1
|
Li X, Xu D, Zhang L, Zhao L. ENDOGLUCANASE SlCEL2 and EXPANSIN SlEXP1 synergistically affect cellulose degrading and tomato fruit softening. BMC PLANT BIOLOGY 2025; 25:704. [PMID: 40419969 DOI: 10.1186/s12870-025-06749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Delayed fruit softening in tomato (Solanum lycopersicum) is highly desirable for extending shelf life, facilitating long-distance transportation, and reducing post-harvest losses caused by mechanical damage. Fruit softening is a natural ripening process characterized by the increased expression of genes involved in cell wall modification, leading to the breakdown of cell wall polysaccharides and the gradual disintegration of cellular structure. The yft1 mutant (yellow-fruited tomato 1, originally designated n3122) exhibits inhibited ethylene production, preventing normal ripening and resulting in firmer fruit. Concurrently, yft1 shows significant downregulation of several genes associated with cell wall degradation, including endoglucanase SlCEL2 and EXPANSIN SlEXP1. Both genes exhibit similar expression patterns, peaking during ripening, suggesting their importance in fruit softening. To investigate this further, RNAi silencing lines targeting SlCEL2 and SlEXP1 were generated. The double mutant, slcel2 slexp1, displayed increased firmness at the red ripe stage (54 days post-anthesis, dpa), whereas the single mutants showed similar softening to the wild-type M82. Anatomical analysis at 54 dpa revealed enhanced cell wall structure, slightly increased cuticle thickness, and significantly higher pericarp cellulose content in slcel2 slexp1 compared to M82, slcel2, and slexp1. Furthermore, this study found that SlEXP1 expression was significantly upregulated in slcel2 fruit, compared to M82 (wild type), at 54 dpa. This suggests a compensatory transcriptional regulation between these two genes in tomato fruit, potentially aimed at maintaining normal softening during ripening. These findings demonstrate that SlCEL2 and SlEXP1 act synergistically in cellulose degradation during tomato ripening, and promoting fruit softening.
Collapse
Affiliation(s)
- Xueou Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dawei Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Huang H, Liu X, Liu Y, Wu F, Jin W. Genome-Wide Identification and Expression Analysis of 1-Aminocyclopropane-1-Carboxylate Synthase (ACS) Gene Family in Myrica rubra. Int J Mol Sci 2025; 26:4580. [PMID: 40429726 PMCID: PMC12111025 DOI: 10.3390/ijms26104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Ethylene plays a crucial role in plant growth, development, and stress responses, with 1-aminocyclopropane-1-carboxylate synthase (ACS) being a key enzyme in its biosynthetic pathway. However, the ACS gene family of Myrica rubra has not yet been systematically identified and characterized. In this study, we identified and characterized seven ACS genes (MrACS) in Myrica rubra through genome-wide analysis. Phylogenetic analysis revealed that these genes belong to three major subfamilies, with certain members clustering closely with ACS genes from Rosaceae species, suggesting a conserved evolutionary relationship. Gene structure and the conserved motif analyses confirmed functional conservation, while chromosomal localization indicated an uneven distribution across the genome. Collinearity analysis revealed strong homologous relationships between Myrica rubra and other plant species, particularly Solanum lycopersicum, Vitis vinifera, and Prunus persica. Furthermore, the transcriptome data demonstrated distinct temporal and tissue-specific expression patterns, with MrACS5 showing fruit-specific expression, suggesting its potential role in fruit ripening. These findings provide comprehensive insights into the ACS gene family in Myrica rubra, offering a valuable foundation for further functional studies on ethylene biosynthesis and its regulatory mechanisms in fruit development.
Collapse
Affiliation(s)
- Huanhui Huang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| | - Xintong Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
| | - Yiqing Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| | - Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| |
Collapse
|
3
|
Ji Q, Kowalski KP, Golenberg EM, Chung SH, Barker ND, Bickford WA, Gong P. Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application. PLANTS (BASEL, SWITZERLAND) 2025; 14:458. [PMID: 39943020 PMCID: PMC11820330 DOI: 10.3390/plants14030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
As a popular tool for gene function characterization and gene therapy, RNA interference (RNAi)-based gene silencing has been increasingly explored for potential applications to control invasive species. At least two major hurdles exist when applying this approach to invasive plants: (1) the design and screening of species- and gene-specific biomacromolecules (i.e., gene-silencing agents or GSAs) made of DNA, RNA, or peptides that can suppress the expression of target genes efficiently, and (2) the delivery vehicle needed to penetrate plant cell walls and other physical barriers (e.g., leaf cuticles). In this study, we investigated the cell-penetrating peptide (CPP)-mediated delivery of multiple types of GSAs (e.g., double-stranded RNA (dsRNA), artificial microRNA (amiRNA), and antisense oligonucleotide (ASO)) to knock down a putative phytoene desaturase (PDS) gene in the invasive common reed (Phragmites australis spp. australis). Both microscopic and quantitative gene expression evidence demonstrated the CPP-mediated internalization of GSA cargos and transient suppression of PDS expression in both treated and systemic leaves up to 7 days post foliar application. Although various GSA combinations and application rates and frequencies were tested, we observed limitations, including low gene-silencing efficiency and a lack of physiological trait alteration, likely owing to low CPP payload capacity and the incomplete characterization of the PDS-coding genes (e.g., the recent discovery of two PDS paralogs) in P. australis. Our work lays a foundation to support further research toward the development of convenient, cost-effective, field-deployable, and environmentally benign gene-silencing technologies for invasive P. australis management.
Collapse
Affiliation(s)
- Qing Ji
- Bennett Aerospace, Inc., Raleigh, NC 27603, USA;
| | - Kurt P. Kowalski
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA; (K.P.K.); (W.A.B.)
| | - Edward M. Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Seung Ho Chung
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| | - Natalie D. Barker
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| | - Wesley A. Bickford
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA; (K.P.K.); (W.A.B.)
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| |
Collapse
|
4
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
5
|
Yoon KN, Yoon YS, Hong HJ, Park JH, Song BS, Eun JB, Kim JK. Gamma irradiation delays tomato (Solanum lycopersicum) ripening by inducing transcriptional changes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6640-6653. [PMID: 37267467 DOI: 10.1002/jsfa.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicum) has a relatively short shelf life as a result of rapid ripening, limiting its transportability and marketability. Recently, gamma irradiation has emerged as a viable method for delaying tomato fruit ripening. Although few studies have shown that gamma irradiation delays the ripening of tomatoes, the underlying mechanism remains unknown. Therefore, the present study aimed to examine the effects of gamma irradiation on tomato fruit ripening and the underlying mechanisms using transcriptomics. RESULTS Following gamma irradiation, the total microbial count, weight loss, and decay rate of tomatoes significantly reduced during storage. Furthermore, the redness (a*), color change (∆E), and lycopene content of gamma-irradiated tomatoes decreased in a dose-dependent manner during storage. Moreover, gamma irradiation significantly upregulated the expression levels of genes associated with DNA, chloroplast, and oxidative damage repairs, whereas those of ethylene and auxin signaling-, ripening-, and cell wall metabolism-related, as well as carotenoid genes, were downregulated. CONCLUSION Gamma irradiation effectively delayed ripening by downregulating the expression of ripening-related genes and inhibiting microbial growth, which prevented decay and prolonged the shelf life of tomatoes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Seok Yoon
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Hae-Jung Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
6
|
Bashir T, Ul Haq SA, Masoom S, Ibdah M, Husaini AM. Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Mol Biol Rep 2023; 50:8729-8742. [PMID: 37642759 DOI: 10.1007/s11033-023-08728-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Horticultural crops are an essential part of food and nutritional security. Moreover, these form an integral part of the agricultural economy and have enormous economic potential. They are a rich source of nutrients that are beneficial to human health. Plant breeding of horticultural crops has focussed primarily on increasing the productivity and related traits of these crops. However, fruit and vegetable quality is paramount to their perishability, marketability, and consumer acceptance. The improved nutritional value is beneficial to underprivileged and undernourished communities. Due to a declining genetic base, conventional plant breeding does not contribute much to quality improvement as the existing natural allelic variations and crossing barriers between cultivated and wild species limit it. Over the past two decades, 'omics' and modern biotechnological approaches have made it possible to decode the complex genomes of crop plants, assign functions to the otherwise many unknown genes, and develop genome-wide DNA markers. Genetic engineering has enabled the validation of these genes and the introduction of crucial agronomic traits influencing various quality parameters directly or indirectly. This review discusses the significant advances in the quality improvement of horticultural crops, including shelf life, aroma, browning, nutritional value, colour, and many other related traits.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Salsabeel Masoom
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
8
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
9
|
Comparative Proteomic Analysis of Wild-type and a SlETR-3 (Nr) Mutant Reveals an Ethylene-Induced Physiological Regulatory Network in Fresh-Cut Tomatoes. Food Res Int 2022; 161:111491. [DOI: 10.1016/j.foodres.2022.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
|
10
|
Ji Y, Xu M, Liu Z, Yuan H, Lv T, Li H, Xu Y, Si Y, Wang A. NUCLEOCYTOPLASMIC shuttling of ETHYLENE RESPONSE FACTOR 5 mediated by nitric oxide suppresses ethylene biosynthesis in apple fruit. THE NEW PHYTOLOGIST 2022; 234:1714-1734. [PMID: 35254663 PMCID: PMC9313842 DOI: 10.1111/nph.18071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is known to modulate the action of several phytohormones. This includes the gaseous hormone ethylene, but the molecular mechanisms underlying the effect of NO on ethylene biosynthesis are unclear. Here, we observed a decrease in endogenous NO abundance during apple (Malus domestica) fruit development and exogenous treatment of apple fruit with a NO donor suppressed ethylene production, suggesting that NO is a ripening suppressor. Expression of the transcription factor MdERF5 was activated by NO donor treatment. NO induced the nucleocytoplasmic shuttling of MdERF5 by modulating its interaction with the protein phosphatase, MdPP2C57. MdPP2C57-induced dephosphorylation of MdERF5 at Ser260 is sufficient to promote nuclear export of MdERF5. As a consequence of this export, MdERF5 proteins in the cytoplasm interacted with and suppressed the activity of MdACO1, an enzyme that converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The NO-activated MdERF5 was observed to increase in abundance in the nucleus and bind to the promoter of the ACC synthase gene MdACS1 and directly suppress its transcription. Together, these results suggest that NO-activated nucleocytoplasmic MdERF5 suppresses the action of ethylene biosynthetic genes, thereby suppressing ethylene biosynthesis and limiting fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Zhi Liu
- Liaoning Institute of PomologyXiongyue115009China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Tianxing Lv
- Liaoning Institute of PomologyXiongyue115009China
| | - Hongjian Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
- Liaoning Institute of PomologyXiongyue115009China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Yajing Si
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| |
Collapse
|
11
|
Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. PLANTS 2021; 10:plants10091914. [PMID: 34579446 PMCID: PMC8467553 DOI: 10.3390/plants10091914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops' genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Khushboo Choudhary
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - V. Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
- Correspondence: (A.C.); (N.P.)
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
- Correspondence: (A.C.); (N.P.)
| |
Collapse
|
12
|
Ji Y, Qu Y, Jiang Z, Yan J, Chu J, Xu M, Su X, Yuan H, Wang A. The mechanism for brassinosteroids suppressing climacteric fruit ripening. PLANT PHYSIOLOGY 2021; 185:1875-1893. [PMID: 33743010 PMCID: PMC8133653 DOI: 10.1093/plphys/kiab013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 05/21/2023]
Abstract
The plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production and delayed fruit ripening, whereas treatment with a BR biosynthesis inhibitor promoted ethylene production and accelerated fruit ripening in pear, suggesting BR is a ripening suppressor. The expression of the transcription factor BRASSINAZOLE-RESISTANT 1PuBZR1 was enhanced by BR treatment during pear fruit ripening. PuBZR1 interacted with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppressed its activity. BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and expression profiles of corresponding apple (Malus domestica) homologs showed similar changes following epibrassinolide treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1, thereby reducing ethylene production and suppressing fruit ripening. This likely represents a conserved mechanism by which BR suppresses ethylene biosynthesis during climacteric fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Qu
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyu Jiang
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Su
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Author for communication:
| |
Collapse
|
13
|
Gao F, Mei X, Li Y, Guo J, Shen Y. Update on the Roles of Polyamines in Fleshy Fruit Ripening, Senescence, and Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:610313. [PMID: 33664757 PMCID: PMC7922164 DOI: 10.3389/fpls.2021.610313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/19/2021] [Indexed: 05/17/2023]
Abstract
Ripening of fleshy fruits involves complex physiological, biochemical, and molecular processes that coincide with various changes of the fruit, including texture, color, flavor, and aroma. The processes of ripening are controlled by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Increasing evidence is also uncovering an essential role for polyamines (PAs) in fruit ripening, especially in climacteric fruits. However, until recently breakthroughs have been made in understanding PA roles in the ripening of non-climacteric fruits. In this review, we compare the mechanisms underlying PA biosynthesis, metabolism, and action during ripening in climacteric and non-climacteric fruits at the physiological and molecular levels. The PA putrescine (Put) has a role opposite to that of spermidine/spermine (Spd/Spm) in cellular metabolism. Arginine decarboxylase (ADC) is crucial to Put biosynthesis in both climacteric and non-climacteric fruits. S-adenosylmethionine decarboxylase (SAMDC) catalyzes the conversion of Put to Spd/Spm, which marks a metabolic transition that is concomitant with the onset of fruit ripening, induced by Spd in climacteric fruits and by Spm in non-climacteric fruits. Once PA catabolism is activated by polyamine oxidase (PAO), fruit ripening and senescence are facilitated by the coordination of mechanisms that involve PAs, hydrogen peroxide (H2O2), ABA, ethylene, nitric oxide (NO), and calcium ions (Ca2+). Notably, a signal derived from PAO5-mediated PA metabolism has recently been identified in strawberry, a model system for non-climacteric fruits, providing a deeper understanding of the regulatory roles played by PAs in fleshy fruit ripening.
Collapse
Affiliation(s)
- Fan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
| | - Xurong Mei
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhong Li
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- *Correspondence: Jiaxuan Guo,
| | - Yuanyue Shen
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- Yuanyue Shen, ;
| |
Collapse
|
14
|
Yogindran S, Rajam MV. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics 2020; 113:736-747. [PMID: 33058987 DOI: 10.1016/j.ygeno.2020.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023]
Abstract
Helicoverpa armigera causes huge crop losses due to its polyphagous nature. The present study demonstrates the use of artificial microRNA (amiRNA) mediated gene silencing approach to generate insect resistant tomato plants. Ecdysone receptor (HaEcR) gene of the target pest, H. armigera, which is involved in the regulation of all developmental stages of the insect life cycle, was silenced by sequence-specific amiRNA (amiRNA-HaEcR). Continuous feeding on detached tomato leaves expressing the amiRNA-319a-HaEcR resulted in reduced target gene transcripts and affected the overall growth and survival of H. armigera. Not only the target gene was down-regulated but, the feeding also affected the expression of down-stream genes involved in the ecdysone signaling pathway. The resistant trait was also observed in T1 generation of tomato transgenic lines. These results further established the role of EcR as a master regulator in insect development and effectiveness of amiRNA technology for efficient control of H. armigera.
Collapse
Affiliation(s)
- Sneha Yogindran
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
15
|
Mo A, Xu T, Bai Q, Shen Y, Gao F, Guo J. FaPAO5 regulates Spm/Spd levels as a signaling during strawberry fruit ripening. PLANT DIRECT 2020; 4:e00217. [PMID: 32355906 PMCID: PMC7189608 DOI: 10.1002/pld3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Polyamines are important for non-climacteric fruit ripening according to an analysis of the model plant strawberry. However, the molecular mechanism underlying the polyamine accumulation during ripening has not been fully elucidated. In this study, an examination of our proteome data related to strawberry fruit ripening revealed a putative polyamine oxidase 5, FaPAO5, which was localized in the cytoplasm and nucleus. Additionally, FaPAO5 expression levels as well as the abundance of the encoded protein continually decreased during ripening. Inhibiting FaPAO5 expression by RNAi promoted Spd, Spm, and ABA accumulation while inhibited H2O2 production, which ultimately enhanced ripening as evidenced by the ripening-related events and corresponding gene expression changes. The opposite effects were observed in FaPAO5-overexpressing transgenic fruits. Analyses of the binding affinity and enzymatic activity of FaPAO5 with Spm, Spd, and Put uncovered a special role for FaPAO5 in the terminal catabolism of Spm and Spd, with a K d of 0.21 and 0.29 µM, respectively. Moreover, FaPAO5 expression was inhibited by ABA and promoted by Spd and Spm. Furthermore, the RNA-seq analysis of RNAi and control fruits via differentially expressed genes (DEGs) indicated the six most enriched pathways among the differentially expressed genes were related to sugar, abscisic acid, ethylene, auxin, gibberellin, and Ca2+. Among four putative PAO genes in the strawberry genome, only FaPAO5 was confirmed to influence fruit ripening. In conclusion, FaPAO5 is a negative regulator of strawberry fruit ripening and modulates Spm/Spd levels as a signaling event, in which ABA plays a central role.
Collapse
Affiliation(s)
- Aowai Mo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Tian Xu
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Qian Bai
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
- Bei Jing Bei Nong Enterprise Management Co., LtdBeijingChina
| | - Yaunyue Shen
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Fan Gao
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Jiaxuan Guo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| |
Collapse
|
16
|
Heinemann JA. Should dsRNA treatments applied in outdoor environments be regulated? ENVIRONMENT INTERNATIONAL 2019; 132:104856. [PMID: 31174887 DOI: 10.1016/j.envint.2019.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The New Zealand Environmental Protection Authority (EPA) issued a Decision that makes the use of externally applied double-stranded (ds)RNA molecules on eukaryotic cells or organisms technically out of scope of legislation on new organisms, making risk assessments of such treatments in the open environment unnecessary. The Decision was based on its view that the treatment does not create new or genetically modified organisms and rests on the EPA's conclusions that dsRNA is not heritable and is not a mutagen. For these reasons EPA decided that treatments using dsRNA do not modify genes or other genetic material. I found from an independent review of the literature on the topic indicated, however, that each of the major scientific justifications relied upon by the EPA was based on either an inaccurate interpretation of evidence or failure to consult the research literature pertaining to additional types of eukaryotes. The Decision also did not take into account the unknown and unique eukaryotic biodiversity of New Zealand. The safe use of RNA-based technology holds promise for addressing complex and persistent challenges in public health, agriculture and conservation. However, by failing to restrict the source or means of modifying the dsRNA, the EPA removed regulatory oversight that could prevent unintended consequences of this new technology such as suppression of genes other than those selected for suppression or the release of viral genes or genomes by failing to restrict the source or means of modifying the dsRNA.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, Centre for Integrative Research in Biosafety, Centre for Integrative Ecology, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
17
|
Abstract
Senescence is the terminal stage of plant development. It is a strategic and tactical response to seasonal and unpredictable stresses. As an important part of plant senescence, fruit ripening is normally viewed distinctly as climacteric or non-climacteric. In this chapter we describe protocols for the determination of a number of parameters that have been used in characterizing the ripening behavior of fruits. These include changes in respiratory rate, ethylene, flesh firmness, sugar, acidity, starch, pectin, enzymes, aroma volatiles, and expression of ripening-related genes during fruit ripening and senescence.
Collapse
Affiliation(s)
- Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Mengshi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? FRONTIERS IN PLANT SCIENCE 2018; 9:1689. [PMID: 30524461 PMCID: PMC6256983 DOI: 10.3389/fpls.2018.01689] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vitor L. Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David B. Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Dimas M. Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
19
|
Nölke G, Volke D, Chudobová I, Houdelet M, Lusso M, Frederick J, Adams A, Kudithipudi C, Warek U, Strickland JA, Xu D, Schinkel H, Schillberg S. Polyamines delay leaf maturation in low-alkaloid tobacco varieties. PLANT DIRECT 2018; 2:e00077. [PMID: 31245740 PMCID: PMC6508808 DOI: 10.1002/pld3.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 06/02/2023]
Abstract
The development of low-alkaloid (LA) tobacco varieties is an important target in the tobacco breeding industry. However, LA Burley 21 plants, in which the Nic1 and Nic2 loci controlling nicotine biosynthesis are deleted, are characterized by impaired leaf maturation that leads to poor leaf quality before and after curing. Polyamines are involved in key developmental, physiological, and metabolic processes in plants, and act as anti-senescence and anti-ripening regulators. We investigated the role of polyamines in tobacco leaf maturation by analyzing the free and conjugated polyamine fractions in the leaves and roots of four Burley 21 varieties: NA (normal alkaloid levels, wild-type control), HI (high intermediates, nic2 -), LI (low intermediates, nic1 -), and LA (nic1 - nic2 -). The pool of conjugated polyamines increased with plant age in the roots and leaves of all four varieties, but the levels of free and conjugated putrescine and spermidine were higher in the LI and LA plants than NA controls. The increase in the polyamine content correlated with delayed maturation and senescence, i.e., LA plants with the highest polyamine levels showed the most severe impaired leaf maturation phenotype, characterized by higher chlorophyll content and more mesophyll cells per unit leaf area. Treatment of LA plants with inhibitors of polyamine biosynthesis and/or the growth regulator Ethephon® reduced accumulation of polyamines, achieving a partial amelioration of the LA phenotype. Our data show that the regulation of polyamine homeostasis is strongly disrupted in LA plants, and that free and conjugated polyamines contribute to the observed impairment of leaf maturation.
Collapse
Affiliation(s)
- Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Daniel Volke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ivana Chudobová
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Marcel Houdelet
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Marcos Lusso
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | - Jesse Frederick
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | - Andrew Adams
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | | | - Ujwala Warek
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | | | - Dongmei Xu
- Altria Client ServicesResearch Development & SciencesRichmondVirginia
| | - Helga Schinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| |
Collapse
|
20
|
Ye X, Fu M, Liu Y, An D, Zheng X, Tan B, Li J, Cheng J, Wang W, Feng J. Expression of grape ACS1 in tomato decreases ethylene and alters the balance between auxin and ethylene during shoot and root formation. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:154-162. [PMID: 29778014 DOI: 10.1016/j.jplph.2018.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Ethylene plays an important role in the grape rachis, where its production can be 10 times higher than in the berry. VvACS1 is the only rachis-specific ACC synthase (ACS) gene, and its expression is coincident with ethylene production in the rachis of Vitis vinifera 'Thompson seedless'. VvACS1 was cloned and ectopically expressed in tomato (Solanum lycopersicum 'Moneymaker'). Lateral buds were increased in two- or four-week-old 35s∷VvACS1 transgenic tomato plants after transplanting. Compared with wild-type (WT) plants, the transgenic tomato plants showed higher expression of the VvACS1 gene in the flowers, leaves, rachis, and fruits. There was no obvious difference of ACS activity in the fruit of tomato, and only increased ACS activity in the rachis of tomato. Ethylene production was decreased in flowers, leaves, and fruits (seven weeks after full bloom), while the relative expression of endogenous tomato ACS1 and ACS6 genes was not down-regulated by the ectopic expression of VvACS1. These results imply that post-transcriptional or post-translational regulation of ACS may occur, resulting in lower ethylene production in the transgenic tomato plants. Moreover, expression of VvACS1 in tomato resulted in decreased auxin and increased zeatin contents in the lateral buds, as well as reduced or delayed formation of adventitious roots in lateral bud cuttings. RNA-Seq and qRT-PCR analyses of rooted lateral bud cuttings indicated that the relative expression levels of the genes for zeatin O-glucosyltransferase-like, auxin repressed/dormancy-associated protein, and ERF transcription factors were higher in transgenic tomatoes than in WT, suggesting that ethylene may regulate auxin transport and distribution in shoots and that adventitious root formation employs coordination between auxin and ethylene.
Collapse
Affiliation(s)
- Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Mengmeng Fu
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Yu Liu
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Dongliang An
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002 Zhengzhou, People's Republic of China.
| |
Collapse
|
21
|
Agarwal P, Kumar R, Pareek A, Sharma AK. Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis. Mol Genet Genomics 2016; 292:145-156. [PMID: 27796641 DOI: 10.1007/s00438-016-1262-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023]
Abstract
Isolation and functional characterization of tissue- and stage-specific gene promoters is beneficial for genetic improvement of economically important crops. Here, we have characterized a putative promoter of a ripening-induced gene RIP1 (Ripening induced protein 1) in tomato. Quantification of the transcript level of RIP1 showed that its expression is fruit preferential, with maximum accumulation in red ripe fruits. To test the promoter activity, we made a reporter construct by cloning 1450 bp putative RIP1 promoter driving the GUS (ß-glucuronidase) gene expression and generated stable transgenic lines in tomato and Arabidopsis. Histochemical and fluorometric assays validated the fruit-specific expression of RIP1 as the highest GUS activity was found in red ripe tomatoes. Similarly, we detected high levels of GUS activity in the siliques of Arabidopsis. On the contrary, weak GUS activity was found in the flower buds in both tomato and Arabidopsis. To characterize the specific regions of the RIP1 promoter that might be essential for its maximum activity and specificity in fruits, we made stable transgenic lines of tomato and Arabidopsis with 5'-deletion constructs. Characterization of these transgenic plants showed that the full length promoter is essential for its function. Overall, we report the identification and characterization of a ripening-induced promoter of tomato, which would be useful for the controlled manipulation of the ripening-related agronomic traits in genetic manipulation studies in future.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.,Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amit Pareek
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
22
|
Guo Q, Liu Q, Smith NA, Liang G, Wang MB. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Curr Genomics 2016; 17:476-489. [PMID: 28217004 PMCID: PMC5108043 DOI: 10.2174/1389202917666160520103117] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.
Collapse
Affiliation(s)
- Qigao Guo
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Qing Liu
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Guolu Liang
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| |
Collapse
|
23
|
Mamta, Reddy KRK, Rajam MV. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. PLANT MOLECULAR BIOLOGY 2016; 90:281-92. [PMID: 26659592 DOI: 10.1007/s11103-015-0414-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/27/2015] [Indexed: 05/03/2023]
Abstract
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.
Collapse
Affiliation(s)
- Mamta
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - K R K Reddy
- Sri Biotech Laboratory India Ltd., Street No. 2, Sagar Society, Road No. 2, Banjara Hills, Hyderabad, 500034, India
| | - M V Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
24
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Small RNAs in plants: recent development and application for crop improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:208. [PMID: 25883599 PMCID: PMC4382981 DOI: 10.3389/fpls.2015.00208] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/16/2015] [Indexed: 05/19/2023]
Abstract
The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Mohan Kamthan
- Indian Institute of Toxicology ResearchLucknow, India
| | - Asis Datta
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
25
|
Meng X, Yang D, Li X, Zhao S, Sui N, Meng Q. Physiological changes in fruit ripening caused by overexpression of tomato SlAN2, an R2R3-MYB factor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 89:24-30. [PMID: 25698665 DOI: 10.1016/j.plaphy.2015.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 05/22/2023]
Abstract
The R2R3-MYB protein SlAN2 has long been thought to be a positive regulator of anthocyanin accumulation. To investigate the role of SlAN2, we have previously overexpressed the gene in tomato. In this work, we analysed physiological characters of the transgenic plants during the fruit ripening. We show that fruits of transformants overexpressing SlAN2 displayed an orange colour, fast softening and elevated ethylene production. Overexpression of SlAN2 resulted in reduction of carotenoid levels via alteration of flux through the carotenoid pathway, elevated ethylene synthesis mainly via upregulation of ethylene biosynthesis genes, and early softening of fruits. We also found that the transcript level of SlRIN, an important ripening-related gene, was up-regulated in transgenic fruits. These results suggest that SlAN2 acts as an important regulator of fruit ripening.
Collapse
Affiliation(s)
- Xia Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Dongyue Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaodong Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shuya Zhao
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Na Sui
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, PR China.
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
26
|
Pandey R, Gupta A, Chowdhary A, Pal RK, Rajam MV. Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. PLANT MOLECULAR BIOLOGY 2015; 87:249-60. [PMID: 25537646 DOI: 10.1007/s11103-014-0273-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/07/2014] [Indexed: 05/23/2023]
Abstract
Diamine putrescine (Put) and polyamines; spermidine (Spd) and spermine (Spm) are essential component of every cell because of their involvement in the regulation of cell division, growth and development. The aim of this study is to enhance the levels of Put during fruit development and see its implications in ripening and quality of tomato fruits. Transgenic tomato plants over-expressing mouse ornithine decarboxylase gene under the control of fruit-specific promoter (2A11) were developed. Transgenic fruits exhibited enhanced levels of Put, Spd and Spm, with a concomitant reduction in ethylene levels, rate of respiration and physiological loss of water. Consequently such fruits displayed significant delay of on-vine ripening and prolonged shelf life over untransformed fruits. The activation of Put biosynthetic pathway at the onset of ripening in transgenic fruits is also consistent with the improvement of qualitative traits such as total soluble solids, titratable acids and total sugars. Such changes were associated with alteration in expression pattern of ripening specific genes. Transgenic fruits were also fortified with important nutraceuticals like lycopene, ascorbate and antioxidants. Therefore, these transgenic tomatoes would be useful for the improvement of tomato cultivars through breeding approaches.
Collapse
MESH Headings
- Animals
- Biogenic Polyamines/metabolism
- Ethylenes/biosynthesis
- Food, Genetically Modified
- Fruit/enzymology
- Fruit/genetics
- Fruit/growth & development
- Genes, Plant
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Mice
- Nutritive Value
- Ornithine Decarboxylase/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Promoter Regions, Genetic
- Putrescine/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Roopali Pandey
- Plant Polyamine, Transgenic and RNAi Research Laboratory, Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | |
Collapse
|
27
|
Ansari MW, Tuteja N. Post-harvest quality risks by stress/ethylene: management to mitigate. PROTOPLASMA 2015; 252:21-32. [PMID: 25091877 DOI: 10.1007/s00709-014-0678-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 05/10/2023]
Abstract
Fresh produce, in actual fact, is exposed to multiple stresses through entire post-harvest phase such as handling, storage and distribution. The biotic stresses are associated with various post-harvest diseases leading to massive produce loss. Abiotic stresses such as drought, heat and chilling cause cell weakening, membrane leakage, flavour loss, surface pitting, internal browning, textural changes, softening and mealiness of post-harvest produce. A burst in 'stress ethylene' formation makes post-harvest produce to be at high risk for over-ripening, decay, deterioration, pathogen attack and physiological disorders. The mutation study of genes and receptors involved in ethylene signal transduction shows reduced sensitivity to bind ethylene resulting in delayed ripening and longer shelf life of produce. This review is aimed to highlight the various detrimental effects of stress/ethylene on quality of post-harvest produce, primarily fruits, with special emphasize to its subsequent practical management involving the 'omics' tools. The outcome of the literature appraised herein will help us to understand the physiological and molecular bases of stress/ethylene which sustain fruit quality at post-harvest phase.
Collapse
Affiliation(s)
- Mohammad W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | |
Collapse
|
28
|
Deyman KL, Brikis CJ, Bozzo GG, Shelp BJ. Impact of 1-methylcyclopropene and controlled atmosphere storage on polyamine and 4-aminobutyrate levels in "Empire" apple fruit. FRONTIERS IN PLANT SCIENCE 2014; 5:144. [PMID: 24782882 PMCID: PMC3989733 DOI: 10.3389/fpls.2014.00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/25/2014] [Indexed: 05/18/2023]
Abstract
1-Methylcyclopropene (1-MCP) delays ethylene-meditated ripening of apple (Malus domestica Borkh.) fruit during controlled atmosphere (CA) storage. Here, we tested the hypothesis that 1-MCP and CA storage enhances the levels of polyamines (PAs) and 4-aminobutyrate (GABA) in apple fruit. A 46-week experiment was conducted with "Empire" apple using a split-plot design with four treatment replicates and 3°C, 2.5 kPa O2, and 0.03 or 2.5 kPa CO2 with or without 1 μL L(-1) 1-MCP. Total PA levels were not elevated by the 1-MCP treatment. Examination of the individual PAs revealed that: (i) total putrescine levels tended to be lower with 1-MCP regardless of the CO2 level, and while this was mostly at the expense of free putrescine, large transient increases in soluble conjugated putrescine were also evident; (ii) total spermidine levels tended to be lower with 1-MCP, particularly at 2.5 kPa CO2, and this was mostly at the expense of soluble conjugated spermidine; (iii) total spermine levels at 2.5 kPa CO2 tended to be lower with 1-MCP, and this was mostly at the expense of both soluble and insoluble conjugated spermine; and (iv) total spermidine and spermine levels at 0.03 kPa were relatively unaffected, compared to 2.5 kPa CO2, but transient increases in free spermidine and spermine were evident. These findings might be due to changes in the conversion of putrescine into higher PAs and the interconversion of free and conjugated forms in apple fruit, rather than altered S-adenosylmethionine availability. Regardless of 1-MCP and CO2 treatments, the availability of glutamate showed a transient peak initially, probably due to protein degradation, and this was followed by a steady decline over the remainder of the storage period which coincided with linear accumulation of GABA. This pattern has been attributed to the stimulation of glutamate decarboxylase activity and inhibition of GABA catabolism, rather than a contribution of PAs to GABA production.
Collapse
Affiliation(s)
| | | | | | - Barry J. Shelp
- *Correspondence: Barry J. Shelp, Department of Plant Agriculture, Bovey Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada e-mail:
| |
Collapse
|
29
|
Lasanajak Y, Minocha R, Minocha SC, Goyal R, Fatima T, Handa AK, Mattoo AK. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene. Amino Acids 2013; 46:729-42. [PMID: 24337930 DOI: 10.1007/s00726-013-1624-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/04/2013] [Indexed: 01/05/2023]
Abstract
S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in plants has not yet been characterized. We used radiolabeled (14)C-Arg, (14)C-Orn, L-[U-(14)C]Met, (14)C-SAM and (14)C-Put to quantify flux through these pathways in tomato fruit and evaluate the effects of perturbing these pathways via transgenic expression of a yeast SAM decarboxylase (ySAMDC) gene using the fruit ripening-specific promoter E8. We show that polyamines in tomato fruit are synthesized both from Arg and Orn; however, the relative contribution of Orn pathway declines in the later stages of ripening. Expression of ySAMDC reversed the ripening associated decline in spermidine (Spd) and spermine (Spm) levels observed in the azygous control fruit. About 2- to 3-fold higher levels of labeled-Spd in transgenic fruit (556HO and 579HO lines) expressing ySAMDC confirmed the enzymatic function of the introduced gene. The incorporation of L-[U-(14)C]Met into Spd, Spm, ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) was used to determine Met-flux into these metabolites. The incorporation of (14)C-Met into Spd/Spm declined during ripening of the control azygous fruit but this was reversed in fruits expressing ySAMDC. However, incorporation of (14)C-Met into ethylene or ACC during ripening was not altered by the expression of ySAMDC in the fruit. Taken together these results show that: (1) There is an inverse relationship between the production of higher polyamines and ethylene during fruit ripening, (2) the inverse relationship between higher polyamines and ethylene is modulated by ySAMDC expression in that the decline in Spd/Spm during fruit ripening can be reversed without significantly altering ethylene biosynthesis, and (3) cellular flux of SAM in plants is homeostatically regulated based on its demand for competing pathways.
Collapse
Affiliation(s)
- Yi Lasanajak
- Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis. Amino Acids 2013; 46:743-57. [PMID: 24013280 DOI: 10.1007/s00726-013-1581-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022]
Abstract
The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse ornithine decarboxylase cDNA either under the control of a constitutive (in poplar) or an inducible (in Arabidopsis) promoter. The transgenic poplar cells produced and accumulated 8-10 times higher amounts of Put than the non-transgenic cells, whereas the Arabidopsis seedlings accumulated up to 40-fold higher amounts of Put; however, in neither case the cellular Spd or Spm increased consistently. The rate of Spd and Spm catabolism and the half-life of cellular Spd and Spm were measured by pulse-chase experiments using [(14)C]Spd or [(14)C]Spm. Spermidine half-life was calculated to be about 22-32 h in poplar and 52-56 h in Arabidopsis. The half-life of cellular Spm was calculated to be approximately 24 h in Arabidopsis and 36-48 h in poplar. Both species were able to convert Spd to Spm and Put, and Spm to Spd and Put. The rates of Spd and Spm catabolism in both species were several-fold slower than those of Put, and the overproduction of Put had only a small effect on the overall rates of turnover of Spd or Spm. There was little effect on the rates of Spd to Spm conversion as well as the conversion of Spm into lower polyamines. While Spm was mainly converted back to Spd and not terminally degraded, Spd was removed from the cells largely through terminal catabolism in both species.
Collapse
|