1
|
Hernández-Vega JD, Parola-Contreras I, Tovar-Pérez EG, Guevara-González RG, Aguirre-Becerra H, Feregrino-Pérez AA, Contreras-Medina LM, Guzmán-Cruz R. Evaluation of Phenolic Compounds and Antioxidant Activity in Three Black Cherry Tomato Varieties Grown Under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:1173. [PMID: 40284061 PMCID: PMC12030121 DOI: 10.3390/plants14081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
Given the importance of phenolic compounds and antioxidant capacity in plant defense and human health, this study aimed to evaluate black cherry tomatoes' polyphenol, flavonoid, anthocyanin, and carotenoid content and enzymatic activity under greenhouse conditions. Black cherry tomato varieties-Indigo Cherry Drops, Indigo Rose, and Kumato-were cultivated from seed to the third harvest. Total polyphenols, flavonoids, anthocyanins, β-carotenoids, antioxidant capacity 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and enzymatic activities, including superoxide dismutase (SOD), catalase (CAT), proline (PRO), and superoxide dismutase (PAL), were measured and compared. The Kumato variety exhibited significantly higher total polyphenols, flavonoids, and carotenoids, along with enhanced antioxidant activity (DPPH, ABTS) and enzymatic activity (CAT, PAL) compared to Indigo Rose and Indigo Cherry Drops, with free radical inhibition of 87.0% (DPPH) and 74.72% (ABTS). SOD activity was highest in Indigo Rose (0.21 U/mg protein), while proline levels were significantly higher in Kumato and Indigo Cherry Drops (6.40 and 6.63 U/mg protein). These findings highlight the antioxidant potential of black cherry tomatoes and their high potential nutritional value for consumers. Future research should explore how environmental factors influence their biochemical composition and potential applications in functional food.
Collapse
Affiliation(s)
- Josué Daniel Hernández-Vega
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
| | - Ixchel Parola-Contreras
- TecNM/Tecnológico de Estudios Superiores de Chimalhuacán, Ingeniería Industrial, Ingeniería de Procesos Sustentables ITESCHIM-CA-02, Chimalhuacán 56335, Estado de México, Mexico;
| | - Erik Gustavo Tovar-Pérez
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amealco, Camacho Guzmán, Fracc. Rinconada de Bonfil, Amealco 76850, Querétaro, Mexico;
| | - Ramón Gerardo Guevara-González
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
| | - Humberto Aguirre-Becerra
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Ana Angélica Feregrino-Pérez
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Luis Miguel Contreras-Medina
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Rosario Guzmán-Cruz
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| |
Collapse
|
2
|
Rai P, Prasad L, Mehta S, Yadav P, Sharma A, Mishra DN. Transcriptional, biochemical, and histochemical response of resistant and susceptible cultivars of Brassica juncea against Albugo candida infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1426302. [PMID: 39161953 PMCID: PMC11332608 DOI: 10.3389/fpls.2024.1426302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024]
Abstract
White rust disease caused by a biotrophic oomycete Albugo candida is one of the most serious impediments in realizing the production potential of Brassica juncea. Due to the obligate nature of the pathogen, R-gene-based resistance is unstable as the newer virulent races emerge quickly. For this, a deep understanding of the molecular basis of resistance is essential for developing durable resistant varieties. In this study, we selected one susceptible cultivar, 'Pusa Jaikisan' and its single R gene based resistant NIL, 'Pusa Jaikisan WRR as the source of understanding the defense mechanism in B. juncea against A. candida. Comparative histochemical analysis at 12 dpi showed higher callose deposition in the resistant cultivar than in the susceptible which hints towards its possible role in defense mechanism. Based on the biochemical markers observation, total protein was found to have a negative correlation with the resistance. The antioxidant enzymes (POX, CAT, and SOD) and non-enzymatic ROS scavenging compounds such as polyphenols and proline showed a positive correlation with the white rust resistance. Polyphenol Oxidase (PPO) total chlorophyll and total carotenoids were also found to be more abundant in the 'Pusa Jaikisan WRR'. Based on the heat map analysis, PAL was identified to be the comparatively most induced enzyme involved in the defense mechanism. The polyphenol oxidase, total chlorophyll and total carotenoids were also found to show higher activity in the 'Pusa Jaikisan WRR'. Furthermore, to study the defense response of 'Pusa Jaikisan WRR' compared to 'Pusa Jaikisan' against A. candida infection, the gene expression analyses of salicylic acid (SA)-marker PR protein genes (PR1 and PR2) and jasmonic acid (JA)-marker PR protein genes (PR3 and PR12) were done by qRT-PCR. Based on the results, PR2 emerged as the best possible gene for defense against A. candida followed by PR1. PR3 and PR12 also showed positive correlation with the disease resistance which may be due to the JA pathway acting complementary to the SA pathway in case of B. juncea-A. candida interaction. This provides evidence for the JA-SA hormonal crosstalk to be synergistic in case of the white rust resistance.
Collapse
Affiliation(s)
- Prajjwal Rai
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lakshman Prasad
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Samridhi Mehta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Prashant Yadav
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India
| | - Anubhuti Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India
| | - Deep Narayan Mishra
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Ghorbel M, Zribi I, Haddaji N, Siddiqui AJ, Bouali N, Brini F. Genome-Wide Identification and Expression Analysis of Catalase Gene Families in Triticeae. PLANTS (BASEL, SWITZERLAND) 2023; 13:11. [PMID: 38202319 PMCID: PMC10781083 DOI: 10.3390/plants13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Aerobic metabolism in plants results in the production of hydrogen peroxide (H2O2), a significant and comparatively stable non-radical reactive oxygen species (ROS). H2O2 is a signaling molecule that regulates particular physiological and biological processes (the cell cycle, photosynthesis, plant growth and development, and plant responses to environmental challenges) at low concentrations. Plants may experience oxidative stress and ultimately die from cell death if excess H2O2 builds up. Triticum dicoccoides, Triticum urartu, and Triticum spelta are different ancient wheat species that present different interesting characteristics, and their importance is becoming more and more clear. In fact, due to their interesting nutritive health, flavor, and nutritional values, as well as their resistance to different parasites, the cultivation of these species is increasingly important. Thus, it is important to understand the mechanisms of plant tolerance to different biotic and abiotic stresses by studying different stress-induced gene families such as catalases (CAT), which are important H2O2-metabolizing enzymes found in plants. Here, we identified seven CAT-encoding genes (TdCATs) in Triticum dicoccoides, four genes in Triticum urartu (TuCATs), and eight genes in Triticum spelta (TsCATs). The accuracy of the newly identified wheat CAT gene members in different wheat genomes is confirmed by the gene structures, phylogenetic relationships, protein domains, and subcellular location analyses discussed in this article. In fact, our analysis showed that the identified genes harbor the following two conserved domains: a catalase domain (pfam00199) and a catalase-related domain (pfam06628). Phylogenetic analyses showed that the identified wheat CAT proteins were present in an analogous form in durum wheat and bread wheat. Moreover, the identified CAT proteins were located essentially in the peroxisome, as revealed by in silico analyses. Interestingly, analyses of CAT promoters in those species revealed the presence of different cis elements related to plant development, maturation, and plant responses to different environmental stresses. According to RT-qPCR, Triticum CAT genes showed distinctive expression designs in the studied organs and in response to different treatments (salt, heat, cold, mannitol, and ABA). This study completed a thorough analysis of the CAT genes in Triticeae, which advances our knowledge of CAT genes and establishes a framework for further functional analyses of the wheat gene family.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Najla Haddaji
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Nouha Bouali
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (A.J.S.); (N.B.)
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| |
Collapse
|
4
|
Ghorbel M, Zribi I, Chihaoui M, Alghamidi A, Mseddi K, Brini F. Genome-Wide Investigation and Expression Analysis of the Catalase Gene Family in Oat Plants ( Avena sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3694. [PMID: 37960051 PMCID: PMC10650400 DOI: 10.3390/plants12213694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Through the degradation of reactive oxygen species (ROS), different antioxidant enzymes, such as catalase (CAT), defend organisms against oxidative stress. These enzymes are crucial to numerous biological functions, like plant development and defense against several biotic and abiotic stresses. However, despite the major economic importance of Avena sativa around the globe, little is known about the CAT gene's structure and organization in this crop. Thus, a genome-wide investigation of the CAT gene family in oat plants has been carried out to characterize the potential roles of those genes under different stressors. Bioinformatic approaches were used in this study to predict the AvCAT gene's structure, secondary and tertiary protein structures, physicochemical properties, phylogenetic tree, and expression profiling under diverse developmental and biological conditions. A local Saudi oat variety (AlShinen) was used in this work. Here, ten AvCAT genes that belong to three groups (Groups I-III) were identified. All identified CATs harbor the two conserved domains (pfam00199 and pfam06628), a heme-binding domain, and a catalase activity motif. Moreover, identified AvCAT proteins were located in different compartments in the cell, such as the peroxisome, mitochondrion, and cytoplasm. By analyzing their promoters, different cis-elements were identified as being related to plant development, maturation, and response to different environmental stresses. Gene expression analysis revealed that three different AvCAT genes belonging to three different subgroups showed noticeable modifications in response to various stresses, such as mannitol, salt, and ABA. As far as we know, this is the first report describing the genome-wide analysis of the oat catalase gene family, and these data will help further study the roles of catalase genes during stress responses, leading to crop improvement.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, Ha’il City 81451, Saudi Arabia;
| | - Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia;
| | - Mejda Chihaoui
- Computer Science Departement, Applied College, University of Ha’il, Ha’il City 81451, Saudi Arabia;
| | - Ahmad Alghamidi
- Department of Biology, College of Sciences, University of Hail, Ha’il City 81451, Saudi Arabia;
- National Center for Vegetation Cover & Combating Desertification, Riyadh 13312, Saudi Arabia
| | - Khalil Mseddi
- Department of Biology, Faculty of Science of Sfax, University of Sfax, Sfax 3000, Tunisia;
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia;
| |
Collapse
|
5
|
Sáenz-de la O D, Morales LO, Strid Å, Feregrino-Perez AA, Torres-Pacheco I, Guevara-González RG. Antioxidant and drought-acclimation responses in UV-B-exposed transgenic Nicotiana tabacum displaying constitutive overproduction of H 2O 2. Photochem Photobiol Sci 2023; 22:2373-2387. [PMID: 37486529 DOI: 10.1007/s43630-023-00457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Hydrogen peroxide (H2O2) is an important molecule that regulates antioxidant responses that are crucial for plant stress resistance. Exposure to low levels of ultraviolet-B radiation (UV-B, 280-315 nm) can also activate antioxidant defenses and acclimation responses. However, how H2O2 and UV-B interact to promote stress acclimation remains poorly understood. In this work, a transgenic model of Nicotiana tabacum cv Xanthi nc, with elevated Mn-superoxide dismutase (Mn-SOD) activity, was used to study the interaction between the constitutive overproduction of H2O2 and a 14-day UV-B treatment (1.75 kJ m-2 d-1 biologically effective UV-B). Subsequently, these plants were subjected to a 7-day moderate drought treatment to evaluate the impact on drought resistance of H2O2- and UV-dependent stimulation of the plants' antioxidant system. The UV-B treatment enhanced H2O2 levels and altered the antioxidant status by increasing the epidermal flavonol index, Trolox Equivalent Antioxidant Capacity, and catalase, peroxidase and phenylalanine ammonia lyase activities in the leaves. UV-B also retarded growth and suppressed acclimation responses in highly H2O2-overproducing transgenic plants. Plants not exposed to UV-B had a higher drought resistance in the form of higher relative water content of leaves. Our data associate the interaction between Mn-SOD transgene overexpression and the UV-B treatment with a stress response. Finally, we propose a hormetic biphasic drought resistance response curve as a function of leaf H2O2 content in N. tabacum cv Xanthi.
Collapse
Affiliation(s)
- Diana Sáenz-de la O
- School of Engineering, National Technological Institute of Mexico-Campus Roque, Guanajuato, México
| | - Luis O Morales
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro University, Örebro, Sweden.
| | - A Angélica Feregrino-Perez
- Basic and Applied Bioengineering Group, School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, México
| | - Irineo Torres-Pacheco
- Center for Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, Mexico
| | - Ramón G Guevara-González
- Center for Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, Mexico.
| |
Collapse
|
6
|
Rivero-Montejo SDJ, Rivera-Bustamante RF, Saavedra-Trejo DL, Vargas-Hernandez M, Palos-Barba V, Macias-Bobadilla I, Guevara-Gonzalez RG, Rivera-Muñoz EM, Torres-Pacheco I. Inhibition of pepper huasteco yellow veins virus by foliar application of ZnO nanoparticles in Capsicum annuum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108074. [PMID: 37832367 DOI: 10.1016/j.plaphy.2023.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The Pepper huasteco yellow vein virus (PHYVV) is an endemic geminivirus in Mexico causing partial or total losses in the pepper crop since the damage caused by the virus has not been fully controlled. In this work, we evaluated the effect of ZnO NPs (0, 50, 100, 150, and 200 mM) as a preventive (72 h before) and curative (72 h after) treatment of PHYVV infection in two jalapeño pepper varieties. In this study, we observed a decrease in symptoms, and it could be caused by an induction of the defense system in pepper plants and a direct action on PHYVV by foliar application of ZnO NPs. Our findings suggest that ZnO NP application significantly decreased the viral titer for both varieties at 200 mM by 15.11-fold. However, this effect was different depending on the timing of application and the variety of pepper. The greatest decrease in the viral titer in the preventive treatment in both varieties was at the concentration of 200 mM (1781.17 and 274.5 times, respectively). For curative treatment in cv. Don Pancho at the concentration of 200 mM (333.33 times) and cv. Don Benito at 100 mM (43.10 folds). compared to control. Furthermore, virus mobility was generally restricted for both varieties at 100 mM (15.13-fold) compared to the control. The results possibly delineated that ZnO NPs increased plant resistance possibly by increasing POD (2.08 and 0.25 times) and SOD (0.998 and 1.38) in cv. Don Pancho and cv. Don Benito, respectively. On the other hand, in cv. Don Pancho and cv. Don Benito presented a decrease in CAT (0.61 and 0.058) and PAL (0.78 and 0.77), respectively. Taken together, we provide the first evidence to demonstrate the effect of ZnO NPs on viral symptoms depending on the plan-virus-ZnO NP interaction.
Collapse
Affiliation(s)
- Samantha de Jesús Rivero-Montejo
- Center of Applied Research in Biosystems (CARB-CIAB), Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro, 76265, Mexico.
| | - Rafael F Rivera-Bustamante
- Plant virology laboratory, Center for Research and Advanced Studies, Irapuato unit. Libramiento Norte Carretera Irapuato León Kilometer 9.6, Carr Panamericana Irapuato León, 36821, Irapuato, Gto, Mexico.
| | - Diana L Saavedra-Trejo
- Plant virology laboratory, Center for Research and Advanced Studies, Irapuato unit. Libramiento Norte Carretera Irapuato León Kilometer 9.6, Carr Panamericana Irapuato León, 36821, Irapuato, Gto, Mexico.
| | - Marcela Vargas-Hernandez
- Faculty of Engineering, Campus Amealco, Autonomous University of Queretaro, Carretera Amealco Temazcaltzingo, km 1, Centro, C.P., Amealco de Bonfil, Queretaro, 76850, Mexico.
| | - Viviana Palos-Barba
- Department of Nanotechnology, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico, A.P. 1-1010, Querétaro, 76010, Queretaro, Mexico.
| | - Israel Macias-Bobadilla
- Faculty of Engineering, Campus Conca, Autonomous University of Queretaro, Valle Agrícola S/N, Arroyo Seco, 76410, Queretaro, Mexico.
| | - Ramon Gerardo Guevara-Gonzalez
- Center of Applied Research in Biosystems (CARB-CIAB), Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro, 76265, Mexico.
| | - Eric M Rivera-Muñoz
- Department of Nanotechnology, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico, A.P. 1-1010, Querétaro, 76010, Queretaro, Mexico.
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro, 76265, Mexico.
| |
Collapse
|
7
|
Pati P, Jena M, Bhattacharya S, Behera SK, Pal S, Shivappa R, Dhar T. Biochemical Defense Responses in Red Rice Genotypes Possessing Differential Resistance to Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2023; 14:632. [PMID: 37504637 PMCID: PMC10380536 DOI: 10.3390/insects14070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
The brown planthopper [Nilaparvata lugens (Stål.)] is one of the most destructive insect pests in all the rice-growing regions of the world. The pest is complicated to manage through the blanket application of chemical pesticides. The development of stable, durable N. lugens-resistant rice varieties is the most economical and efficient strategy to manage the pest. Landraces of red rice genotypes possess numerous nutritional and stress-resistant properties, though an exclusive study on the same is yet to be carried out. In the present study, we evaluated 28 red rice genotypes, along with two resistance checks and one susceptibility check, for their resistance to N. lugens. These promising lines revealed differential responses in the defense mechanism against the pest. The resistant accessions showed a greater accumulation of phenols, peroxidase, polyphenol oxidase, catalase, and superoxide dismutase under N. lugens-stressed conditions. However, the concentration of soluble proteins was substantially decreased in all the test genotypes. The concentration of crude silica was at maximum in highly resistant genotypes. Six red rice genotypes, namely Mata Meher, Manipuri Black, Hermonona, Sonahanan, Bavdi, and Bacharya Khuta fall under the highly resistant category, and can be utilized as valuable sources of resistance in breeding programs.
Collapse
Affiliation(s)
- Prajna Pati
- Faculty of Agriculture, Siksha 'O' Anusandhan Deemed University, Bhubaneswar 751030, Odisha, India
- Department of Agricultural Entomology, Visva-Bharati University, Santiniketan 731236, West Bengal, India
| | - Mayabini Jena
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Swarnali Bhattacharya
- Department of Agricultural Entomology, Visva-Bharati University, Santiniketan 731236, West Bengal, India
| | - Santhosh Kumar Behera
- Department of Agricultural Entomology, Indira Gandhi Krishi Viswa Vidyalaya (IGKV), Raipur 492012, Chhattisgarh, India
| | - Subhajit Pal
- Department of Agricultural Entomology, Visva-Bharati University, Santiniketan 731236, West Bengal, India
| | - Raghu Shivappa
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Tapamay Dhar
- Regional Research Sub Station (OAZ), Uttar Banga Krishi Viswavidyalaya (UBKV), Mathurapur 732203, West Bengal, India
| |
Collapse
|
8
|
Ferruzca-Campos EA, Rico-Chavez AK, Guevara-González RG, Urrestarazu M, Cunha-Chiamolera TPL, Reynoso-Camacho R, Guzmán-Cruz R. Biostimulant and Elicitor Responses to Cricket Frass ( Acheta domesticus) in Tomato ( Solanum lycopersicum L.) under Protected Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1327. [PMID: 36987015 PMCID: PMC10059765 DOI: 10.3390/plants12061327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Agriculture in the current century is seeking sustainable tools in order to generate plant production systems with minimal negative environmental impact. In recent years it has been shown that the use of insect frass is an option to be used for this purpose. The present work studied the effect of low doses (0.1, 0.5, and 1.0% w/w) of cricket frass (Acheta domesticus) in the substrate during the cultivation of tomatos under greenhouse conditions. Plant performance and antioxidant enzymatic activities were measured in the study as explicative variables related to plant stress responses in order to determine possible biostimulant or elicitor effects of cricket frass treatments during tomato cultivation under greenhouse conditions. The main findings of this study indicated that tomato plants responded in a dose dependent manner to cricket frass treatments, recalling the hormesis phenomenon. On the one hand, a 0.1% (w/w) cricket frass treatment showed typical biostimulant features, while on the other hand, 0.5 and 1.0% treatments displayed elicitor effects in tomato plants under evaluated conditions in the present study. These results support the possibility that low doses of cricket frass might be used in tomato cultivation (and perhaps in other crops) for biostimulant/elicitor input into sustainable production systems.
Collapse
Affiliation(s)
- Ema Alejandra Ferruzca-Campos
- Centro de Investigaciones Aplicadas en Biosistemas (CIAB), Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, Querétaro 76265, Mexico
| | - Amanda Kim Rico-Chavez
- Centro de Investigaciones Aplicadas en Biosistemas (CIAB), Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, Querétaro 76265, Mexico
| | - Ramón Gerardo Guevara-González
- Centro de Investigaciones Aplicadas en Biosistemas (CIAB), Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, Querétaro 76265, Mexico
| | - Miguel Urrestarazu
- Centro de Investigación en Agrosistemas Intensivos Mediterraneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Tatiana Pagan Loeiro Cunha-Chiamolera
- Centro de Investigación en Agrosistemas Intensivos Mediterraneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Rosalía Reynoso-Camacho
- Facultad de Química, Universidad Autónoma Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Rosario Guzmán-Cruz
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, Querétaro 76265, Mexico
| |
Collapse
|
9
|
The Activity of the Durum Wheat (Triticum durum L.) Catalase 1 (TdCAT1) Is Modulated by Calmodulin. Antioxidants (Basel) 2022; 11:antiox11081483. [PMID: 36009202 PMCID: PMC9404813 DOI: 10.3390/antiox11081483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023] Open
Abstract
Plant catalases (CAT) are involved in the cellular scavenging of the reactive oxygen species during developmental processes and in response to abiotic and biotic stresses. However, little is known about the regulation of the CAT activity to ensure efficient antioxidant function. Using bioinformatic analyses, we showed that durum wheat catalase 1 (TdCAT1) harbors highly conserved cation-binding and calmodulin binding (CaMBD) domains which are localized at different positions of the protein. As a result, the catalytic activity of TdCAT1 is enhanced in vitro by the divalent cations Mn2+ and Fe2+ and to a lesser extent by Cu2+, Zn2+, and Mg2+. Moreover, the GST-pull down assays performed here revealed that TdCAT1 bind to the wheat CaM (TdCaM1.3) in a Ca2+-independent manner. Furthermore, the TdCaM1.3/Ca2+ complex is stimulated in a CaM-dose-dependent manner by the catalytic activity of TdCAT1, which is further increased in the presence of Mn2+ cations. The catalase activity of TdCAT1 is enhanced by various divalent cations and TdCaM1.3 in a Ca-dependent manner. Such effects are not reported so far and raise a possible role of CaM and cations in the function of CATs during cellular response to oxidative stress.
Collapse
|
10
|
Mshenskaya N, Sinitsyna Y, Kalyasova E, Valeria K, Zhirova A, Karpeeva I, Ilin N. Influence of Schumann Range Electromagnetic Fields on Components of Plant Redox Metabolism in Wheat and Peas. PLANTS 2022; 11:plants11151955. [PMID: 35956432 PMCID: PMC9370302 DOI: 10.3390/plants11151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. ScR are the part of electromagnetic field (EMF) of Earth. The influence of ScR on biological systems is still insufficiently understood. The purpose of the study is to characterize the possible role of the plant cell redox metabolism regulating system in the Schumann Resonances EMF perception. Activity of catalase and superoxide dismutase, their isoenzyme structure, content of malondialdehyde, composition of polar lipids in leaf extracts of wheat and pea plants treated with short-time (30 min) and long-time (18 days) ELF EMF with a frequency of 7.8 Hz, 14.3 Hz, 20.8 Hz have been investigated. Short-time exposure ELF EMF caused more pronounced bio effects than long-time exposure. Wheat catalase turned out to be the most sensitive parameter to magnetic fields. It is assumed that the change in the activity of wheat catalase after a short-term ELF EMF may be associated with the ability of this enzyme to perceive the action of a weak EMF through calcium calmodulin and/or cryptochromic signaling systems.
Collapse
Affiliation(s)
- Natalia Mshenskaya
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
- Correspondence:
| | - Yulia Sinitsyna
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Ekaterina Kalyasova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Koshcheeva Valeria
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Anastasia Zhirova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Irina Karpeeva
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Nikolay Ilin
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
| |
Collapse
|
11
|
Comparative Analysis of the NDVI and NGBVI as Indicators of the Protective Effect of Beneficial Bacteria in Conditions of Biotic Stress. PLANTS 2022; 11:plants11070932. [PMID: 35406912 PMCID: PMC9002474 DOI: 10.3390/plants11070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
Precision agriculture has the objective of improving agricultural yields and minimizing costs by assisting management with the use of sensors, remote sensing, and information technologies. There are several approaches to improving crop yields where remote sensing has proven to be an important methodology to determine agricultural maps to show surface differences which may be associated with many phenomena. Remote sensing utilizes a wide variety of image sensors that range from common RGB cameras to sophisticated, hyper-spectral image cameras which acquire images from outside the visible electromagnetic spectrum. The NDVI and NGBVI are computer vision vegetation index algorithms that perform operations from color masks such as red, green, and blue from RGB cameras and hyper-spectral masks such as near-infrared (NIR) to highlight surface differences in the image to detect crop anomalies. The aim of the present study was to determine the relationship of NDVI and NGBVI as plant health indicators in tomato plants (Solanum lycopersicum) treated with the beneficial bacteria Bacillus cereus-Amazcala (B. c-A) as a protective agent to cope with Clavibacter michiganensis subsp. michiganensis (Cmm) infections. The results showed that in the presence of B. c-A after infection with Cmm, NDVI and NGBVI can be used as markers of plant weight and the activation of the enzymatic activities related to plant defense induction.
Collapse
|
12
|
Awad M, Ibrahim EDS, Osman EI, Elmenofy WH, Mahmoud AWM, Atia MAM, Moustafa MAM. Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity. PLoS One 2022; 17:e0254285. [PMID: 35113879 PMCID: PMC8812990 DOI: 10.1371/journal.pone.0254285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
Frequent applications of synthetic insecticides might cause environmental pollution due to the high residue. In addition, increasing insecticide resistance in many insect pests requires novel pest control methods. Nanotechnology could be a promising field of modern agriculture, and is receiving considerable attention in the development of novel nano-agrochemicals, such as nanoinsectticides and nanofertilizers. This study assessed the effects of the lethal and sublethal concentrations of chlorantraniliprole, thiocyclam, and their nano-forms on the development, reproductive activity, oxidative stress enzyme activity, and DNA changes in the black cutworm, Agrotis ipsilon, at the molecular level. The results revealed that A. ipsilon larvae were more susceptible to the nano-forms than the regular forms of both nano chlorine and sulfur within the chlorantraniliprole and thiocyclam insecticides, respectively, with higher toxicities than the regular forms (ca. 3.86, and ca.2.06-fold, respectively). Significant differences in biological parameters, including developmental time and reproductive activity (fecundity and hatchability percent) were also observed. Correspondingly, increases in oxidative stress enzyme activities were observed, as were mutagenic effects on the genomic DNA of A. ipsilon after application of the LC50 of the nano-forms of both insecticides compared to the control. These promising results could represent a crucial step toward developing efficient nanoinsecticides for sustainable control of A. ipsilon.
Collapse
Affiliation(s)
- Mona Awad
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| | - El-Desoky S. Ibrahim
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| | - Engy I. Osman
- Faculty of Agriculture, Department of Genetics, Cairo University, Giza, Egypt
| | - Wael H. Elmenofy
- Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt
| | - Abdel Wahab M. Mahmoud
- Faculty of Agriculture, Plant Physiology Section, Botany Department, Cairo University, Giza, Egypt
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Moataz A. M. Moustafa
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Sáenz-de la O D, Morales LO, Strid Å, Torres-Pacheco I, Guevara-González RG. Ultraviolet-B exposure and exogenous hydrogen peroxide application lead to cross-tolerance toward drought in Nicotiana tabacum L. PHYSIOLOGIA PLANTARUM 2021; 173:666-679. [PMID: 33948972 DOI: 10.1111/ppl.13448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Acclimation of plants to water deficit involves biochemical and physiological adjustments. Here, we studied how ultraviolet (UV)-B exposure and exogenously applied hydrogen peroxide (H2 O2 ) potentiates drought tolerance in tobacco (Nicotiana tabacum L. cv. xanthi nc). Separate and combined applications for 14 days of 1.75 kJ m-2 day-1 UV-B radiation and 0.2 mM H2 O2 were assessed. Both factors, individually and combined, resulted in inhibition of growth. Furthermore, the combined treatment led to the most compacted plants. UV-B- and UV-B + H2 O2 -treated plants increased total antioxidant capacity and foliar epidermal flavonol index. H2 O2 - and UV-B + H2 O2 -pre-treated plants showed cross-tolerance to a subsequent 7-day moderate drought treatment, which was assessed as the absence of negative impact on growth, leaf wilting, and leaf relative water content. Plant responses to the pre-treatment were notably different: (1) H2 O2 increased the activity of catalase (EC 1.11.1.6), phenylalanine ammonia lyase (EC 4.3.1.5), and peroxidase activities (EC 1.11.1.7), and (2) the combined treatment induced epidermal flavonols which were key to drought tolerance. We report synergistic effects of UV-B and H2 O2 on transcription accumulation of UV RESISTANCE LOCUS 8, NAC DOMAIN PROTEIN 13 (NAC13), and BRI1-EMS-SUPPRESSOR 1 (BES1). Our data demonstrate a pre-treatment-dependent response to drought for NAC13, BES1, and CHALCONE SYNTHASE transcript accumulation. This study highlights the potential of combining UV-B and H2 O2 to improve drought tolerance which could become a useful tool to reduce water use.
Collapse
Affiliation(s)
- Diana Sáenz-de la O
- Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico
| | - Luis O Morales
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Irineo Torres-Pacheco
- Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico
| | - Ramón G Guevara-González
- Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico
| |
Collapse
|
14
|
Catalase (CAT) Gene Family in Rapeseed ( Brassica napus L.): Genome-Wide Analysis, Identification, and Expression Pattern in Response to Multiple Hormones and Abiotic Stress Conditions. Int J Mol Sci 2021; 22:ijms22084281. [PMID: 33924156 PMCID: PMC8074368 DOI: 10.3390/ijms22084281] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells’ death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I–IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1–BnCAT3 and BnCAT11–BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.
Collapse
|
15
|
A Novel Isolate of Bacillus cereus Promotes Growth in Tomato and Inhibits Clavibacter michiganensis Infection under Greenhouse Conditions. PLANTS 2021; 10:plants10030506. [PMID: 33803105 PMCID: PMC8001772 DOI: 10.3390/plants10030506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
The need to produce food in a sustainable way to counteract the effects of excessive use of agrochemicals opens the door to the generation of new technologies that are not based on fossil fuels and are less toxic to ecosystems. Plant growth-promoting bacteria (PGPB) could represent an alternative to chemical biofertilizers and pesticides offering protection for biotic and abiotic stresses. In this work, a bacterial isolate from roots of castor bean (Ricinus communis) was identified and named as Bacillus cereus strain “Amazcala” (B.c-A). This isolate displayed the ability to solubilize inorganic phosphate and produce gibberellic acid (GA3). Moreover, this bacterium provided significant increases in height, stem width, dry weight, and total chlorophyll content in tomato plants. Interestingly, B.c-A also significantly decreased the severity of bacterial canker disease on tomato caused by Clavibacter michiganensis (Cmm) in preventive disease assays under greenhouse conditions. Based on our results, B.c-A can be considered as PGPB and a useful tool in Cmm disease control on tomato plant under greenhouse conditions.
Collapse
|
16
|
Moreira RA, de Araujo GS, Silva ARRG, Daam MA, Rocha O, Soares AMVM, Loureiro S. Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: a multiple endpoint approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1486-1499. [PMID: 32388636 DOI: 10.1007/s10646-020-02218-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the toxicity of pesticide formulations Kraft® 36 EC (active ingredient-a.i. abamectin) and Score® 250 EC (a.i. difenoconazole), and their mixtures in Daphnia magna at different biological levels of organization. Survival, reproduction and biochemical markers (cholinesterase (ChE), catalase (CAT) and lipid peroxidation (LPO)) were some of the endpoints evaluated. Total proteins and lipids were also studied together with energy consumption (Ec). D. magna neonates were exposed for 96 h to Kraft (2, 4, and 6 ng a.i./L) and Score (12.5, 25, and 50 µg a.i./L) for the biochemical experiments, and for 15 days to abamectin (1-5 ng a.i./L) and to difenoconazole (3.12-50 µg a.i./L) to assess possible changes in reproduction. Exposures of organisms to both single compounds did not cause effects to antioxidant and detoxifying enzymes, except for LPO occurring at the highest concentration of difenoconazole tested. For ChE and CAT there was enzymatic induction in mixture treatments organisms, occurring at minor pesticides concentrations for CAT and at the two highest concentrations for ChE. There were no significant differences for total protein in D. magna but lipids showed an increase at the highest concentrations of pesticide mixture combinations. There was a significant increase of Ec in individuals of all treatments tested. In the chronic test, increased fecundity occurred for D. magna under difenoconazole exposures and mixtures. This study demonstrated that mixtures of these pesticides caused greater toxicity to D. magna than when tested individually, except for Ec. Therefore, effects of mixtures are very hard to predict only based on information from single compounds, which most possibly is the result of biological complexity and redundancy in response pathways, which need further experimentation to become better known.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.
| | | | | | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
Husseini ZN, Hosseini Tafreshi SA, Aghaie P, Toghyani MA. CaCl 2 pretreatment improves gamma toxicity tolerance in microalga Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110261. [PMID: 32018153 DOI: 10.1016/j.ecoenv.2020.110261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The Chlorella vulgaris has been generally recognized as a promising microalgal model to study stress-related responses due to its ability to withstand against ionizing and non-ionizing radiation. The objective of the present study was to investigate the effect of CaCl2 pre-treatment at different concentrations on the responses of microalga C. vulgaris under gamma radiation toxicity. Changes in growth, physiological parameters and biochemical compositions of the algae pretreated with 0.17 (normal), 5, and 10 mM CaCl2 were analyzed under 300 Gy gamma irradiation and compared to those of gamma-free control. The results showed that parameters including specific growth rate, cell size, chlorophyll and protein contents, ascorbate peroxidase (APX), and superoxide dismutase (SOD) activity, Ferric Reducing Antioxidant Power (FRAP), and the ratios of nucleic acid to protein negatively affected by gamma irradiation. All these parameters, except for the ratios of nucleic acid to protein significantly increased in the algae when pretreated with a CaCl2 content higher than normal concentration. The analysis also showed that parameters including catalase activity, proline, and carotenoid content, the level of lipid peroxidation, and electrolyte leakage (EL) significantly increased under gamma irradiation but not affected significantly under different CaCl2 pre-treatments. Additionally, specific growth rate, chlorophyll a and protein content, APX and SOD activity, FRAP, lipid peroxidation, electrolyte leakage, and the ratios of nucleic acid to protein were the only parameters that significantly affected by the interaction of gamma toxicity and CaCl2 pretreatment. Overall, the results suggested that regardless of the CaCl2 effect, the algal cells responded to gamma radiation more efficiently by increasing proline, carotenoids content, and CAT activity. More important, it was concluded that calcium had an essential role in modifying the detrimental effect of gamma toxicity on the algae mainly by increasing the activity of ascorbate peroxidase and superoxide dismutase and maintaining the reducing antioxidant power (FRAP) of the cells at a high level.
Collapse
Affiliation(s)
- Zainab Naser Husseini
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran. 8731753153, Iran
| | - Seyed Ali Hosseini Tafreshi
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran. 8731753153, Iran.
| | - Peyman Aghaie
- Department of Biology, Faculty of Science, Payame Noor Universtiy, Po Box 19395-3697, Tehran, Iran
| | | |
Collapse
|
18
|
Kolupaev YE, Karpets YV, Kabashnikova LF. Antioxidative System of Plants: Cellular Compartmentalization, Protective and Signaling Functions, Mechanisms of Regulation (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Daniel D, Dionísio R, de Alkimin GD, Nunes B. Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3320-3329. [PMID: 30506442 DOI: 10.1007/s11356-018-3788-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The modern usage of pharmaceutical drugs has led to a progressive increase in their presence and environment concentrations, particularly in the aquatic compartment which is the most common final dumping location for this specific class of chemicals. These substances, due to their chemical and biological properties, can exert mostly uncharacterized toxic effects to non-target aquatic species, given the diverse pathways they activate, and the large number of putative targets in the wild. Among drugs in the environment, paracetamol assumes a leading role, considering its widespread therapeutic use and consequently, environmental presence. The present study aimed to assess the acute and chronic effects of paracetamol, in ecologically relevant levels, in the freshwater cladoceran Daphnia magna, namely focusing on biochemical and reproductive parameters. Considering the pro-oxidant effects of paracetamol, already described for a large set of aquatic organisms, specific enzymes involved in the anti-oxidant and metabolic responses were quantified, namely catalase (CAT) and glutathione S-transferases (GSTs) activities. Cholinesterases (ChEs) activity was quantified to evaluate the capacity of paracetamol to induce neurotoxicity, an indirect outcome of oxidative effects by paracetamol, that may affect feeding behavior and reproductive outcomes of this crustacean. Paracetamol in the tested levels showed no effect on reproductive traits of D. magna. Results obtained for organisms acutely exposed included significant increases in the activities of both GSTs and CAT, demonstrating a short-term pro-oxidative effect by paracetamol. On the contrary, ChEs activity was significantly decreased in organisms exposed to this drug, showing a possible interference with neurotransmission. On the contrary, no noteworthy effects were reported for organisms chronically exposed to ecologically realistic concentrations, evidencing the transient nature of the obtained biological response. These results demonstrate the responsiveness of D. magna to paracetamol, especially for high levels of exposure that, despite not being environmentally relevant, are able to trigger significant antioxidant responses. No population effects were likely to be caused by realistic levels of paracetamol, and the absence of biochemical changes after chronic exposure suggests that this specific organism may not be deleteriously affected by low levels of paracetamol, under real scenarios of contamination.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Dionísio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
20
|
Yu B, Yan S, Zhou H, Dong R, Lei J, Chen C, Cao B. Overexpression of CsCaM3 Improves High Temperature Tolerance in Cucumber. FRONTIERS IN PLANT SCIENCE 2018; 9:797. [PMID: 29946334 PMCID: PMC6006952 DOI: 10.3389/fpls.2018.00797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
High temperature (HT) stress affects the growth and production of cucumbers, but genetic resources with high heat tolerance are very scarce in this crop. Calmodulin (CaM) has been confirmed to be related to the regulation of HT stress resistance in plants. CsCaM3, a CaM gene, was isolated from cucumber inbred line "02-8." Its expression was characterized in the present study. CsCaM3 transcripts differed among the organs and tissues of cucumber plants and could be induced by HTs or abscisic acid, but not by salicylic acid. CsCaM3 transcripts exhibited subcellular localization to the cytoplasm and nuclei of cells. Overexpression of CsCaM3 in cucumber plants has the potential to improve their heat tolerance and protect against oxidative damage and photosynthesis system damage by regulating the expression of HT-responsive genes in plants, including chlorophyll catabolism-related genes under HT stress. Taken together, our results provide useful insights into stress tolerance in cucumber.
Collapse
Affiliation(s)
- Bingwei Yu
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Shuangshuang Yan
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Huoyan Zhou
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Riyue Dong
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Jianjun Lei
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Changming Chen
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| | - Bihao Cao
- Department of Vegetable Science, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Corpas FJ, Barroso JB. Calmodulin antagonist affects peroxisomal functionality by disrupting both peroxisomal Ca 2+ and protein import. J Cell Sci 2018; 131:jcs.201467. [PMID: 28183730 DOI: 10.1242/jcs.201467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Ca2+ is a second messenger in many physiological and phytopathological processes. Peroxisomes are subcellular compartments with an active oxidative and nitrosative metabolism. Previous studies have demonstrated that peroxisomal nitric oxide (NO) generation is dependent on Ca2+ and calmodulin (CaM). Here, we used Arabidopsis thaliana transgenic seedlings expressing cyan fluorescent protein (CFP) containing a type 1 peroxisomal-targeting signal motif (PTS1; CFP-PTS1), which enables peroxisomes to be visualized in vivo, and also used a cell-permeable fluorescent probe for Ca2+ Analysis by confocal laser-scanning microscopy (CLSM) enabled us to visualize the presence of endogenous Ca2+ in the peroxisomes of both roots and guard cells. The presence of Ca2+ in peroxisomes and the import of CFP-PTS1 are drastically disrupted by both CaM antagonist and glutathione (GSH). Furthermore, the activity of three peroxisomal enzymes (catalase, glycolate oxidase and hydroxypyruvate reductase) containing PTS1 was clearly affected in these conditions, with a decrease of between 41 and 51%. In summary, data show that Ca2+ and CaM are strictly necessary for protein import and normal functionality of peroxisomal enzymes, including antioxidant and photorespiratory enzymes, as well as for NO production.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, Granada E-18008, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', University of Jaén, Jaén E-23071, Spain
| |
Collapse
|
22
|
Yong B, Wang X, Xu P, Zheng H, Fei X, Hong Z, Ma Q, Miao Y, Yuan X, Jiang Y, Shao H. Isolation and Abiotic Stress Resistance Analyses of a Catalase Gene from Ipomoea batatas (L.) Lam. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6847532. [PMID: 28638833 PMCID: PMC5468580 DOI: 10.1155/2017/6847532] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022]
Abstract
As an indicator of the antioxidant capability of plants, catalase can detoxify reactive oxygen species (ROS) generated by environmental stresses. Sweet potato is one of the top six most important crops in the world. However, its catalases remain largely unknown. In this study, a catalase encoding gene, IbCAT2 (accession number: KY615708), was identified and cloned from sweet potato cv. Xushu 18. It contained a 1479 nucleotides' open reading frame (ORF). S-R-L, Q-K-L, and a putative calmodulin binding domain were located at the C-terminus of IbCAT2, which suggests that IbCAT2 could be a peroxisomal catalase. Next-generation sequencing (NGS) based quantitative analyses showed that IbCAT2 was mainly expressed in young leaves and expanding tuberous roots under normal conditions. When exposed to 10% PEG6000 or 200 mmol/L NaCl solutions, IbCAT2 was upregulated rapidly in the first 11 days and then downregulated, although different tissues showed different degree of change. Overexpression of IbCAT2 conferred salt and drought tolerance in Escherichia coli and Saccharomyces cerevisiae. The positive response of IbCAT2 to abiotic stresses suggested that IbCAT2 might play an important role in stress responses.
Collapse
Affiliation(s)
- Bin Yong
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Xiaoyan Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Pan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Haiyan Zheng
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Xueting Fei
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Zixi Hong
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Qinqin Ma
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Yuzhi Miao
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Xianghua Yuan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Yusong Jiang
- College of Life Science & Forestry, Chongqing University of Art & Science, Yongchuan, Chongqing 402160, China
| | - Huanhuan Shao
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| |
Collapse
|
23
|
Eftekhari A, Baghizadeh A, Yaghoobi M, Abdolshahi R. Differences in the drought stress response ofDREB2andCAT1genes and evaluation of related physiological parameters in some bread wheat cultivars. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1316214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
24
|
Zehlila A, Schaumann A, Mlouka AB, Bourguiba I, Hardouin J, Masmoudi O, Cosette P, Amri M, Jouenne T. Glioprotective effect of Ulva rigida extract against UVB cellular damages. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zhao H, Sun X, Xue M, Zhang X, Li Q. Antioxidant Enzyme Responses Induced by Whiteflies in Tobacco Plants in Defense against Aphids: Catalase May Play a Dominant Role. PLoS One 2016; 11:e0165454. [PMID: 27788203 PMCID: PMC5082799 DOI: 10.1371/journal.pone.0165454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 10/12/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bemisia tabaci MEAM1 (Middle East-Asia Minor 1) feeding alters antioxidative enzyme activity in some plant species. Infestation of B. tabaci nymphs decreases Myzus persicae performance on systemic, but not local leaves of tobacco plants. However, it is unclear if B. tabaci nymphs induced antioxidant activities contributing to the aphid resistance. METHODOLOGY/PRINCIPAL FINDINGS We investigated the relationship between antioxidants induced by nymphs of B. tabaci feeding on tobacco and aphid resistance. The activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and the concentration of hydrogen peroxide (H2O2) were assayed in tobacco leaves at different feeding times following infestation of B. tabaci nymphs. The infestation altered the activities of CAT and POD, but had no significant effect on SOD activity. The highest CAT activity was observed at 15 d after infestation. This was 98.2% greater than control systemic leaves, but 32.6% lower than the control in local leaves. Higher POD activity was recorded in local vs. systemic leaves after 15 d of infestation. POD activity was 71.0% and 112.9% higher in local and systemic leaves, respectively, than in the controls. The changes of CAT, but not POD or SOD activity were correlated to levels of aphid resistance. H2O2 levels were higher in local than in systemic leaves in contrast to CAT activity. Tobacco curly shoot virus mediated virus-induced gene silencing was employed to determine if CAT activation was involved in the aphid resistance induced by B. tabaci nymphs. B. tabaci induced CAT activity decreased when the Cat1 expression was silenced. The performance assay indicated that Cat1 silencing made B. tabaci infested plants a more suitable host for aphids than infested control plants. The aphid survival rate was reduced by 40.4% in infested control plants, but reduced by only 26.1% in Cat1-silenced plants compared to uninfested controls. Also, qPCR results showed that silencing of Cat1 led to the suppression of the B. tabaci mediated PR-2a expression. CONCLUSIONS/SIGNIFICANCE Aphid resistance in plants infested with B. tabaci nymphs is associated with enhanced antioxidant activities in which CAT may play a dominant role. This resistance probably acted via interactions with SA-mediated defense responses.
Collapse
Affiliation(s)
- Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xia Sun
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ming Xue
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingliang Li
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
- Shanxi Academy of Agricultural Sciences, Jinzhong, Shanxi, China
| |
Collapse
|
26
|
Feki K, Kamoun Y, Ben Mahmoud R, Farhat-Khemakhem A, Gargouri A, Brini F. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:420-31. [PMID: 26555900 DOI: 10.1016/j.plaphy.2015.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 05/01/2023]
Abstract
Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants.
Collapse
Affiliation(s)
- Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, Tunisia
| | - Yosra Kamoun
- Laboratory of Molecular Biotechnologie of Eukaryotes, Centre of Biotechnology of Sfax, Tunisia
| | - Rihem Ben Mahmoud
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, Tunisia
| | | | - Ali Gargouri
- Laboratory of Molecular Biotechnologie of Eukaryotes, Centre of Biotechnology of Sfax, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, Tunisia.
| |
Collapse
|
27
|
Oliveira LLD, Antunes SC, Gonçalves F, Rocha O, Nunes B. Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:123-31. [PMID: 25996524 DOI: 10.1016/j.ecoenv.2015.04.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 05/27/2023]
Abstract
The increasing occurrence of pharmaceutical drugs in the aquatic environment is cause of concern, due to the possibility of toxic phenomena in non-target species, including oxidative stress and neurotoxicity. The present study aimed to assess the acute effect of four widely used therapeutic agents: acetaminophen (analgesic), chlorpromazine (antipsychotic), diclofenac (anti-inflammatory) and propranolol (antihypertensive), in the cladoceran species Daphnia magna. Considering the involvement of the mentioned compounds in the impairment of cholinesterasic activity and modifications in cellular redox systems, the purpose of this study was to analyze their effects on biomarkers of neuronal regulation, such as total cholinesterases (ChEs), and enzymatic oxidative stress defense, including as catalase (CAT), glutathione-S-transferases (GSTs), and total and selenium-dependent glutathione-peroxidase (total GPx; Se-GPx) activities. Exposure to acetaminophen caused a significant inhibition of AChE and Se-GPx activities in D. magna relative to the control. Among the biomarkers of oxidative stress, only the activity of CAT was significantly altered in concentration of 0.001mg L(-1) of chlorpromazine, which was not always consistent with the literature. Diclofenac caused a significant inhibition of AChE and Se-dependent GPx, and also in total GPx activities. Propranolol was responsible for a significant decrease in the activity of the latter two enzymes, and also a slight increase of GSTs activity. The results indicated that the exposure to all the tested compounds induced alterations on the cellular redox status in the studied species. In addition, acetaminophen and diclofenac were shown to have the capability of interfering with D. magna neurotransmission, through the inhibition of ChEs. Our data enlighten the need for more research on the ecological consequences of pharmaceuticals in non-target organisms.
Collapse
Affiliation(s)
- Laira L D Oliveira
- Post Graduate Program in Environmental Engineering Sciences, University of São Paulo, Engineering School of São Carlos, Avenida Trabalhador São-carlense, 400, São Carlos, SP, Brazil; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sara C Antunes
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP, Brazil
| | - Bruno Nunes
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
Sytykiewicz H. Transcriptional responses of catalase genes in maize seedlings exposed to cereal aphids' herbivory. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Chen HJ, Huang YH, Huang GJ, Huang SS, Chow TJ, Lin YH. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:1-17. [PMID: 25886396 DOI: 10.1016/j.jplph.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested.
Collapse
Affiliation(s)
- Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan.
| | - Yu-Hsuan Huang
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Guan-Jhong Huang
- Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, 404 Taichung, Taiwan
| | - Shyh-Shyun Huang
- Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, 404 Taichung, Taiwan
| | - Te-Jin Chow
- Department of Biotechnology, Fooyin University, 831 Kaohsiung, Taiwan
| | - Yaw-Huei Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, 115 Taipei, Taiwan.
| |
Collapse
|