormones, amino acids and sugars in peach seedlings. A comparative transcriptome analysis identified a total of 2275 genes that respond to silicon under drought stress. These genes were mainly involved in ion transport, hormone and signal transduction, biosynthetic and metabolic processes, stress and defence responses and other processes. We analysed the effects of silicon on the modulation of stress-related hormonal crosstalk and amino acid and sugar metabolism. The results showed that silicon promotes zeatin, gibberellin, and auxin biosynthesis, inhibits the synthesis of abscisic acid, then promote lateral root development and inhibit stomatal closure, and regulates the signal transduction of auxin, cytokinin, gibberellin and salicylic acid. Silicon also regulates the metabolism of various amino acids and promotes the accumulation of sucrose and glucose to improve drought resistance of peach seedlings. CONCLUSIONS Silicon enhanced the drought resistance of peach seedlings by regulating stress-related hormone synthesis and signal transduction, and regulating amino acid and sugar metabolism.
Collapse
Affiliation(s)
- Huaifeng Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Wenying Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiaoqing Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Jiahui Liang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiwu Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Maoxiang Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China.
| |
Collapse
|
7
|
Junaidi, Nuringtyas TR, Clément-Vidal A, Flori A, Syafaah A, Oktavia F, Ismawanto S, Aji M, Subandiyah S, Montoro P. Analysis of reduced and oxidized antioxidants in Hevea brasiliensis latex reveals new insights into the regulation of antioxidants in response to harvesting stress and tapping panel dryness. Heliyon 2022; 8:e09840. [PMID: 35815130 PMCID: PMC9260451 DOI: 10.1016/j.heliyon.2022.e09840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Latex diagnosis (LD) is applied to optimize the natural rubber production and prevent tapping panel dryness (TPD), a physiological syndrome affecting latex production in Hevea brasiliensis. The reduced thiol content (RSH) is one of the biochemical parameters associated with the risk of TPD. However, RSH is difficult to interpret because of the influence of the environment. In order to better understand the regulation of antioxidants and to better interpret RSH, a key parameter of LD, this study analysed in latex both oxidised and reduced forms of ascorbic acid (AsA) and glutathione, and their cofactors as well as other latex diagnosis parameters in response to harvesting stress (tapping and ethephon stimulation) and TPD occurrence. The content of antioxidants in latex had a high variability among five rubber clones. The concentration in AsA was about ten times higher than GSH in laticifer, GSH accounting for about 50% of RSH. For short-term harvesting stress, RSH increased with tapping frequency and ethephon stimulation. TPD is associated with high latex viscosity and bursting of lysosomal particles called lutoids, as well as for several rubber clones with lower RSH and GSH contents. These results suggest that a high level of RSH shows the capacity of laticifer metabolism to cope with harvesting stress, while a drop in RSH is the sign of long stress related to lower metabolic activity and TPD occurrence. RSH remains an essential physiological parameter to prevent TPD when associated with reference data under low and high harvesting stress. This study paves the way to understand the role of AsA and GSH, and carry out genetic studies of antioxidants.
Collapse
|
8
|
Frimpong F, Windt CW, van Dusschoten D, Naz AA, Frei M, Fiorani F. A Wild Allele of Pyrroline-5-Carboxylate Synthase1 Leads to Proline Accumulation in Spikes and Leaves of Barley Contributing to Improved Performance Under Reduced Water Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:633448. [PMID: 33719307 PMCID: PMC7947243 DOI: 10.3389/fpls.2021.633448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 05/05/2023]
Abstract
Water stress (WS) during spike development strongly affects final grain yield and grain quality in cereals. Proline, an osmoprotectant amino-acid, may contribute to alleviating the effects of cell and tissue dehydration. We studied five spring barley genotypes contrasting in their drought response, including two introgression lines, S42IL-143 and S42IL-141, harboring a Pyrroline-5-carboxylate synthase1- P5cs1 allele originating from the wild barley accession ISR42-8. We tested the hypothesis that barley genotypes harboring a wild allele at P5cs1 locus are comparatively more drought-tolerant at the reproductive stage by inducing proline accumulation in their immature spikes. At the booting stage, we subjected plants to well-watered and WS treatments until physiological maturity. Several morpho-physiological traits had significant genotype by treatment interaction and reduction under WS. Varying levels of genotypic proline accumulation and differences in WS tolerance were observed. Spike proline accumulation was higher than leaf proline accumulation for all genotypes under WS. Also, introgression lines carrying a wild allele at P5cs1 locus had a markedly higher spike and leaf proline content compared with the other genotypes. These introgression lines showed milder drought symptoms compared with elite genotypes, remained photosynthetically active under WS, and maintained their intrinsic water use efficiency. These combined responses contributed to the achievement of higher final seed productivity. Magnetic resonance imaging (MRI) of whole spikes at the soft dough stage showed an increase in seed abortion among the elite genotypes compared with the introgression lines 15 days after WS treatment. Our results suggest that proline accumulation at the reproductive stage contributes to the maintenance of grain formation under water shortage.
Collapse
Affiliation(s)
- Felix Frimpong
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- CSIR-Crops Research Institute, Kumasi, Ghana
| | - Carel W. Windt
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dagmar van Dusschoten
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ali A. Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Michael Frei
- Institute of Agronomy and Plant Breeding, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- *Correspondence: Fabio Fiorani,
| |
Collapse
|
9
|
Casadesús A, Arabia A, Pujolriu R, Munné-Bosch S. Differential accumulation of tocochromanols in photosynthetic and non-photosynthetic tissues of strawberry plants subjected to reiterated water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:868-876. [PMID: 32896766 DOI: 10.1016/j.plaphy.2020.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Tocochromanols are a group of lipid-soluble antioxidants that include tocopherols, tocotrienols and plastochromanol-8. Here, we examined a putative differential accumulation of tocochromanols in photosynthetic and non-photosynthetic tissues (including leaves and whole fruits) of strawberry (Fragaria x ananassa cv. Albion) plants and evaluated their endogenous variations in response to a reiterated water deficit during a vegetative (non-productive) and a fruiting (productive) period. In addition, we evaluated the concentration of tocochromanols in achenes (true fruits) and flesh of strawberries (whole fruits) at the white and full-red stages both under optimal and stress conditions. Results showed that leaves mainly accumulated α-tocopherol, with plastochromanol-8 and γ-tocopherol being present at low amounts. In contrast, whole fruits did not accumulate plastochromanol-8, γ-tocopherol being the major tocochromanol in the achenes (true fruit) and α-tocopherol in the flesh. While α-tocopherol content in leaves increased up to seven-fold after 12 weeks of stress during the fruiting period, it kept unaltered during the vegetative period. Neither plastochromanol-8 nor γ-tocopherol contents increased in leaves of stressed plants. During the fruiting period, γ-tocopherol content increased in whole fruits of stressed plants (most of it being accumulated in the achenes). Among the compounds examined, the flesh of strawberries accumulated α-tocopherol only, both at the white and full-red stages. It is concluded that (i) α-tocopherol is the major tocochromanol in leaves, while γ-tocopherol is the major tocochromanol in achenes (ii) reiterated water deficit promotes the accumulation of α-tocopherol in leaves and γ-tocopherol in fruits, (iii) α-tocopherol not only accumulates in photosynthetic tissues (leaves and whole fruits at green stages), but also in non-photosynthetic tissues (flesh of whole fruits at the white and full-red stages), and (iv) achenes (true fruits) of strawberry plants are an extraordinary rich source of tocopherols.
Collapse
Affiliation(s)
- Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Ricard Pujolriu
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, Krajewski P, Kachlicki P. Phenolic Metabolites from Barley in Contribution to Phenome in soil Moisture Deficit. Int J Mol Sci 2020; 21:E6032. [PMID: 32825802 PMCID: PMC7503775 DOI: 10.3390/ijms21176032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
Eight barley varieties from Europe and Asia were subjected to moisture deficit at various development stages. At the seedling stage and the flag leaf stage combined stress was applied. The experiment was designed for visualization of the correlation between the dynamics of changes in phenolic compound profiles and the external phenome. The most significant increase of compound content in water deficiency was observed for chrysoeriol and apigenin glycoconjugates acylated with methoxylated hydroxycinnamic acids that enhanced the UV-protection effectiveness. Moreover, other good antioxidants such as derivatives of luteolin and hordatines were also induced by moisture deficit. The structural diversity of metabolites of the contents changed in response to water deficiency in barley indicates their multipath activities under stress. Plants exposed to moisture deficit at the seedling stage mobilized twice as many metabolites as plants exposed to this stress at the flag leaf stage. Specific metabolites such as methoxyhydroxycinnamic acids participated in the long-term acclimation. In addition, differences in phenolome mobilization in response to moisture deficit applied at the vegetative and generative phases were correlated with the phenotypical consequences. Observations of plant yield and biomass gave us the possibility to discuss the developmentally related consequences of moisture deficit for plants' fitness.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| | - Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.P.); (A.K.); (P.O.); (K.M.); (P.K.)
| |
Collapse
|
11
|
Ramírez F, Escalante M, Vigliocco A, Pérez-Chaca MV, Reginato M, Molina A, Di Rienzo JA, Andrade A, Alemano S. Biochemical and molecular approach of oxidative damage triggered by water stress and rewatering in sunflower seedlings of two inbred lines with different ability to tolerate water stress. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:727-743. [PMID: 32475384 DOI: 10.1071/fp19264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Water stress accelerates the generation of reactive oxygen species, which trigger a cascade of antioxidative defence mechanisms comprising enzymatic and nonenzymatic antioxidants. The aim of this study was to investigate the oxidative damage and the antioxidative defence systems in seedlings of the water stress-tolerant (B71) and the sensitive (B59) inbred lines of sunflower (Helianthus annuus L.) in response to water stress and rewatering. In addition, we characterised the transcriptomic profile associated with enzymatic antioxidative defence. An elevated electrolyte leakage in B59 indicated increased plasmatic membrane permeability, which correlated with greater sensitivity to water stress. In response to water stress, both lines showed an increase in malondialdehyde and H2O2 content but these increases were more noticeable in the sensitive line. In both lines, an increase in enzymatic activity (e.g. peroxidase and ascorbate peroxidase) was not sufficient to overcome the H2O2 accumulation triggered by water stress. Upon water stress, the overall expression level of genes associated with the enzymatic antioxidant system increased in B71 and decreased in B59, which showed downregulated levels of most genes in the shoots. The general profile of phenolic compounds was clearly different between organs and between inbred lines. The B59 line activated nonenzymatic antioxidant responses to counteract the oxidative stress caused by water stress. The tolerance of B71 to water stress could be associated with compensatory antioxidant mechanisms based on the expression of genes encoding enzyme components of the ascorbate-glutathione and redoxin cycles, which contributed to explaining, at least partly, the response of this line.
Collapse
Affiliation(s)
- Federico Ramírez
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), 5800-Río Cuarto, Córdoba, Argentina
| | - Maximiliano Escalante
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), 5800-Río Cuarto, Córdoba, Argentina
| | - Ana Vigliocco
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800-Río Cuarto, Córdoba, Argentina
| | - M Verónica Pérez-Chaca
- Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700-San Luis, Argentina
| | - Mariana Reginato
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800-Río Cuarto, Córdoba, Argentina
| | - Alicia Molina
- Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700-San Luis, Argentina
| | - Julio A Di Rienzo
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, 5000-Córdoba, Argentina
| | - Andrea Andrade
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800-Río Cuarto, Córdoba, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800-Río Cuarto, Córdoba, Argentina; and Corresponding author.
| |
Collapse
|
12
|
Cerveau D, Henri P, Blanchard L, Rey P. Variability in the redox status of plant 2-Cys peroxiredoxins in relation to species and light cycle. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5003-5016. [PMID: 31128069 DOI: 10.1093/jxb/erz252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Plant 2-Cys peroxiredoxins (2-CysPRXs) are abundant plastidial thiol-peroxidases involved in key signaling processes such as photosynthesis deactivation at night. Their functions rely on the redox status of their two cysteines and on the enzyme quaternary structure, knowledge of which remains poor in plant cells. Using ex vivo and biochemical approaches, we thoroughly characterized the 2-CysPRX dimer/monomer distribution, hyperoxidation level, and thiol content in Arabidopsis, barley, and potato in relation to the light cycle. Our data reveal that the enzyme hyperoxidization level and its distribution as a dimer and monomer vary through the light cycle in a species-dependent manner. A differential susceptibility to hyperoxidation was observed for the two Arabidopsis 2-CysPRX isoforms and among the proteins of the three species, and was associated to sequence variation in hyperoxidation resistance motifs. Alkylation experiments indicate that only a minor fraction of the 2-CysPRX pool carries one free thiol in the three species, and that this content does not change during the light period. We conclude that most plastidial 2-CysPRX forms are oxidized and propose that there is a species-dependent variability in their functions since dimer and hyperoxidized forms fulfill distinct roles regarding direct oxidation of partners and signal transmission.
Collapse
Affiliation(s)
- Delphine Cerveau
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Patricia Henri
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Laurence Blanchard
- Aix Marseille Univ., CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| |
Collapse
|
13
|
Alexander RD, Wendelboe-Nelson C, Morris PC. The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:246-253. [PMID: 31374377 DOI: 10.1016/j.plaphy.2019.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 05/07/2023]
Abstract
Transcription factors such as MYB have previously been associated with the plant response to drought. In this work, studies on the function of the barley (Hordeum vulgare L.) transcription factor HvMYB1 show that gene expression is upregulated in wildtype barley roots and leaves under drought and osmotic stress. Transgenic barley plants that overexpress HvMYB1 were found to be more resistant to drought, showing enhanced relative water content and reduced water loss rate and stomatal conductance as compared to control plants. Levels of the osmolyte proline were enhanced as was expression of dehydrin HvDNH6 in the transgenic lines under drought conditions. The levels of the reactive oxygen species H2O2 were enhanced in wildtype roots and leaves by drought, but less so in the HvMYB1 overexpressing lines. Enzyme activity of the low affinity H2O2 degrading enzyme catalase (EC 1.11.1.6) was also lower in droughted HvMYB1 overexpressing lines. Gene expression of the high affinity ROS scavengers ASCORBATE PEROXIDASE and GLUTATHIONE PEROXIDASE was found to be constitutively high in the overexpressing lines, whereas CATALASE gene expression was similar to the control plants. These results suggest a role for HvMYB1 in protecting plants against drought in the vegetative plant by acting as a mediator of abscisic acid action.
Collapse
Affiliation(s)
- Ross D Alexander
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| | - Charlotte Wendelboe-Nelson
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| | - Peter C Morris
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
14
|
Zhang Y, Su J, Cheng D, Wang R, Mei Y, Hu H, Shen W, Zhang Y. Nitric oxide contributes to methane-induced osmotic stress tolerance in mung bean. BMC PLANT BIOLOGY 2018; 18:207. [PMID: 30249185 PMCID: PMC6154425 DOI: 10.1186/s12870-018-1426-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/16/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Osmotic stress is a major abiotic stress limiting crop production by affecting plant growth and development. Although previous reports discovered that methane (CH4) has a beneficial effect on osmotic stress, the corresponding downstream signal(s) is still elusive. RESULTS Polyethylene glycol (PEG) treatment progressively stimulated the production of CH4 in germinating mung bean seeds. Exogenous CH4 and sodium nitroprusside (SNP) not only triggered nitric oxide (NO) production in PEG-stressed plants, but also alleviated the inhibition of seed germination. Meanwhile, amylase activity was activated, thus accelerating the formation of reducing sugar and total soluble sugar. Above responses could be impaired by NO scavenger(s), suggesting that CH4-induced stress tolerance was dependent on NO. Subsequent tests showed that CH4 could reestablish redox balance in a NO-dependent fashion. The addition of inhibitors of the nitrate reductase (NR) and NO synthase in mammalian (NOS), suggested that NR and NOS-like protein might be partially involved in CH4-alleviated seed germination inhibition. In vitro and scavenger tests showed that NO-mediated S-nitrosylation might be associated with above CH4 responses. CONCLUSIONS Together, these results indicated an important role of endogenous NO in CH4-enhanced plant tolerance against osmotic stress, and NO-regulated redox homeostasis and S-nitrosylation might be involved in above CH4 action.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yudong Mei
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huali Hu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yaowen Zhang
- Crop Research Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China.
| |
Collapse
|
15
|
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants (Basel) 2018; 7:antiox7090114. [PMID: 30158486 PMCID: PMC6162775 DOI: 10.3390/antiox7090114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidation of methionine (Met) leads to the formation of two S- and R-diastereoisomers of Met sulfoxide (MetO) that are reduced back to Met by methionine sulfoxide reductases (MSRs), A and B, respectively. Here, we review the current knowledge about the physiological functions of plant MSRs in relation with subcellular and tissue distribution, expression patterns, mutant phenotypes, and possible targets. The data gained from modified lines of plant models and crop species indicate that MSRs play protective roles upon abiotic and biotic environmental constraints. They also participate in the control of the ageing process, as shown in seeds subjected to adverse conditions. Significant advances were achieved towards understanding how MSRs could fulfil these functions via the identification of partners among Met-rich or MetO-containing proteins, notably by using redox proteomic approaches. In addition to a global protective role against oxidative damage in proteins, plant MSRs could specifically preserve the activity of stress responsive effectors such as glutathione-S-transferases and chaperones. Moreover, several lines of evidence indicate that MSRs fulfil key signaling roles via interplays with Ca2+- and phosphorylation-dependent cascades, thus transmitting ROS-related information in transduction pathways.
Collapse
|
16
|
Gołębiowska-Pikania G, Kopeć P, Surówka E, Janowiak F, Krzewska M, Dubas E, Nowicka A, Kasprzyk J, Ostrowska A, Malaga S, Hura T, Żur I. Changes in protein abundance and activity induced by drought during generative development of winter barley (Hordeum vulgare L.). J Proteomics 2017; 169:73-86. [PMID: 28751243 DOI: 10.1016/j.jprot.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 11/18/2022]
Abstract
The present study investigated drought-induced changes in proteome profiles of ten DH lines of winter barley, relatively varied in water deficit tolerance level. Additionally, the parameters describing the functioning of the photosynthetic apparatus and the activity of the antioxidative system were analysed. Water deficit (3-week growth in soil with water content reduced to ca. 35%) induced significant changes in leaf water relations and reduced photosynthetic activity, probably due to decreased stomatal conductance. It was associated with changes in protein abundance and altered activity of antioxidative enzymes. From 47 MS-identified proteins discriminating more tolerant from drought-sensitive genotypes, only two revealed distinctly higher while seven revealed lower abundance in drought-treated plants of tolerant DH lines in comparison to sensitive ones. The majority were involved in the dark phase of photosynthesis. Another factor of great importance seems to be the ability to sustain, during drought stress, relatively high activity of enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Low molecular weight antioxidants seem to play less important roles. Our findings also suggest that high tolerance to drought stress in barley is a constitutively controlled trait regulated by the rate of protein synthesis and their activity level. BIOLOGICAL SIGNIFICANCE According to our knowledge, this is the first comparative proteomic analysis of drought tolerance performed for the model set of several winter barley doubled haploid (DH) lines. We analysed both the drought impact on the protein pattern of individual winter barley DH lines as well as comparisons between them according to their level of drought tolerance. We have identified 47 proteins discriminating drought-tolerant from drought-sensitive genotypes. The majority was involved in the dark phase of photosynthesis. Another factor of great importance in our opinion seems to be the ability to sustain, during drought stress, relatively high activity of antioxidative enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Our findings also suggest that high tolerance to drought stress in barley is a constitutively-controlled trait regulated by the rate of protein synthesis and their activity level.
Collapse
Affiliation(s)
- Gabriela Gołębiowska-Pikania
- Dept. of Cell Biology and Genetics, Institute of Biology, Pedagogical University, Podchorążych 2, 31-054 Krakow, Poland.
| | - Przemysław Kopeć
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ewa Surówka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Franciszek Janowiak
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Monika Krzewska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ewa Dubas
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Anna Nowicka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Joanna Kasprzyk
- Laboratory of High Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Krakow, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Sabina Malaga
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Iwona Żur
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland.
| |
Collapse
|
17
|
Dikilitas M, Karakas S, Hashem A, Abd Allah E, Ahmad P. Oxidative stress and plant responses to pathogens under drought conditions. WATER STRESS AND CROP PLANTS 2016:102-123. [DOI: 10.1002/9781119054450.ch8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Koh E, Fluhr R. Singlet oxygen detection in biological systems: Uses and limitations. PLANT SIGNALING & BEHAVIOR 2016; 11:e1192742. [PMID: 27231787 PMCID: PMC4991343 DOI: 10.1080/15592324.2016.1192742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 05/27/2023]
Abstract
The study of singlet oxygen in biological systems is challenging in many ways. Singlet oxygen is a relatively unstable ephemeral molecule, and its properties make it highly reactive with many biomolecules, making it difficult to quantify accurately. Several methods have been developed to study this elusive molecule, but most studies thus far have focused on those conditions that produce relatively large amounts of singlet oxygen. However, the need for more sensitive methods is required as one begins to explore the levels of singlet oxygen required in signaling and regulatory processes. Here we discuss the various methods used in the study of singlet oxygen, and outline their uses and limitations.
Collapse
Affiliation(s)
- Eugene Koh
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
19
|
Kiełbowicz-Matuk A, Banachowicz E, Turska-Tarska A, Rey P, Rorat T. Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:98-111. [PMID: 26993240 DOI: 10.1016/j.plantsci.2016.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Phosphatidylinositol transfer proteins (PITPs) include a large group of proteins implicated in the non-vesicular traffic of phosphatidylinositol (PI) between membranes. In yeast, the structure and function of the PITP Sec14-p protein have been well characterized. In contrast, the knowledge on plant PITP proteins is very scarce. In this work, we characterized a novel type of PITP protein in barley named HvSec14p and related to the yeast Sec14-p protein. Our data reveal that HvSec14p consists of only the Sec14p-domain structurally homologous to the yeast phosphoinositide binding domain. We show that HvSec14p expression is up-regulated at both transcript and protein levels at specific stages of development during seed formation and germination, and in leaves of a drought-tolerant barley genotype under osmotic constraints. Modeling analyses of the protein three-dimensional structure revealed its capacity to dock the phosphoinositides, PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P2. Consistently, the recombinant HvSec14p protein is able to bind in vitro most PIP types, the highest affinity being observed with PtdIns(3,5)P2. Based on the high gene expression at specific developmental stages and in drought-tolerant barley genotypes, we propose that HvSec14p plays essential roles in the biogenesis of membranes in expanding cells and in their preservation under osmotic stress conditions.
Collapse
Affiliation(s)
| | - Ewa Banachowicz
- Molecular Biophysics Department, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Anna Turska-Tarska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Pascal Rey
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France.
| | - Tadeusz Rorat
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
20
|
Cerveau D, Ouahrani D, Marok MA, Blanchard L, Rey P. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status. PLANT, CELL & ENVIRONMENT 2016; 39:103-19. [PMID: 26138759 DOI: 10.1111/pce.12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 05/10/2023]
Abstract
Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed.
Collapse
Affiliation(s)
- Delphine Cerveau
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Djelloul Ouahrani
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Mohamed Amine Marok
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
- Université de Khemis Miliana, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Ain Defla, Khemis Miliana, 44225, Algérie
| | - Laurence Blanchard
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
- CEA, DSV, IBEB, Laboratoire de Bioénergétique Cellulaire, Saint-Paul-lez-Durance, F-13108, France
| | - Pascal Rey
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
21
|
Yang L, Fountain JC, Wang H, Ni X, Ji P, Lee RD, Kemerait RC, Scully BT, Guo B. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance. Int J Mol Sci 2015; 16:24791-819. [PMID: 26492235 PMCID: PMC4632777 DOI: 10.3390/ijms161024791] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 01/24/2023] Open
Abstract
Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding.
Collapse
Affiliation(s)
- Liming Yang
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Crop Protection and Management Research Unit, Tifton, GA 31793, USA.
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China.
| | - Jake C Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Hui Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Xinzhi Ni
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA.
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Robert D Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA.
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Brian T Scully
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA.
| | - Baozhu Guo
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Crop Protection and Management Research Unit, Tifton, GA 31793, USA.
| |
Collapse
|
22
|
Horta LP, Braga MR, Lemos-Filho JP, Modolo LV. Organ-coordinated response of early post-germination mahogany seedlings to drought. TREE PHYSIOLOGY 2014; 34:355-366. [PMID: 24690672 DOI: 10.1093/treephys/tpu017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Water deficit tolerance during post-germination stages is critical for seedling recruitment. In this work, we studied the effect of water deficit on morphological and biochemical responses in different organs of newly germinated mahogany (Swietenia macrophylla King) seedlings, a woody species that occurs in the Amazon rainforest. The root : shoot ratio increased under water deficit. The leaf number and water potential were not altered, although reductions in leaf area and stomatal conductance were observed. Osmotic potential became more negative in leaves of seedlings under severe stress. Water deficit increased fructose, glucose, sucrose and myo-inositol levels in leaves. Stems accumulated fructose, glucose and l-proline. Nitric oxide (NO) levels increased in the vascular cylinder of roots under severe stress while superoxide anion levels decreased due to augmented superoxide dismutase activity in this organ. Water deficit induced glutathione reductase activity in both roots and stems. Upon moderate or severe stress, catalase activity decreased in leaves and remained unaffected in the other seedling organs, allowing for an increase of hydrogen peroxide (H2O2) levels in leaves. Overall, the increase of signaling molecules in distinct organs-NO in roots, l-proline in stems and H2O2 and myo-inositol in leaves-contributed to the response of mahogany seedlings to water deficit by triggering biochemical processes that resulted in the attenuation of oxidative stress and the establishment of osmotic adjustment. Therefore, this body of evidence reveals that the development of newly germinated mahogany seedlings may occur in both natural habitats and crop fields even when water availability is greatly limited.
Collapse
Affiliation(s)
- Lívia P Horta
- Grupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | | | |
Collapse
|
23
|
Rey P, Sanz-Barrio R, Innocenti G, Ksas B, Courteille A, Rumeau D, Issakidis-Bourguet E, Farran I. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants. FRONTIERS IN PLANT SCIENCE 2013; 4:390. [PMID: 24137166 PMCID: PMC3797462 DOI: 10.3389/fpls.2013.00390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 05/07/2023]
Abstract
Plants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.
Collapse
Affiliation(s)
- Pascal Rey
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
- *Correspondence: Pascal Rey, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique, Bâtiment 158, SBVME, CEA-Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France e-mail:
| | - Ruth Sanz-Barrio
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-Consejo Superior de Investigaciones CientíficasPamplona, Spain
| | - Gilles Innocenti
- UMR 8618 Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Université Paris-SudOrsay, France
| | - Brigitte Ksas
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Agathe Courteille
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Dominique Rumeau
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Emmanuelle Issakidis-Bourguet
- UMR 8618 Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Université Paris-SudOrsay, France
| | - Inmaculada Farran
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-Consejo Superior de Investigaciones CientíficasPamplona, Spain
| |
Collapse
|