1
|
Liberatore CM, Biancucci M, Ezquer I, Gregis V, Di Marzo M. Investigating how reproductive traits in rice respond to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2064-2080. [PMID: 39876691 DOI: 10.1093/jxb/eraf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Rice (Oryza sativa) is one of the most important crops and a food source for billions of people. Anthropogenic global warming, soil erosion, and unstable environmental conditions affect both rice vegetative and reproductive growth, and consequently its final yield. The reproductive phase starts with the transition of the apical meristem from the vegetative to the reproductive phase in which it develops into a panicle and proceeds through the differentiation of the floret and, after fertilization, to the filling of the grain. The physiological events that occur during these stages influence the ability of new seeds to respond to stresses during the future germination phase, a key step for successful seedling growth and future plant establishment. This review explores the impacts of different abiotic stresses on the physiological and molecular pathways of reproductive growth.
Collapse
Affiliation(s)
| | - Marco Biancucci
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| | - Ignacio Ezquer
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| | - Veronica Gregis
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| | - Maurizio Di Marzo
- Department of Biosciences, University of Milan (UNIMI), Milan, Italy
| |
Collapse
|
2
|
Hernández-Vega JD, Parola-Contreras I, Tovar-Pérez EG, Guevara-González RG, Aguirre-Becerra H, Feregrino-Pérez AA, Contreras-Medina LM, Guzmán-Cruz R. Evaluation of Phenolic Compounds and Antioxidant Activity in Three Black Cherry Tomato Varieties Grown Under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:1173. [PMID: 40284061 PMCID: PMC12030121 DOI: 10.3390/plants14081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
Given the importance of phenolic compounds and antioxidant capacity in plant defense and human health, this study aimed to evaluate black cherry tomatoes' polyphenol, flavonoid, anthocyanin, and carotenoid content and enzymatic activity under greenhouse conditions. Black cherry tomato varieties-Indigo Cherry Drops, Indigo Rose, and Kumato-were cultivated from seed to the third harvest. Total polyphenols, flavonoids, anthocyanins, β-carotenoids, antioxidant capacity 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and enzymatic activities, including superoxide dismutase (SOD), catalase (CAT), proline (PRO), and superoxide dismutase (PAL), were measured and compared. The Kumato variety exhibited significantly higher total polyphenols, flavonoids, and carotenoids, along with enhanced antioxidant activity (DPPH, ABTS) and enzymatic activity (CAT, PAL) compared to Indigo Rose and Indigo Cherry Drops, with free radical inhibition of 87.0% (DPPH) and 74.72% (ABTS). SOD activity was highest in Indigo Rose (0.21 U/mg protein), while proline levels were significantly higher in Kumato and Indigo Cherry Drops (6.40 and 6.63 U/mg protein). These findings highlight the antioxidant potential of black cherry tomatoes and their high potential nutritional value for consumers. Future research should explore how environmental factors influence their biochemical composition and potential applications in functional food.
Collapse
Affiliation(s)
- Josué Daniel Hernández-Vega
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
| | - Ixchel Parola-Contreras
- TecNM/Tecnológico de Estudios Superiores de Chimalhuacán, Ingeniería Industrial, Ingeniería de Procesos Sustentables ITESCHIM-CA-02, Chimalhuacán 56335, Estado de México, Mexico;
| | - Erik Gustavo Tovar-Pérez
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amealco, Camacho Guzmán, Fracc. Rinconada de Bonfil, Amealco 76850, Querétaro, Mexico;
| | - Ramón Gerardo Guevara-González
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
| | - Humberto Aguirre-Becerra
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Ana Angélica Feregrino-Pérez
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Luis Miguel Contreras-Medina
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| | - Rosario Guzmán-Cruz
- Centro de Investigación Aplicada en Biosistemas (CIAB), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico; (J.D.H.-V.); (R.G.G.-G.); (H.A.-B.); (L.M.C.-M.)
- C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carr. Chichimequillas-Amazcala Km 1 S/N, Amazcala, El Marques 76265, Querétaro, Mexico;
| |
Collapse
|
3
|
Mushtaq NU, Saleem S, Rasool A, Shah WH, Tahir I, Seth CS, Rehman RU. Proline Tagging for Stress Tolerance in Plants. Int J Genomics 2025; 2025:9348557. [PMID: 40207093 PMCID: PMC11981710 DOI: 10.1155/ijog/9348557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/19/2024] [Indexed: 04/11/2025] Open
Abstract
In environments with high levels of stress conditions, plants accumulate various metabolic products under stress conditions. Among these products, amino acids have a cardinal role in supporting and maintaining plant developmental processes. The increase in proline content and stress tolerance in plants has been found optimistic, suggesting the importance of proline in mitigating stress through osmotic adjustments. Exogenous application and pretreatment of plants with proline increase growth and development under various stressful conditions, but excessive proline has negative influence on growth. Proline has two biosynthetic routes: glutamate or the ornithine pathway, and whether plants synthesize proline by glutamate or ornithine precursors is still debatable as relatively little is known about it. Plants have the innate machinery to synthesize proline from both pathways, but the switch of a particular pathway under which it can be activated and deactivated depends upon various factors. Therefore, in this review, we elucidate the importance of proline in stress mitigation; the optimal amount of proline required for maximum benefit; levels at which it inhibits the growth, conditions, and factors that regulate proline biosynthesis; and lastly, how we can benefit from all these answers to obtain better stress tolerance in plants.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Aadil Rasool
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Wasifa Hafiz Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | | | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| |
Collapse
|
4
|
Suo W, Li L, Zheng Y, Pan S, Niu Y, Guan Y. Effect of seed priming with zinc, iron and selenium on the low temperature tolerance of Nicotiana tabacum L. during seed germination. Biochem Biophys Res Commun 2024; 735:150806. [PMID: 39427379 DOI: 10.1016/j.bbrc.2024.150806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Tobacco is one of the important cash crops in China. It is sensitive to low temperature, especially in the early stage of tobacco seed germination and seedling growth. Low temperature stress directly affects the germination of tobacco seeds, leading to irregular emergence and slow growth of seedlings. Therefore, it is important to improve the vigor and cold tolerance of tobacco. In this study, two cold-sensitive tobacco varieties were primed individually with ZnSO4, FeSO4 and Na2SeO3 to test the effects of different microelements priming on seed germination. The results showed that under low temperature (11 °C), all three elements could improve tobacco seed vigor and promote seed germination, with selenium priming exhibiting the best effect. Selenium priming significantly increased the seed vigor index of YY97 by 29.60 % and of YY85 by 47.57 %. Moreover, selenium priming could effectively enhance POD activity in seeds, promote the oxidation of phenolic substances and enhance the activities of G-6-PDH and 6-P-GDH in the process of scavenging ROS and converting H2O2 to ·O2-. The results suggested that selenium played an important role in promoting tobacco seed germination under low temperature.
Collapse
Affiliation(s)
- Wenlong Suo
- Yuxi Zhongyan Seed Company Ltd., Tobacco Seed Engineering Technology Center of Yunnan Province, Yuxi, 653100, China.
| | - Longxi Li
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
| | - Yunye Zheng
- Yuxi Zhongyan Seed Company Ltd., Tobacco Seed Engineering Technology Center of Yunnan Province, Yuxi, 653100, China.
| | - Shanshan Pan
- Zhenhai District Agriculture and Rural Affairs Bureau, Ningbo, China.
| | - Yongzhi Niu
- Yuxi Zhongyan Seed Company Ltd., Tobacco Seed Engineering Technology Center of Yunnan Province, Yuxi, 653100, China.
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
5
|
Mišković J, Tamindžić G, Rašeta M, Ignjatov M, Krsmanović N, Gojgić-Cvijović G, Karaman M. Unveiling Fungi Armor: Preliminary Study on Fortifying Pisum sativum L. Seeds against Drought with Schizophyllum commune Fries 1815 Polysaccharide Fractions. Microorganisms 2024; 12:1107. [PMID: 38930489 PMCID: PMC11205620 DOI: 10.3390/microorganisms12061107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Amidst worsening climate change, drought stress imperils global agriculture, jeopardizing crop yields and food security, thereby necessitating the urgent exploration of sustainable methods like biopriming for the harnessing of beneficial microorganisms to bolster plant resilience. Recent research has revealed diverse biological compounds with versatile applications produced by Schizophyllum commune, rendering this fungus as a promising contender for biopriming applications. For the first time, this study aimed to investigate the potential of S. commune exo- (EPSH) and intra-polysaccharides (IPSH) isolated from two strains-Italian (ITA) and Serbian (SRB)-under submerged cultivation to enhance the resilience of Pisum sativum L. seeds through the biopriming technique. Testing of the seed quality for the bioprimed, hydroprimed, and unprimed seeds was conducted using a germination test, under optimal and drought conditions, while characterization of the PSHs included FTIR analysis, microanalysis, and determination of total protein content (TPC). The FTIR spectra of EPSH and IPSH were very similar but revealed the impurities, while microanalysis and TPC confirmed a different presence of proteins in the isolated PSHs. In optimal conditions, the IPSH SRB increased germination energy by 5.50% compared to the control; however, the highest percentage of germination (94.70%) was shown after biopriming with the PSH isolated from the ITA strain. Additionally, all assessed treatments resulted in a boost in seedling growth and biomass accumulation, where the ITA strain demonstrated greater effectiveness in optimal conditions, while the SRB strain showed superiority in drought conditions. The drought tolerance indices increased significantly in response to all examined treatments during the drought, with EPSH ITA (23.00%) and EPSH SRB (24.00%) demonstrating the greatest effects. Results of this preliminary study demonstrate the positive effect of isolated PSH, indicating their potential as biopriming agents and offering insights into novel strategies for agricultural resilience.
Collapse
Affiliation(s)
- Jovana Mišković
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (M.R.); (N.K.)
| | - Gordana Tamindžić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (G.T.); (M.I.)
| | - Milena Rašeta
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (M.R.); (N.K.)
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (G.T.); (M.I.)
| | - Nenad Krsmanović
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (M.R.); (N.K.)
| | - Gordana Gojgić-Cvijović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Maja Karaman
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (M.R.); (N.K.)
| |
Collapse
|
6
|
Fu Y, Li P, Si Z, Ma S, Gao Y. Seeds Priming with Melatonin Improves Root Hydraulic Conductivity of Wheat Varieties under Drought, Salinity, and Combined Stress. Int J Mol Sci 2024; 25:5055. [PMID: 38732273 PMCID: PMC11084420 DOI: 10.3390/ijms25095055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 μM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
| | - Penghui Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
| | - Zhuanyun Si
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Shoutian Ma
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
7
|
Andrade FHA, Silva RT, Barbosa Neto MA, Silva SF, Cardoso AFL, Lima JS, Silva JHB, Cruz AFS, Clemente MIB, Onias EA, Pereira WE, Chaves JTL, Borges SGS, Oliveira AMF, Linhares PCA, Silva RR. The physiological quality of Vigna unguiculata L. seeds shows tolerance to salinity. BRAZ J BIOL 2024; 84:e281286. [PMID: 38629678 DOI: 10.1590/1519-6984.281286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Salinity reduces feijão-caupi production, and the search for tolerant varieties becomes important within the agricultural context, as, in addition to being used in the field, they can be used in genetic improvement. The objective was to for a identify variety that is tolerant to salinity considering the physiological quality of seeds and seedling growth. A 2 × 4 factorial scheme was used, referring to the varieties Pingo-de-ouro and Coruja, and four electrical conductivities of water (0; 3.3; 6.6 and 9.9 dS m-1). The physiological quality of seeds and the growth of seedlings were analyzed, in addition to the cumulative germination. The Pingo-de-ouro variety showed no germination, length of the shoot and root, dry mass of the shoot and root compromised up to electrical conductivity of 6 dS m-1 in relation to 0.0 dS m-1. On the other hand, the Coruja variety showed reduced germination, increased shoot and root length. The creole variety Pingo-de-ouro proved to be tolerant to salinity.
Collapse
Affiliation(s)
- F H A Andrade
- Universidade Federal de Lavras - UFLA, Lavras, MG, Brasil
| | - R T Silva
- Universidade Federal da Paraíba - UFPB, Areia, PB, Brasil
| | | | - S F Silva
- Universidade Federal do Piauí - UFPI, Teresina, PI, Brasil
| | - A F L Cardoso
- Universidade Federal do Maranhão - UFMA, São Luís, MA, Brasil
| | - J S Lima
- Universidade Federal de Lavras - UFLA, Lavras, MG, Brasil
| | - J H B Silva
- Universidade Federal da Paraíba - UFPB, Areia, PB, Brasil
| | - A F S Cruz
- Universidade Federal da Paraíba - UFPB, Areia, PB, Brasil
| | - M I B Clemente
- Universidade Federal Rural do Semiárido - UFERSA, Mossoró, RN, Brasil
| | - E A Onias
- Universidade Federal da Paraíba - UFPB, Areia, PB, Brasil
| | - W E Pereira
- Universidade Federal da Paraíba - UFPB, Areia, PB, Brasil
| | - J T L Chaves
- Universidade Federal de Lavras - UFLA, Lavras, MG, Brasil
| | - S G S Borges
- Universidade Federal do Tocantins - UFT, Palmas, TO, Brasil
| | - A M F Oliveira
- Universidade Federal Rural do Semiárido - UFERSA, Mossoró, RN, Brasil
| | - P C A Linhares
- Universidade Estadual da Paraíba - UEPB, Catolé do Rocha, PB, Brasil
| | - R R Silva
- Universidade Federal Rural do Semiárido - UFERSA, Mossoró, RN, Brasil
| |
Collapse
|
8
|
Paul A, Mondal S, Chakraborty K, Biswas AK. Moving forward to understand the alteration of physiological mechanism by seed priming with different halo-agents under salt stress. PLANT MOLECULAR BIOLOGY 2024; 114:24. [PMID: 38457044 DOI: 10.1007/s11103-024-01425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Soil salinity hampers the survival and productivity of crops. To minimize salt-associated damages in plant, better salt management practices in agriculture have become a prerequisite. Seed priming with different halo-agents is a technique, which improves the primed plant's endurance to tackle sodium. Salt tolerance is achieved in tolerant plants through fundamental physiological mechanisms- ion-exclusion and tissue tolerance, and salt-tolerant plants may (Na+ accumulators) or may not (Na+ excluders) allow sodium movement to leaves. While Na+ excluders depend on ion exclusion in roots, Na+ accumulators are proficient Na+ managers that can compartmentalize Na+ in leaves and use them beneficially as inexpensive osmoticum. Salt-sensitive plants are Na+ accumulators, but their inherent tissue tolerance ability and ion-exclusion process are insufficient for tolerance. Seed priming with different halo-agents aids in 'rewiring' of the salt tolerance mechanisms of plants. The resetting of the salt tolerance mechanism is not universal for every halo-agent and might vary with halo-agents. Here, we review the physiological mechanisms that different halo-agents target to confer enhanced salt tolerance in primed plants. Calcium and potassium-specific halo-agents trigger Na+ exclusion in roots, thus ensuring a low amount of Na+ in leaves. In contrast, Na+-specific priming agents favour processes for Na+ inclusion in leaves, improve plant tissue tolerance or vacuolar sequestration, and provide the greatest benefit to salt-sensitive and sodium accumulating plants. Overall, this review will help to understand the underlying mechanism behind plant's inherent nature towards salt management and its amelioration with different halo-agents, which helps to optimize crop stress performance.
Collapse
Affiliation(s)
- Alivia Paul
- Plant Physiology and Biochemistry Laboratory, Department of Botany, CAS, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Cell Biology Laboratory, Department of Botany, CAS, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhankar Mondal
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | - Koushik Chakraborty
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Department of Botany, CAS, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
9
|
Zhang Y, Guo Z, Chen X, Li X, Shi Y, Xu L, Yu C, Jing B, Li W, Xu A, Shi X, Li K, Huang Z. Identification candidate genes for salt resistance through quantitative trait loci-sequencing in Brassica napus L. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154187. [PMID: 38422630 DOI: 10.1016/j.jplph.2024.154187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Xu
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Srivastava S, Tyagi R, Sharma S. Seed biopriming as a promising approach for stress tolerance and enhancement of crop productivity: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1244-1257. [PMID: 37824780 DOI: 10.1002/jsfa.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Chemicals are used extensively in agriculture to increase crop production to meet the nutritional needs of an expanding world population. However, their injudicious application adversely affects the soil's physical, chemical and biological properties, subsequently posing a substantial threat to human health and global food security. Beneficial microorganisms improve plant health and productivity with minimal impact on the environment; however, their efficacy greatly relies on the application technique. Biopriming is an advantageous technique that involves the treatment of seeds with beneficial biological agents. It exhibits immense potential in improving the physiological functioning of seeds, thereby playing a pivotal role in their uniform germination and vigor. Biopriming-mediated molecular and metabolic reprogramming imparts stress tolerance to plants, improves plant health, and enhances crop productivity. Furthermore, it is also associated with rehabilitating degraded land, and improving soil fertility, health and nutrient cycling. Although biopriming has vast applications in the agricultural system, its commercialization and utilization by farmers is still in its infancy. This review aims to critically analyze the recent studies based on biopriming-mediated stress mitigation by alteration in physiological, metabolic and molecular processes in plants. Additionally, considering the necessity of popularizing this technique, the major challenges and prospects linked to the commercialization and utilization of this technique in agricultural systems have also been discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonal Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Rashi Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
11
|
Jarrar H, El-Keblawy A, Ghenai C, Abhilash PC, Bundela AK, Abideen Z, Sheteiwy MS. Seed enhancement technologies for sustainable dryland restoration: Coating and scarification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166150. [PMID: 37595910 DOI: 10.1016/j.scitotenv.2023.166150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023]
Abstract
High temperatures, soil salinity, a lack of available water, loose soils with reduced water holding, and low soil fertility are obstacles to restoration efforts in degraded drylands and desert ecosystems. Improved soil physical and chemical properties, seed germination and seedling recruitment, and plant growth are all proposed as outcomes of seed enhancement technologies (SETs). Seed priming, seed coating, and seed scarification are three SETs' methods for promoting seed germination and subsequent plant development under unfavorable environmental conditions. Various subtypes can be further classified within these three broad groups. The goals of this review are to (1) develop a general classification of coating and scarification SETs, (2) facilitate the decision-making process to adopt suitable SETs for arid lands environments, and (3) highlight the benefits of coating and scarification SETs in overcoming biotic and abiotic challenges in ecological restoring degraded dryland. For rehabilitating degraded lands and restoring drylands, it is recommended to 1) optimize SETs that have been used effectively for a long time, particularly those associated with seed physiological enhancement and seed microenvironment, 2) integrate coating and scarification to overcome different biotic and abiotic constraints, and 3) apply SET(s) to a mixture of seeds from various species and sizes. However, more research should be conducted on developing SETs for large-scale use to provide the required seed tonnages for dryland restoration.
Collapse
Affiliation(s)
- Heba Jarrar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Chaouki Ghenai
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - P C Abhilash
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Amit Kumar Bundela
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Borde NL, Dweikat I. Identification of Genomic Regions Associated with Seedling Frost Tolerance in Sorghum. Genes (Basel) 2023; 14:2117. [PMID: 38136939 PMCID: PMC10743030 DOI: 10.3390/genes14122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Sorghum bicolor (L.) Moench is the fifth most valuable cereal crop globally. Although sorghum is tolerant to drought and elevated temperatures, it is susceptible to chilling, frost, and freezing stresses. Sorghum seeds planted in April may encounter frequent frost during late April and early May. Early spring freezing temperatures adversely affect crop development and yield. This study aims to identify genomic regions associated with frost tolerance at the seedlings stage. Breeding freeze-tolerant cultivars require selection for freeze tolerance in nurseries. However, the unpredictability of environmental conditions complicates the identification of freeze-tolerant genotypes. An indoor selection protocol has been developed to investigate the genetic determinism of freeze tolerance at the seedling stages and its correlation with several developmental traits. To accomplish this, we used two populations of recombinant inbred lines (RIL) developed from crosses between cold-tolerant (CT19, ICSV700) and cold-sensitive (TX430, M81E) parents. The derived RIL populations were evaluated for single nucleotide polymorphism (SNP) using genotype-by-sequencing (GBS) under controlled environments for their response to freezing stress. Linkage maps were constructed with 464 and 875 SNPs for the CT19 X TX430 (C1) and ICSV700 X M81E(C2) populations. Using quantitative trait loci (QTL) mapping, we identified six QTLs conferring tolerance to freezing temperatures. One QTL in the C1 population and four QTLs in the C2 population, explain 17.75-98% of the phenotypic variance of traits measured. Proline leaf content was increased in response to exposing the seedlings to low temperatures. Candidate QTLs identified in this study could be further exploited to develop frost-tolerant cultivars as proxies in marker-assisted breeding, genomic selection, and genetic engineering.
Collapse
Affiliation(s)
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583-0915, USA;
| |
Collapse
|
13
|
Polyakov V, Bauer T, Butova V, Minkina T, Rajput VD. Nanoparticles-Based Delivery Systems for Salicylic Acid as Plant Growth Stimulator and Stress Alleviation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1637. [PMID: 37111860 PMCID: PMC10146285 DOI: 10.3390/plants12081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The population growth tendency leads to an increase in demand for food products, and in particular, products obtained from the processing of plants. However, there are issues of biotic and abiotic stresses that can significantly reduce crop yields and escalate the food crisis. Therefore, in recent years, the development of new methods of plant protection became an important task. One of the most promising ways to protect plants is to treat them with various phytohormones. Salicylic acid (SA) is one of the regulators of systemic acquired resistance (SAR) signaling pathways. These mechanisms are able to protect plants from biotic and abiotic stresses by increasing the expression of genes that encode antioxidant enzymes. However, salicylic acid in high doses can act as an antagonist and have the negative rebound effect of inhibition of plant growth and development. To maintain optimal SA concentrations in the long term, it is necessary to develop systems for the delivery and slow release of SA in plants. The purpose of this review is to summarize and study methods of delivery and controlled release of SA in a plant. Various carriers-based nanoparticles (NPs) synthesized from both organic and inorganic compounds, their chemical structure, impacts on plants, advantages, and disadvantages are comprehensively discussed. The mechanisms of controlled release of SA and the effects of the use of the considered composites on the growth and development of plants are also described. The present review will be helpful to design or fabricate NPs and NPs-based delivery systems for salicylic acid-controlled release and better understating of the mechanism of SA-NPs interaction to alleviate stress on plants.
Collapse
Affiliation(s)
- Vladimir Polyakov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Bauer
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Vera Butova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
14
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
15
|
Oğuz MÇ, Oğuz E, Güler M. Seed priming with essential oils for sustainable wheat agriculture in semi-arid region. PeerJ 2023; 11:e15126. [PMID: 37009155 PMCID: PMC10062347 DOI: 10.7717/peerj.15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
Drought is one of the major constraints to global crop production. A number of sustainable systems have focused on the development of environmentally friendly innovative biotechnological interventions to prevent yield losses. The use of essential oils as a seed priming agent can make an important contribution as a natural stimulant in increasing drought stress tolerance. This study focuses on the effects of seeds coated with different doses (D0 (0%), D1 (0.01%), D2 (0.05%), D3 (0.10%) and D4 (0.25%)) of sage, rosemary and lavender essential oils on wheat germination, seedling establishment and yield parameters. Turkey’s local wheat genotype Köse was used as plant material. The impact of the seed priming on germination rate, coleoptile length, shoot length, root length, shoot fresh and dry weight, root fresh and dry weight, relative water content (RWC), proline, and chlorophyll contents was assessed in laboratory experiments. In addition, the effect of essential oil types on yield parameters and agronomic components (plant height, spike height, number of grains per spike, grain yield per spike, grain yield per unit area, thousand-grain weight) was evaluated in a field experiment during the 2019–2020 crop seasons in a semi-arid climate. According to laboratory results, the highest germination rate among all treatment doses was determined in the D2 treatment (rosemary 93.30%, sage 94.00% and lavender 92.50%), while the lowest germination rates for all essential oil types were determined in the D4 treatment (rosemary 41.70%, sage 40.90% and lavender 40.90%). Increasing treatment doses showed a similar suppressive effect on the other parameters. In the field experiment, the highest grain yield (256.52 kg/da) and thousand-grain weight (43.30 g) were determined in the rosemary treatment. However, the priming treatment has an insignificant on the number of grains per spike and the spike length. The light of these results, the effects of essential oil types and doses on yield parameters were discussed. The findings highlight the importance of using essential oils in seed priming methods for sustainable agricultural practices.
Collapse
|
16
|
Mushtaq NU, Alghamdi KM, Saleem S, Tahir I, Bahieldin A, Henrissat B, Alghamdi MK, Rehman RU, Hakeem KR. Exogenous zinc mitigates salinity stress by stimulating proline metabolism in proso millet ( Panicum miliaceum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1053869. [PMID: 36968428 PMCID: PMC10036794 DOI: 10.3389/fpls.2023.1053869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Salinity is one of the most concerning ecological restrictions influencing plant growth, which poses a devastating threat to global agriculture. Surplus quantities of ROS generated under stress conditions have negative effects on plants' growth and survival by damaging cellular components, including nucleic acids, lipids, proteins and carbohydrates. However, low levels of ROS are also necessary because of their role as signalling molecules in various development-related pathways. Plants possess sophisticated antioxidant systems for scavenging as well as regulating ROS levels to protect cells from damage. Proline is one such crucial non-enzymatic osmolyte of antioxidant machinery that functions in the reduction of stress. There has been extensive research on improving the tolerance, effectiveness, and protection of plants against stress, and to date, various substances have been used to mitigate the adverse effects of salt. In the present study Zinc (Zn) was applied to elucidate its effect on proline metabolism and stress-responsive mechanisms in proso millet. The results of our study indicate the negative impact on growth and development with increasing treatments of NaCl. However, the low doses of exogenous Zn proved beneficial in mitigating the effects of NaCl by improving morphological and biochemical features. In salt-treated plants, the low doses of Zn (1 mg/L, 2 mg/L) rescued the negative impact of salt (150mM) as evidenced by increase in shoot length (SL) by 7.26% and 25.5%, root length (RL) by 21.84% and 39.07% and membrane stability index (MSI) by 132.57% and 151.58% respectively.The proline content improved at all concentrations with maximum increase of 66.65% at 2 mg/L Zn. Similarly, the low doses of Zn also rescued the salt induced stress at 200mM NaCl. The enzymes related to proline biosynthesis were also improved at lower doses of Zn. In salt treated plants (150mM), Zn (1 mg/L, 2 mg/L) increased the activity of P5CS by 19.344% and 21%. The P5CR and OAT activities were also improved with maximum increase of 21.66% and 21.84% at 2 mg/L Zn respectively. Similarly, the low doses of Zn also increased the activities of P5CS, P5CR and OAT at 200mM NaCl. Whereas P5CDH enzyme activity showed a decrease of 82.5% at 2mg/L Zn+150mM NaCl and 56.7% at 2mg/L Zn+200 mM NaCl. These results strongly imply the modulatory role of Zn in maintaining of proline pool during NaCl stress.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mohammed Khalid Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
17
|
de Oliveira R, Alves FRR, da Rocha Prado E, Gomes LDL, Freschi L, Gaion LA, Carvalho RF. CRYPTOCHROME 1a-mediated blue light perception regulates tomato seed germination via changes in hormonal balance and endosperm-degrading hydrolase dynamics. PLANTA 2023; 257:67. [PMID: 36843173 DOI: 10.1007/s00425-023-04100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Blue light exposure delays tomato seed germination by decreasing endosperm-degrading hydrolase activities, a process regulated by CRY1a-dependent signaling and the hormonal balance between ABA and GA. The germination of tomato seeds (Solanum lycopersicum L.) is tightly controlled by an internal hormonal balance, which is also influenced by environmental factors such as light. In this study, we investigated the blue light (BL)-mediated impacts on physiological, biochemical, and molecular processes during the germination of the blue light photoreceptor CRYPTOCHROME 1a loss-of-function mutant (cry1a) and of the hormonal tomato mutants notabilis (not, deficient in ABA) and procera (pro, displaying a GA-constitutive response). Seeds were germinated in a controlled chamber in the dark and under different intensities of continuous BL (ranging from 1 to 25 µmol m-2 s-1). In general, exposure to BL delayed tomato seed germination in a fluency rate-dependent way due to negative impacts on the activities of endosperm-degrading hydrolases, such as endo-β-mannanase, β-mannosidase, and α-galactosidase. However, not and pro mutants presented higher germination speed index (GSI) compared to WT despite the BL influence, associated with higher hydrolase activities, especially evident in pro, indicating that the ABA/GA hormonal balance is important to diminish BL inhibition over tomato germination. The cry1a germination percentage was higher than in WT in the dark but its GSI was lower under BL exposure, suggesting that functional CRY1a is required for BL-dependent germination. BL inhibits the expression of GA-biosynthetic genes, and induces GA-deactivating and ABA-biosynthetic genes. The magnitude of the BL influence over the hormone-related transcriptional profile is also dependent upon CRY1a, highlighting the complex interplay between light and hormonal pathways. These results contribute to a better understanding of BL-induced events behind the photoregulation of tomato seed germination.
Collapse
Affiliation(s)
- Reginaldo de Oliveira
- Department of Biology, São Paulo State University (UNESP), Jaboticabal, 14884-900, Brazil
| | - Frederico Rocha Rodrigues Alves
- Department of Systematics and Ecology, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
18
|
Alhammad BA, Ahmad A, Seleiman MF, Tola E. Seed Priming with Nanoparticles and 24-Epibrassinolide Improved Seed Germination and Enzymatic Performance of Zea mays L. in Salt-Stressed Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040690. [PMID: 36840038 PMCID: PMC9963209 DOI: 10.3390/plants12040690] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 05/04/2023]
Abstract
Saline stress is one of the most critical abiotic stress factors that can lessen crops' productivity. However, emerging nanotechnology, nano-fertilizers, and developing knowledge of phytochromes can potentially mitigate the negative effects of saline stress on seed germination. Therefore, the aim of this study was to investigate the effects of seed priming either with zinc oxide nanoparticles (ZnO-NPs; 50 and 100 mg L-1) or 24-epibrassinolide (EBL; 0.2 and 0.4 μM) and their combinations on maize (Zea mays L.) grains sown in salt-stressed soil (50 and 100 mM NaCl). Saline stress treatments significantly affected all germination traits and chemical analysis of seeds as well as α-amylase activity. Compared to un-primed seeds, seed priming with ZnO-NPs or EBL and their combinations significantly increased the cumulative germination percentage, germination energy, imbibition rate, increase in grain weight, K+ content, and α-amylase activity, and significantly reduced germination time, days to 50% emergence, Na+ uptake, and Na+/K+ ratio of maize sown in salt-stressed-soil (50 or 100 mM NaCl). The combination of 100 mg ZnO-NPs L-1 + 0.2 μM EBL resulted in the highest improvements for most of the studied traits of maize seeds sown in salt-stressed soil in comparison to all other individual and combined treatments.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
- Correspondence: (B.A.A.); (M.F.S.); Tel.: +96-655-315-3351 (M.F.S.)
| | - Awais Ahmad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
- Correspondence: (B.A.A.); (M.F.S.); Tel.: +96-655-315-3351 (M.F.S.)
| | - ElKamil Tola
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Hydropriming and Osmotic Priming Induce Resistance against Aspergillus niger in Wheat ( Triticum aestivum L.) by Activating β-1, 3-glucanase, Chitinase, and Thaumatin-like Protein Genes. Life (Basel) 2022; 12:life12122061. [PMID: 36556426 PMCID: PMC9781612 DOI: 10.3390/life12122061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Priming is used as a method to improve plant growth and alleviate the detrimental effects of pathogens. The present study was conducted to evaluate the effects of different priming methods in the context of resistance to Aspergillus niger in wheat (Triticum aestivum L.). Here, we show that different priming treatments—viz., hydropriming, osmotic priming, halopriming, and hormonal priming techniques can induce disease resistance by improving the biochemical contents of wheat, including chlorophyll, protein, proline, and sugar. In addition, physiological parameters—such as root length, shoot length, fresh and dry root/shoot ratios, and relative water content were positively affected by these priming methods. In essence, hydropriming and osmotic priming treatments were found to be more potent for enhancing wheat biochemical contents, along with all the physiological parameters, and for reducing disease severity. Hydropriming and osmotic priming significantly decreased disease severity, by 70.59−75.00% and 64.71−88.33%, respectively. RT-PCR and quantitative real-time PCR analyses of potentially important pathogenesis-related (PR)-protein genes (Thaumatin-like protein (TLP), chitinase, and β-1,3-glucanase) in primed plants were evaluated: β-1,3-glucanase was most highly expressed in all primed plants; Chitinase and TLP exhibited higher expression in hormonal-, halo-, osmotic-, and hydro-primed plants, respectively. These results suggest that the higher expression of β-1,3-glucanase, TLP, and chitinase after hydropriming and osmotic priming may increase disease resistance in wheat. Our study demonstrates the greater potential of hydropriming and osmotic priming for alleviating stress caused by A. niger inoculation, and enhancing resistance to it, in addition to significantly improving plant growth. Thus, these priming methods could be beneficial for better plant growth and disease resistance in other plants.
Collapse
|
20
|
Zhao Y, Guo Q, Cao S, Tian Y, Han K, Sun Y, Li J, Yang Q, Ji Q, Sederoff R, Li Y. Genome-wide identification of the AlkB homologs gene family, PagALKBH9B and PagALKBH10B regulated salt stress response in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:994154. [PMID: 36204058 PMCID: PMC9530910 DOI: 10.3389/fpls.2022.994154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The AlkB homologs (ALKBH) gene family regulates N6-methyladenosine (m6A) RNA methylation and is involved in plant growth and the abiotic stress response. Poplar is an important model plant for studying perennial woody plants. Poplars typically have a long juvenile period of 7-10 years, requiring long periods of time for studies of flowering or mature wood properties. Consequently, functional studies of the ALKBH genes in Populus species have been limited. Based on AtALKBHs sequence similarity with Arabidopsis thaliana, 23 PagALKBHs were identified in the genome of the poplar 84K hybrid genotype (P. alba × P. tremula var. glandulosa), and gene structures and conserved domains were confirmed between homologs. The PagALKBH proteins were classified into six groups based on conserved sequence compared with human, Arabidopsis, maize, rice, wheat, tomato, barley, and grape. All homologs of PagALKBHs were tissue-specific; most were highly expressed in leaves. ALKBH9B and ALKBH10B are m6A demethylases and overexpression of their homologs PagALKBH9B and PagALKBH10B reduced m6A RNA methylation in transgenic lines. The number of adventitious roots and the biomass accumulation of transgenic lines decreased compared with WT. Therefore, PagALKBH9B and PagALKBH10B mediate m6A RNA demethylation and play a regulatory role in poplar growth and development. Overexpression of PagALKBH9B and PagALKBH10B can reduce the accumulation of H2O2 and oxidative damage by increasing the activities of SOD, POD, and CAT, and enhancing protection for Chl a/b, thereby increasing the salt tolerance of transgenic lines. However, overexpression lines were more sensitive to drought stress due to reduced proline content. This research revealed comprehensive information about the PagALKBH gene family and their roles in growth and development and responsing to salt stress of poplar.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qi Guo
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Sen Cao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yanting Tian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Kunjin Han
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Juan Li
- Natural Resources and Planning Bureau of Yanshan County, Cangzhou, Hebei, China
| | - Qingshan Yang
- Shandong Academy of Forestry, Jinan, Shandong, China
| | - Qingju Ji
- Cangzhou Municipal Forestry Seeding and Cutting Management Center, Cangzhou, China
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Yun Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
21
|
Adamiec M, Dobrogojski J, Wojtyla Ł, Luciński R. Stress-related expression of the chloroplast EGY3 pseudoprotease and its possible impact on chloroplasts' proteome composition. FRONTIERS IN PLANT SCIENCE 2022; 13:965143. [PMID: 35937369 PMCID: PMC9355673 DOI: 10.3389/fpls.2022.965143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The EGY3 is a pseudoprotease, located in the thylakoid membrane, that shares homology with the family of site-2-proteases (S2P). Although S2P proteases are present in the cells of all living organisms, the EGY3 was found only in plant cells. The sequence of the pseudoprotease is highly conserved in the plant kingdom; however, little is known about its physiological importance. Results obtained with real-time PCR indicated that the expression of the EGY3 gene is dramatically induced during the first few hours of exposure to high light and high-temperature stress. The observed increase in transcript abundance correlates with protein accumulation level, which indicates that EGY3 participates in response to both high-temperature and high light stresses. The lack of the pseudoprotease leads, in both stresses, to lower concentrations of hydrogen peroxide. However, the decrease of chloroplast copper/zinc superoxide dismutase 2 level was observed only during the high light stress. In both analyzed stressful conditions, proteins related to RubisCO folding, glycine metabolism, and photosystem I were identified as differently accumulating in egy3 mutant lines and WT plants; however, the functional status of PSII during analyzed stressful conditions remains very similar. Our results lead to a conclusion that EGY3 pseudoprotease participates in response to high light and high-temperature stress; however, its role is associated rather with photosystem I and light-independent reactions of photosynthesis.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and Bioengineering, University of Life Sciences, Poznań, Poland
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
22
|
Nasrallah AK, Atia MAM, Abd El-Maksoud RM, Kord MA, Fouad AS. Salt Priming as a Smart Approach to Mitigate Salt Stress in Faba Bean (Vicia faba L.). PLANTS 2022; 11:plants11121610. [PMID: 35736763 PMCID: PMC9228577 DOI: 10.3390/plants11121610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023]
Abstract
The present investigation aims to highlight the role of salt priming in mitigating salt stress on faba bean. In the absence of priming, the results reflected an increase in H2O2 generation and lipid peroxidation in plants subjected to 200 mM salt shock for one week, accompanied by a decline in growth, photosynthetic pigments, and yield. As a defense, the shocked plants showed enhancements in ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) activities. Additionally, the salt shock plants revealed a significant increase in phenolics and proline content, as well as an increase in the expression levels of glutathione (GSH) metabolism-related genes (the L-ascorbate peroxidase (L-APX) gene, the spermidine synthase (SPS) gene, the leucyl aminopeptidase (LAP) gene, the aminopeptidase N (AP-N) gene, and the ribonucleo-side-diphosphate reductase subunit M1 (RDS-M) gene). On the other hand, priming with increasing concentrations of NaCl (50–150 mM) exhibited little significant reduction in some growth- and yield-related traits. However, it maintained a permanent alert of plant defense that enhanced the expression of GSH-related genes, proline accumulation, and antioxidant enzymes, establishing a solid defensive front line ameliorating osmotic and oxidative consequences of salt shock and its injurious effect on growth and yield.
Collapse
Affiliation(s)
- Amira K. Nasrallah
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Mohamed A. M. Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| | - Reem M. Abd El-Maksoud
- Nucleic Acid & Protein Chemistry Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Maimona A. Kord
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Ahmed S. Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| |
Collapse
|
23
|
Zhao L, Wang W, Fu X, Liu A, Cao J, Liu J. Graphene Oxide, a Novel Nanomaterial as Soil Water Retention Agent, Dramatically Enhances Drought Stress Tolerance in Soybean Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:810905. [PMID: 35242153 PMCID: PMC8886204 DOI: 10.3389/fpls.2022.810905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 06/12/2023]
Abstract
Drought is one of the most severe environmental stressors that place major constraints on the growth of soybeans (Glycine max L.). Graphene oxide (GO) is a nanomaterial that can promote plant growth without toxic effects. In this study, the physiological and molecular responses to drought stress with GO treatment were examined. We discovered that the relative water content (RWC) of stems and leaves treated with GO was 127 and 128% higher than that of the WT plants, respectively. The root parameters in GO-treated soybeans were increased by 33, 38, 34, and 35% than WT plants in total root length, root surface area, root diameter, and root volume, respectively. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) were also increased by 29, 57, 28, and 66%, respectively. However, the relative conductivity (REC), malondialdehyde (MDA), and hydrogen peroxide (H2O2) accumulation were remarkably decreased. Furthermore, the content of drought-related hormones JA, SA, and ABA in GO-treated soybeans increased by 32, 34, and 67% than WT plants, respectively. At the molecular level, the effects of GO treatment were manifested by relatively higher expression of four drought-related genes: GmP5CS, GmGOLS, GmDREB1, and GmNCED1. Taken together, our findings revealed that GO could directly increase plant defense enzymes, hormone content, and the expression of drought-related genes, thereby improving the soybean's ability to resist drought. These findings could provide new opportunities for improving drought tolerance in soybeans through effective soil water retention agents.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wei Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
| | - Xiaohong Fu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - An Liu
- Hebei Research Center for Geoanalysis, Baoding, China
| | - Jinfeng Cao
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
| | - Jianfeng Liu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
24
|
Beneficial Microbes and Molecules for Mitigation of Soil Salinity in Brassica Species: A Review. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Salt stress results from excessive salt accumulation in the soil can lead to a reduction in plant growth and yield. Due to climate change, in the future climatic pressures, changed precipitation cycles and increased temperature will increase the pressures on agriculture, including increasing severity of salt stress. Brassica species contains oilseed and vegetable crops with great economic importance. Advances in understanding the mechanisms of salt stress in Brassica plants have enabled the development of approaches to better induce plant defense mechanisms at the time of their occurrence through the use of beneficial microorganisms or molecules. Both endophytic and rhizospheric microbes contribute to the mitigation of abiotic stresses in Brassica plants by promoting the growth of their host under stress conditions. In this review we summarized so far reported microorganisms with beneficial effects on Brassica plants and their mode of action. Another approach in mitigating the harmful effect of soil salinity may involve the application of different molecules that are involved in the stress response of Brassica plants. We reviewed and summarized their potential mode of action, methods of application and pointed out further research directions.
Collapse
|
25
|
Malek M, Ghaderi-Far F, Torabi B, Sadeghipour HR. Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153614. [PMID: 34979489 DOI: 10.1016/j.jplph.2021.153614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/25/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
High temperature stress (HTS) imposes secondary dormancy (SD) also known as thermo-dormancy in many seeds. Priming by soil moisture however, may improve germination though under HTS it may compromise seed longevity. Knowledge of how HTS and priming affect dormancy status/viability loss of a particular crop seed species is essential in agriculture. Accordingly, control non-primed and hydro-primed seeds from Dk-xpower and Traper rapeseed cultivars with low and high potential for SD induction, respectively, were compared for germination behavior, response to GA and some phytohormone effectors under HTS. HTS reduced germination in non-primed Dk-xpower and Traper seeds mainly through the induction of thermo-inhibition/death and thermo-dormancy, respectively. Under HTS, GA3 application reduced thermo-dormancy in favor of thermo-inhibition only in Traper but the GA inhibitor paclobutrazol intensified thermo-dormancy in both cultivars. The ABA inhibitor, fluridone also reduced thermo-dormancy in favor of thermo-inhibition only in Traper. Thus, under HTS, GA biosynthesis is determinant in seed thermo-dormancy/thermo-inhibition dynamics. Hydropriming improved germination under HTS through reduced thermo-inhibition/death (Dk-xpower) and thermo-dormancy (Traper). Here, GA3 application increased death and compromised germination mainly in Dk-xpower. Paclubutrazol application however, increased thermo-dormancy by compromising thermo-inhibition/death in Traper. Overall, hydro-priming weakened seed phytohormonal germination responses. Controlled deterioration resulted in decreased longevity of hydro-primed seeds but induced SD in non-primed Traper seeds. Thus, down-regulation of GA biosynthesis may control differential induction of SD in rapeseed seeds under HTS while hydro-priming stimulates seed germination possibly through overcoming limitations in GA biosynthesis. The agricultural importance of these findings at the ecosystem scale is discussed.
Collapse
Affiliation(s)
- Mohsen Malek
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Farshid Ghaderi-Far
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Benjamin Torabi
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | |
Collapse
|
26
|
Endogenous Polyamines and Ethylene Biosynthesis in Relation to Germination of Osmoprimed Brassica napus Seeds under Salt Stress. Int J Mol Sci 2021; 23:ijms23010349. [PMID: 35008776 PMCID: PMC8745725 DOI: 10.3390/ijms23010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Currently, seed priming is reported as an efficient and low-cost approach to increase crop yield, which could not only promote seed germination and improve plant growth state but also increase abiotic stress tolerance. Salinity represents one of the most significant abiotic stresses that alters multiple processes in plants. The accumulation of polyamines (PAs) in response to salt stress is one of the most remarkable plant metabolic responses. This paper examined the effect of osmopriming on endogenous polyamine metabolism at the germination and early seedling development of Brassica napus in relation to salinity tolerance. Free, conjugated and bound polyamines were analyzed, and changes in their accumulation were discussed with literature data. The most remarkable differences between the corresponding osmoprimed and unprimed seeds were visible in the free (spermine) and conjugated (putrescine, spermidine) fractions. The arginine decarboxylase pathway seems to be responsible for the accumulation of PAs in primed seeds. The obvious impact of seed priming on tyramine accumulation was also demonstrated. Moreover, the level of ethylene increased considerably in seedlings issued from primed seeds exposed to salt stress. It can be concluded that the polyamines are involved in creating the beneficial effect of osmopriming on germination and early growth of Brassica napus seedlings under saline conditions through moderate changes in their biosynthesis and accumulation.
Collapse
|
27
|
Jayawardhane J, Wijesinghe MKPS, Bykova NV, Igamberdiev AU. Metabolic Changes in Seed Embryos of Hypoxia-Tolerant Rice and Hypoxia-Sensitive Barley at the Onset of Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:2456. [PMID: 34834819 PMCID: PMC8622212 DOI: 10.3390/plants10112456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Rice (Oryza sativa L.) and barley (Hordeum vulgare L.) are the cereal species differing in tolerance to oxygen deficiency. To understand metabolic differences determining the sensitivity to low oxygen, we germinated rice and barley seeds and studied changes in the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), activities of the enzymes involved in their scavenging, and measured cell damage parameters. The results show that alcohol dehydrogenase activity was higher in rice than in barley embryos providing efficient anaerobic fermentation. Nitric oxide (NO) levels were also higher in rice embryos indicating higher NO turnover. Both fermentation and NO turnover can explain higher ATP/ADP ratio values in rice embryos as compared to barley. Rice embryos were characterized by higher activity of S-nitrosoglutathione reductase than in barley and a higher level of free thiols in proteins. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase) in imbibed embryos were higher in rice than in barley, which corresponded to the reduced levels of ROS, malonic dialdehyde and electrolyte leakage. The observed differences in metabolic changes in embryos of the two cereal species differing in tolerance to hypoxia can partly explain the adaptation of rice to low oxygen environments.
Collapse
Affiliation(s)
- Jayamini Jayawardhane
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - M. K. Pabasari S. Wijesinghe
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| |
Collapse
|
28
|
Ainalidou A, Bouzoukla F, Menkissoglu-Spiroudi U, Vokou D, Karamanoli K. Impacts of Decaying Aromatic Plants on the Soil Microbial Community and on Tomato Seedling Growth and Metabolism: Suppression or Stimulation? PLANTS 2021; 10:plants10091848. [PMID: 34579381 PMCID: PMC8471824 DOI: 10.3390/plants10091848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
This study provides insight into changes in the features of tomato seedlings growing in soils enriched with spearmint, peppermint, or rosemary leaves and into changes in the microbial communities of these soils used as seedbeds; an organic amendment was also applied as a positive control. While the soil microbial community flourished in the presence of all three aromatic plants, tomato growth was inhibited or stimulated depending on the plant that was used. More specifically, phospholipid fatty acid (PLFA) analysis showed an increase in the total microbial biomass and in the biomass of all the groups examined, except for actinobacteria, and changes in the microbial community structure, with Gram-negative bacteria and fungi being favoured in the mint treatments, in which the microbial biomass was maximized. Seedlings from the rosemary treatment were entirely inhibited; they were at the open-cotyledon stage throughout the experiment. Seedlings from the mint treatments were the heaviest, longest, and had the highest chlorophyll content and photosynthetic yield. Metabolomic analysis showed metabolism enhancement associated with both growth and priming in seedlings from the mint treatments and disruption of metabolic pathways in those from the rosemary treatment. There is a great potential for applying these aromatic plants as soil amendments and as either biostimulants of plant growth or as herbicides.
Collapse
Affiliation(s)
- Aggeliki Ainalidou
- Laboratory of Agricultural Chemistry, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.A.); (F.B.)
| | - Foteini Bouzoukla
- Laboratory of Agricultural Chemistry, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.A.); (F.B.)
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.V.); (K.K.)
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.A.); (F.B.)
- Correspondence: (D.V.); (K.K.)
| |
Collapse
|
29
|
Gohari G, Panahirad S, Sepehri N, Akbari A, Zahedi SM, Jafari H, Dadpour MR, Fotopoulos V. Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42877-42890. [PMID: 33829379 DOI: 10.1007/s11356-021-13794-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Salinity has destructive impacts in plant production; therefore, application of new approaches such as nanotechnology and plant priming is attracting increasing attention as an innovative means to ameliorate salt stress effects. Considering the unique properties and recorded beneficial influence of carbon quantum dots (CQDs) and proline in plant growth and physiological parameters when applied individually, their conjugation in the form of carbon quantum dot nanoparticles functionalized by proline (Pro-CQDs NPs) could lead to synergistic effects. Accordingly, an experiment was conducted to evaluate the impact of this advanced nanomaterial (Pro-CQDs NPs) as a chemical priming agent, in grapevine plants cv. 'Rasha'. For this purpose, proline, CQDs, and Pro-CQDs NPs at three concentrations (0, 50, and 100 mg L-1) were applied exogenously 48 h prior to salinity stress (0 and 100 mM NaCl) that was imposed for a month. Three days after imposing salt stress, an array of biochemical measurements was recorded, while agronomic and some physiological parameters were noted at the end of the stress period. Results revealed that proline treatment at both concentrations, as well as CQDs and Pro-CQDs NPs at low concentration, positively affected grapevine plants under both non-stress and stress conditions. Specifically, the application of proline at 100 mg L-1 and Pro-CQDs NPs at 50 mg L-1 resulted in optimal performance identifying 50 mg L-1 Pro-CQDs NPs as the optimal treatment. Proline treatment at 100 mg L-1 increased leaf fresh weight (FW) and dry weight (DW); chl a, b, and proline content; SOD activity under both non-stress and stress conditions; Y (II) under salinity and carotenoid content; and CAT activity under control conditions. Pro-CQDs NP treatment at 50 mg L-1 enhanced total phenol, anthocyanin, and Fv/Fo, as well as APX and GP activities under both conditions, while increasing carotenoid, Y (II), Fv/Fo, and CAT activity under salinity. Furthermore, it decreased MDA and H2O2 contents at both conditions and EL and Y (NO) under salt stress. Overall, conjugation of CQDs with proline at 50 mg L-1 resulted in further improving the protective effect of proline application at 100 mg L-1. Therefore, functionalization of NPs with chemical priming agents appears to be an effective means of optimizing plant-priming approaches towards efficient amelioration of abiotic stress-related damage in plants.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nasrin Sepehri
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Hessam Jafari
- Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
30
|
Kumari VV, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, Pramanik M, Mukherjee B, Ghosh A, Reja MH, Chandran MAS, Nath R, Skalicky M, Brestic M, Hossain A. Drought and Heat Stress in Cool-Season Food Legumes in Sub-Tropical Regions: Consequences, Adaptation, and Mitigation Strategies. PLANTS 2021; 10:plants10061038. [PMID: 34063988 PMCID: PMC8224053 DOI: 10.3390/plants10061038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Drought and heat stress are two major abiotic stresses that challenge the sustainability of agriculture to a larger extend. The changing and unpredictable climate further aggravates the efforts made by researchers as well as farmers. The stresses during the terminal stage of cool-season food legumes may affect numerous physiological and biochemical reactions that may result in poor yield. The plants possess a good number of adaptative and avoiding mechanisms to sustain the adverse situation. The various agronomic and breeding approaches may help in stress-induced alteration. The physiological and biochemical response of crops to any adverse situation is very important to understand to develop mechanisms and approaches for tolerance in plants. Agronomic approaches like altering the planting time, seed priming, foliar application of various macro and micro nutrients, and the application of rhizobacteria may help in mitigating the adverse effect of heat and drought stress to some extent. Breeding approaches like trait-based selection, inheritance studies of marker-based selection, genetic approaches using the transcriptome and metabolome may further pave the way to select and develop crops with better heat and drought stress adaptation and mitigation.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Anirban Roy
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Roshni Vijayan
- AINP (Arid Legumes), Division of Pulses, Regional Agricultural Research Station—Central Zone, Kerala Agricultural University, Pattambi, Melepattambi P.O., Palakkad Kerala 679306, India;
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | | | - Arpita Nalia
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Madhusri Pramanik
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Bishal Mukherjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Ananya Ghosh
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Md. Hasim Reja
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Malamal Alickal Sarath Chandran
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Rajib Nath
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
- Correspondence: (M.B.); (A.H.)
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: (M.B.); (A.H.)
| |
Collapse
|
31
|
Johnson R, Puthur JT. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:247-257. [PMID: 33711718 DOI: 10.1016/j.plaphy.2021.02.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 05/21/2023]
Abstract
Salinization is one of the greatest threats in agriculture field limiting the growth and productivity of crops. Soil salinization directly affects the physiological, biochemical, and molecular functions of plants. The Plants adopt various tolerance mechanisms to combat salinity stress by involving complex physiological traits, metabolic pathways, and molecular or gene networks. Various techniques have been used to improve plant growth and productivity through genetic approach, genetic engineering and plant breeding. However, economic feasibility and ease of application can create a huge scope for priming techniques as a "stress reliever" in agricultural crop production. Seed priming is a simple, low-cost technique that enhances germination and seedling establishment by activating various physiological and metabolic processes. Priming regulates molecular mechanisms through increased expression of various stress related genes and proteins, which accelerates stress and cross tolerance. Priming memory and epigenetic changes enables the plants to withstand salinity stress by alterations in key signaling molecules, transcription factors, and change in chromatin states, that will be crucial for the second stress. In this way, priming can both mediate stress tolerance and initiate overarching stress tolerance to a wide range of stresses that further modify gene expression and enhance crop production. This review paper addresses some physiochemical, molecular and trans-generational mechanisms regulating plant adaptation and tolerance/cross tolerance to salinity in primed seeds/seedlings.
Collapse
Affiliation(s)
- Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O. Kerala, 673635, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O. Kerala, 673635, India.
| |
Collapse
|
32
|
Forti C, Ottobrino V, Doria E, Bassolino L, Toppino L, Rotino GL, Pagano A, Macovei A, Balestrazzi A. Hydropriming Applied on Fast Germinating Solanum villosum Miller Seeds: Impact on Pre-germinative Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:639336. [PMID: 33841466 PMCID: PMC8030258 DOI: 10.3389/fpls.2021.639336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/02/2021] [Indexed: 05/15/2023]
Abstract
Seed priming can circumvent poor germination rate and uniformity, frequently reported in eggplant (Solanum melongena L.) and its crop wild relatives (CWRs). However, there is still a gap of knowledge on how these treatments impact the pre-germinative metabolism in a genotype- and/or species-dependent manner. The CWR Solanum villosum Miller (hairy nightshade) investigated in this study showed a quite unique profile of fast germination. Although this accelerated germination profile would not apparently require further improvement, we wanted to test whether priming would still be able to impact the pre-germinative metabolism, eventually disclosing the predominant contribution of specific antioxidant components. Hydropriming followed by dry-back resulted in synchronized germination, as revealed by the lowest MGR (Mean Germination Rate) and U (Uncertainty) values, compared to unprimed seeds. No significant changes in ROS (reactive oxygen species) were observed throughout the treatment. Increased tocopherols levels were detected at 2 h of hydropriming whereas, overall, a low lipid peroxidation was evidenced by the malondialdehyde (MDA) assay. Hydropriming resulted in enhanced accumulation of the naturally occurring antioxidant phenolic compounds chlorogenic acid and iso-orientin, found in the dry seeds and ex novo accumulation of rutin. The dynamic changes of the pre-germinative metabolism induced by hydropriming are discussed in view of future applications that might boost the use of eggplant CWRs for breeding, upon upgrade mediated by seed technology.
Collapse
Affiliation(s)
- Chiara Forti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Valentino Ottobrino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura Bassolino
- CREA, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
- CREA, Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Laura Toppino
- CREA, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | | | - Andrea Pagano
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Catiempo RL, Photchanachai S, Bayogan ERV, Vichitsoonthonkul T. Possible role of nonenzymatic antioxidants in hydroprimed sunflower seeds under heat stress. CROP SCIENCE 2021; 61:1328-1339. [PMID: 0 DOI: 10.1002/csc2.20403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Rose L. Catiempo
- School of Bioresources and Technology King Mongkut's Univ. of Technology Thonburi (Bangkhuntian) Bangkok 10150 Thailand
- Postharvest Technology Innovation Center Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| | - Songsin Photchanachai
- School of Bioresources and Technology King Mongkut's Univ. of Technology Thonburi (Bangkhuntian) Bangkok 10150 Thailand
- Postharvest Technology Innovation Center Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| | - Emma Ruth V. Bayogan
- Dep. of Biological Science and Environmental Studies, College of Science and Mathematics Univ. of the Philippines Mindanao Davao City 8000 Philippines
| | - Taweerat Vichitsoonthonkul
- School of Bioresources and Technology King Mongkut's Univ. of Technology Thonburi (Bangkhuntian) Bangkok 10150 Thailand
| |
Collapse
|
34
|
Stassinos PM, Rossi M, Borromeo I, Capo C, Beninati S, Forni C. Enhancement of Brassica napus Tolerance to High Saline Conditions by Seed Priming. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020403. [PMID: 33672546 PMCID: PMC7923807 DOI: 10.3390/plants10020403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 05/27/2023]
Abstract
Plants grown in saline soils undergo osmotic and oxidative stresses, affecting growth and photosynthesis and, consequently, the yield. Therefore, the increase in soil salinity is a major threat to crop productivity worldwide. Plant's tolerance can be ameliorated by applying simple methods that induce them to adopt morphological and physiological adjustments to counteract stress. In this work, we evaluated the effects of seed priming on salt stress response in three cultivars of rapeseed (Brassica napus L.) that had different tolerance levels. Seed chemical priming was performed with 2.5 mM spermine (SPM), 5 mM spermidine (SPD), 40 mM NaCl and 2.5 mM Ca (NO3)2. Primed and not primed seeds were sown on saline and not saline (controls) media, and morphological and physiological parameters were determined. Since SPD treatment was effective in reducing salinity negative effects on growth, membrane integrity and photosynthetic pigments, we selected this priming to further investigate plant salt stress response. The positive effects of this seed treatment on growth and physiological responses were evident when primed plants were compared to not primed ones, grown under the same saline conditions. SPD priming ameliorated the tolerance towards saline stress, in a genotype-independent manner, by increasing photosynthetic pigments, proline amounts and antioxidant responses in all cultivars exposed to salt. These results may open new perspectives for crop productivity in the struggle against soil salinization.
Collapse
Affiliation(s)
- Panaiotis M. Stassinos
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (P.M.S.); (C.C.); (S.B.)
| | - Massimiliano Rossi
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Ilaria Borromeo
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Concetta Capo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (P.M.S.); (C.C.); (S.B.)
| | - Simone Beninati
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (P.M.S.); (C.C.); (S.B.)
| | - Cinzia Forni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (P.M.S.); (C.C.); (S.B.)
| |
Collapse
|
35
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
36
|
Kanjevac M, Bojović B, Todorović M, Stanković M. Effect of seed halopriming on improving salt tolerance in Raphanus sativus L. KRAGUJEVAC JOURNAL OF SCIENCE 2021. [DOI: 10.5937/kgjsci2143087k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In this paper, effect of halopriming on germination, initial growth and development of radish under salt stress conditions was investigated. The seeds were treated with different concentrations salts of calcium, potassium, and sodium chloride (CaCl2, KCl, NaCl, respectively) in the form of a standard germination method and priming method, which involves modification of the metabolic activity of seeds in the pregerminative phase. The obtained results showed that all applied salts had inhibitory effects on germination characteristics (GP, RG and U, except MTG) and development of radish seedlings (shoot and root elongation, weight and vigour). Halopriming contributed to the improvement of tolerance to stress conditions, because the obtained values of all germination and growth characteristics were significantly increased. The best effect being achieved by priming with CaCl2 for germination characteristics and vigour and with KCl for initial development.
Collapse
|
37
|
Hajihashemi S, Skalicky M, Brestic M, Pavla V. Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:657-664. [PMID: 32738703 DOI: 10.1016/j.plaphy.2020.07.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 05/03/2023]
Abstract
Seed germination is critical for successful crop production and this growth stage can be very sensitive to salt stress depending on the plant's tolerance mechanisms. The pretreatment of Chenopodium quinoa (quinoa) seeds with CaCl2, H2O2 and sodium nitroprusside (SNP) limited the adverse effect of salt stress on seed germination. The pre-treated seeds showed a significant increase in germination rate, relative germination rate and germination index while the mean germination time was significantly reduced under both optimal and stress conditions. In parallel with seed germination, the negative effect of salt stress on the activity of α-amylase and β-amylase was reduced in pre-treated seeds. The amylase enzymes are responsible for starch hydrolysis, so the reduction of amylase activity by salt stress resulted in higher starch content in the seeds and lower concentrations of water-soluble sugars such as glucose. Pretreatment stimulated amylase activity resulting in starch breakdown and increased content of water-soluble sugars in the salt-stressed seeds. Protein and amino acid contents were significantly enhanced in salt-stressed seeds, which were highlighted in pre-treated seeds. The findings of this study demonstrate that pretreatment of quinoa seeds with CaCl2, H2O2 and SNP at 5, 5 and 0.2 mM, respectively, concentration to achieve rapid germination at high levels under optimal and salt-stress conditions.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran.
| | - Milan Skalicky
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Vachová Pavla
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| |
Collapse
|
38
|
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation (N Y) 2020; 1:100017. [PMID: 34557705 PMCID: PMC8454569 DOI: 10.1016/j.xinn.2020.100017] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Understanding the physiological, metabolic, and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops. In this review, we provide a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes. Important questions regarding salt tolerance that need to be addressed in the future are discussed.
Collapse
Affiliation(s)
- Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunpeng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
39
|
Forti C, Ottobrino V, Bassolino L, Toppino L, Rotino GL, Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of pre-germinative metabolism in primed eggplant ( Solanum melongena L.) seeds. HORTICULTURE RESEARCH 2020; 7:87. [PMID: 32528699 PMCID: PMC7261768 DOI: 10.1038/s41438-020-0310-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Seed priming, a pre-sowing technique that enhances the antioxidant/DNA repair activities during the pre-germinative metabolism, still retains empirical features. We explore for the first time the molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds in order to identify hallmarks (expression patterns of antioxidant/DNA repair genes combined with free radical profiles) useful to discriminate between high- and low-quality lots. The hydropriming protocol hereby developed anticipated (or even rescued) germination, when applied to lots with variable quality. ROS (reactive oxygen species) raised during hydropriming and dropped after dry-back. Upregulation of antioxidant/DNA repair genes was observed during hydropriming and the subsequent imbibition. Upregulation of SmOGG1 (8-oxoguanine glycosylase/lyase) gene detected in primed seeds at 2 h of imbibition appeared as a promising hallmark. On the basis of these results, the investigation was restricted within the first 2 h of imbibition, to verify whether the molecular landscape was reproducible in different lots. A complex pattern of antioxidant/DNA repair gene expression emerged, reflecting the preponderance of seed lot-specific profiles. Only the low-quality eggplant seeds subjected to hydropriming showed enhanced ROS levels, both in the dry and imbibed state, and this might be a useful signature to discriminate among lots. The plasticity of eggplant pre-germinative metabolism stimulated by priming imposes a plethora of heterogeneous molecular responses that might delay the search for quality hallmarks. However, the information hereby gained could be translated to eggplant wild relatives to speed-up their use in breeding programs or other agronomical applications.
Collapse
Affiliation(s)
- Chiara Forti
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Valentino Ottobrino
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Bassolino
- CREA-Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, LO Italy
- CREA-Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Laura Toppino
- CREA-Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, LO Italy
| | | | - Andrea Pagano
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
- Present Address: Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Anca Macovei
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Anton DB, Guzman FL, Vetö NM, Krause FA, Kulcheski FR, Coelho APD, Duarte GL, Margis R, Dillenburg LR, Turchetto-Zolet AC. Characterization and expression analysis of P5CS (Δ1-pyrroline-5-carboxylate synthase) gene in two distinct populations of the Atlantic Forest native species Eugenia uniflora L. Mol Biol Rep 2019; 47:1033-1043. [PMID: 31749121 DOI: 10.1007/s11033-019-05195-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Eugenia uniflora is an Atlantic Forest native species, occurring in contrasting edaphoclimatic environments. The identification of genes involved in response to abiotic factors is very relevant to help in understanding the processes of local adaptation. 1-Pyrroline-5-carboxylate synthetase (P5CS) is one interesting gene to study in this species since it encodes a key enzyme of proline biosynthesis, which is an osmoprotectant during abiotic stress. Applying in silico analysis, we identified one P5CS gene sequence of E. uniflora (EuniP5CS). Phylogenetic analysis, as well as, gene and protein structure investigation, revealed that EuniP5CS is a member of P5CS gene family. Plants of E. uniflora from two distinct environments (restinga and riparian forest) presented differences in the proline accumulation and P5CS expression levels under growth-controlled conditions. Both proline accumulation and gene expression level of EuniP5CS were higher in the genotypes from riparian forest than those from restinga. When these plants were submitted to drought stress, EuniP5CS gene was up-regulated in the plants from restinga, but not in those from riparian forest. These results demonstrated that EuniP5CS is involved in proline biosynthesis in this species and suggest that P5CS gene may be an interesting candidate gene in future studies to understand the processes of local adaptation in E. uniflora.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM) Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43312, Porto Alegre, 91501-970, Brazil.,Graduação em Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Frank Lino Guzman
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nicole Moreira Vetö
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM) Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43312, Porto Alegre, 91501-970, Brazil
| | - Felipe Augusto Krause
- Graduação em Agronomia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Franceli Rodrigues Kulcheski
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento (PPGBCD) Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina (UFSC), Porto Alegre, Brazil
| | - Ana Paula Durand Coelho
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Guilherme Leitão Duarte
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rogério Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM) Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43312, Porto Alegre, 91501-970, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lúcia Rebello Dillenburg
- Laboratório de Ecofisiologia Vegetal, Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM) Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Prédio 43312, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
41
|
Physiological and Transcriptional Responses of Industrial Rapeseed ( Brassica napus) Seedlings to Drought and Salinity Stress. Int J Mol Sci 2019; 20:ijms20225604. [PMID: 31717503 PMCID: PMC6888191 DOI: 10.3390/ijms20225604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Abiotic stress greatly inhibits crop growth and reduces yields. However, little is known about the transcriptomic changes that occur in the industrial oilseed crop, rapeseed (Brassica napus), in response to abiotic stress. In this study, we examined the physiological and transcriptional responses of rapeseed to drought (simulated by treatment with 15% (w/v) polyethylene glycol (PEG) 6000) and salinity (150 mM NaCl) stress. Proline contents in young seedlings greatly increased under both conditions after 3 h of treatment, whereas the levels of antioxidant enzymes remained unchanged. We assembled transcripts from the leaves and roots of rapeseed and performed BLASTN searches against the rapeseed genome database for the first time. Gene ontology analysis indicated that DEGs involved in catalytic activity, metabolic process, and response to stimulus were highly enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially expressed genes (DEGs) from the categories metabolic pathways and biosynthesis of secondary metabolites were highly enriched. We determined that myeloblastosis (MYB), NAM/ATAF1-2/CUC2 (NAC), and APETALA2/ethylene-responsive element binding proteins (AP2-EREBP) transcription factors function as major switches that control downstream gene expression and that proline plays a role under short-term abiotic stress treatment due to increased expression of synthesis and decreased expression of degradation. Furthermore, many common genes function in the response to both types of stress in this rapeseed.
Collapse
|
42
|
Majeed A, Muhammad Z, Islam S, Ahmad H. Salinity imposed stress on principal cereal crops and employing seed priming as a sustainable management approach. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.chnaes.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Magwanga RO, Lu P, Kirungu JN, Dong Q, Cai X, Zhou Z, Wang X, Hou Y, Xu Y, Peng R, Agong SG, Wang K, Fang L. Knockdown of Cytochrome P450 Genes Gh_D07G1197 and Gh_A13G2057 on Chromosomes D07 and A13 Reveals Their Putative Role in Enhancing Drought and Salt Stress Tolerance in Gossypium hirsutum. Genes (Basel) 2019; 10:genes10030226. [PMID: 30889904 PMCID: PMC6471685 DOI: 10.3390/genes10030226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022] Open
Abstract
We identified 672, 374, and 379 CYPs proteins encoded by the CYPs genes in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum, respectively. The genes were found to be distributed in all 26 chromosomes of the tetraploid cotton, with chrA05, chrA12, and their homeolog chromosomes harboring the highest number of genes. The physiochemical properties of the proteins encoded by the CYP450 genes varied in terms of their protein lengths, molecular weight, isoelectric points (pI), and even grand hydropathy values (GRAVY). However, over 99% of the cotton proteins had GRAVY values below 0, which indicated that the majority of the proteins encoded by the CYP450 genes were hydrophilic in nature, a common property of proteins encoded by stress-responsive genes. Moreover, through the RNA interference (RNAi) technique, the expression levels of Gh_D07G1197 and Gh_A13G2057 were suppressed, and the silenced plants showed a higher concentration of hydrogen peroxide (H2O2) with a significant reduction in the concentration levels of glutathione (GSH), ascorbate peroxidase (APX), and proline compared to the wild types under drought and salt stress conditions. Furthermore, the stress-responsive genes 1-Pyrroline–5-Carboxylate Synthetase (GhP5CS), superoxide dismutase (GhSOD), and myeloblastosis (GhMYB) were downregulated in VIGS plants, but showed upregulation in the leaf tissues of the wild types under drought and salt stress conditions. In addition, CYP450-silenced cotton plants exhibited a high level of oxidative injury due to high levels of oxidant enzymes, in addition to negative effects on CMS, ELWL, RLWC, and chlorophyll content The results provide the basic foundation for future exploration of the proteins encoded by the CYP450 genes in order to understand the physiological and biochemical mechanisms in enhancing drought and salt stress tolerance in plants.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
- School of Biological and Physical sciences (SBPS), Main campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo 210-40601, Kenya.
| | - Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Qi Dong
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Renhai Peng
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Anyang Institute of technology, State key laboratory of cotton R.P, Anyang, Henan 455000, China.
| | - Stephen Gaya Agong
- School of Biological and Physical sciences (SBPS), Main campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), P.O Box 210-40601, Bondo 210-40601, Kenya.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Liu Fang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
44
|
Ferreira Ribas A, Volpi e Silva N, dos Santos TB, Lima Abrantes F, Castilho Custódio C, Barbosa Machado-Neto N, Esteves Vieira LG. Regulation of α-expansins genes in Arabidopsis thaliana seeds during post-osmopriming germination. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:511-522. [PMID: 30956432 PMCID: PMC6419704 DOI: 10.1007/s12298-018-0620-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 05/14/2023]
Abstract
Seed osmopriming is a pre-sowing treatment that involves limitation of the seed water imbibition, so that pre-germinative metabolic activities proceed without radicular protrusion. This technique is used for improving germination rate, uniformity of seedling growth and hastening the time to start germination. In Arabidopsis thaliana, seed germination has been associated with the induction of enzymes involved in cell wall modifications, such as expansins. The α-expansins (EXPAs) are involved in cell wall relaxation and extension during seed germination. We used online tools to identify AtEXPA genes with preferential expression during seed germination and RT-qPCR to study the expression of five EXPA genes at different germination stages of non-primed and osmoprimed seeds. In silico promoter analysis of these genes showed that motifs similar to cis-acting elements related to abiotic stress, light and phytohormone responses are the most overrepresented in promoters of these AtEXPA genes, showing that their expression is likely be regulated by intrinsic developmental and environmental signals during Arabidopsis seed germination. The osmopriming conditioning had a decreased time and mean to 50% germination without affecting the percentage of final seed germination. The dried PEG-treated seeds showed noticeable high mRNA levels earlier at the beginning of water imbibition (18 h), showing that transcripts of all five EXPA isoforms were significantly produced during the osmopriming process. The strong up-regulation of these AtEXPA genes, mainly AtEXPA2, were associated with the earlier germination of the osmoprimed seeds, which qualifies them to monitor osmopriming procedures and the advancement of germination.
Collapse
Affiliation(s)
- Alessandra Ferreira Ribas
- Agronomy Graduate Program, Molecular Genetic Laboratory, Universidade do Oeste Paulista (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro, Presidente Prudente, SP 19067-175 Brazil
| | - Nathalia Volpi e Silva
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Cidade Universitária Zeferina Vaz, Campinas, SP 13083-970 Brazil
| | - Tiago Benedito dos Santos
- Agronomy Graduate Program, Molecular Genetic Laboratory, Universidade do Oeste Paulista (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro, Presidente Prudente, SP 19067-175 Brazil
| | - Fabiana Lima Abrantes
- Agronomy Graduate Program, Seed Reserach Laboratory, Universidade do Oeste Paulista (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro, Presidente Prudente, SP 19067-175 Brazil
| | - Ceci Castilho Custódio
- Agronomy Graduate Program, Seed Reserach Laboratory, Universidade do Oeste Paulista (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro, Presidente Prudente, SP 19067-175 Brazil
| | - Nelson Barbosa Machado-Neto
- Agronomy Graduate Program, Seed Reserach Laboratory, Universidade do Oeste Paulista (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro, Presidente Prudente, SP 19067-175 Brazil
| | - Luiz Gonzaga Esteves Vieira
- Agronomy Graduate Program, Molecular Genetic Laboratory, Universidade do Oeste Paulista (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro, Presidente Prudente, SP 19067-175 Brazil
| |
Collapse
|
45
|
Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. THE NEW PHYTOLOGIST 2019; 221:1369-1386. [PMID: 30289560 DOI: 10.1111/nph.15464] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/26/2018] [Indexed: 05/11/2023]
Abstract
Class I TREHALOSE-PHOSPHATE-SYNTHASE (TPS) genes affect salinity tolerance and plant development. However, the function of class IITPS genes and their underlying mechanisms of action are unknown. We report the identification and functional analysis of a rice class IITPS gene (OsTPS8). The ostps8 mutant was characterised by GC-MS analysis, an abscisic acid (ABA) sensitivity test and by generating transgenic lines. To identify the underlying mechanism, gene expression analyses, genetic complementation and examination of suberin deposition in the roots were conducted. The ostps8 mutant showed salt sensitivity, ABA sensitivity and altered agronomic traits compared to the wild-type (WT), which could be rescued upon complementation. The dsRNAi line phenocopied the mutant, while the overexpression lines exhibited enhanced salt tolerance. The ostps8 mutant showed significantly reduced soluble sugars, Casparian bands and suberin deposition in the roots compared to the WT and overexpression lines. The mutant also showed downregulation of SAPKs (rice SnRK2s) and ABA-responsive genes. Furthermore, ostps8pUBI::SAPK9 rescued the salt-sensitive phenotype of ostps8. Our results suggest that OsTPS8 may regulate suberin deposition in rice through ABA signalling. Additionally, SAPK9-mediated regulation of altered ABA-responsive genes helps to confer salinity tolerance. Overexpression of OsTPS8 was adequate to confer enhanced salinity tolerance without any yield penalty, suggesting its usefulness in rice genetic improvement.
Collapse
Affiliation(s)
- Bhushan Vishal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| | - Rengasamy Ramamoorthy
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, 117543, Singapore
| |
Collapse
|
46
|
Lechowska K, Kubala S, Wojtyla Ł, Nowaczyk G, Quinet M, Lutts S, Garnczarska M. New Insight on Water Status in Germinating Brassica napus Seeds in Relation to Priming-Improved Germination. Int J Mol Sci 2019; 20:E540. [PMID: 30696013 PMCID: PMC6387248 DOI: 10.3390/ijms20030540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022] Open
Abstract
Seed priming is a pre-sowing method successfully used to improve seed germination. Since water plays a crucial role in germination, the aim of this study was to investigate the relationship between better germination performances of osmoprimed Brassica napus seeds and seed water status during germination. To achieve this goal, a combination of different kinds of approaches was used, including nuclear magnetic resonance (NMR) spectroscopy, TEM, and SEM as well as semi-quantitative PCR (semi-qPCR). The results of this study showed that osmopriming enhanced the kinetics of water uptake and the total amount of absorbed water during both the early imbibition stage and in the later phases of seed germination. The spin⁻spin relaxation time (T₂) measurement suggests that osmopriming causes faster water penetration into the seed and more efficient tissue hydration. Moreover, factors potentially affecting water relations in germinating primed seeds were also identified. It was shown that osmopriming (i) changes the microstructural features of the seed coat, e.g., leads to the formation of microcracks, (ii) alters the internal structure of the seed by the induction of additional void spaces in the seed, (iii) increases cotyledons cells vacuolization, and (iv) modifies the expression pattern of aquaporin genes.
Collapse
Affiliation(s)
- Katarzyna Lechowska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Szymon Kubala
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, ul. Umultowska 85, 61-614 Poznań, Poland.
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute⁻Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium.
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute⁻Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium.
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
47
|
Subramanyam K, Du Laing G, Van Damme EJM. Sodium Selenate Treatment Using a Combination of Seed Priming and Foliar Spray Alleviates Salinity Stress in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:116. [PMID: 30804974 PMCID: PMC6378292 DOI: 10.3389/fpls.2019.00116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/23/2019] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the important abiotic stress factors that affect rice productivity and quality. Research with several dicotyledonous plants indicated that the detrimental effects associated with salinity stress can (partly) be overcome by the external application of antioxidative substances. For instance, sodium selenate (Na2SeO4) significantly improved the growth and productivity of several crops under various abiotic stress conditions. At present there is no report describing the impact of Na2SeO4 on salinity stressed cereals such as rice. Rice cultivation is threatened by increasing salinity stress, and in future this problem will further be aggravated by global warming and sea level rise, impacting coastal areas. The current study reports on the effect of Na2SeO4 in alleviating salinity stress in rice plants. The optimal concentration of Na2SeO4 and the most efficient mode of selenium application were investigated. Selenium, sodium, and potassium contents in leaves were determined. Antioxidant enzyme activities as well as proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) concentrations were analyzed. In addition, the transcript levels for OsNHX1, an important Na+/H+ antiporter, were quantified. Treatment of 2-week-old rice plants under 150 mM NaCl stress with 6 mg l-1 Na2SeO4 improved the total biomass. A significantly higher biomass was observed for the plants that received Na2SeO4 by a combination of seed priming and foliar spray compared to the individual treatments. The Na2SeO4 application enhanced the activity of antioxidant enzymes (SOD, APX, CAT, and GSH-Px), increased the proline content, and reduced H2O2 and MDA concentrations in plants under NaCl stress. These biochemical changes were accompanied by increased transcript levels for OsNHX1 resulting in a higher K+/Na+ ratio in the rice plants under NaCl stress. The results suggest that Na2SeO4 treatment alleviates the adverse effect of salinity on rice plant growth through enhancing the antioxidant defense system and increase of OsNHX1 transcript levels.
Collapse
Affiliation(s)
- Kondeti Subramanyam
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
- *Correspondence: Els J. M. Van Damme,
| |
Collapse
|
48
|
Xu Y, Huang B. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Sci Rep 2018; 8:15181. [PMID: 30315246 PMCID: PMC6185948 DOI: 10.1038/s41598-018-33597-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Heat and drought stress are primary abiotic stresses confining growth of cool-season grass species during summer. The objective of this study was to identify common molecular factors and metabolic pathways associated with heat and drought responses in creeping bentgrass (Agrostis stolonifera) by comparative analysis of transcriptomic profiles between plants exposed to heat and drought stress. Plants were exposed to heat stress (35/30 °C day/night temperature) or drought stress by withholding irrigation for 21 d in growth chambers. Transcriptomic profiling by RNA-seq in A. stolonifera (cv. 'Penncross') found 670 commonly up-regulated and 812 commonly down-regulated genes by heat and drought stress. Transcriptional up-regulations of differentially expressed genes (DEGs) due to heat and drought stress include genes that were highly enriched in oxylipin biosynthetic process and proline biosynthetic process. Transcriptional down-regulations of genes under heat and drought stress were highly enriched and involved in thiamine metabolic process and calcium sensing receptor. These commonly-regulated genes by heat and drought stress identified in A. stolonifera suggested that drought and heat responses shared such common molecular factors and pathways, which could be potential candidate genes for genetic modification of improving plant tolerance to the combined heat and drought stress.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
49
|
Wang J, Lian W, Cao Y, Wang X, Wang G, Qi C, Liu L, Qin S, Yuan X, Li X, Ren S, Guo YD. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci Rep 2018; 8:13349. [PMID: 30190519 PMCID: PMC6127341 DOI: 10.1038/s41598-018-31690-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/22/2018] [Indexed: 01/01/2023] Open
Abstract
NACs are one of the largest transcription factor families in plants and are involved in the response to abiotic stress. BoNAC019, a homologue of AtNAC019, was isolated from cabbage (Brassica oleracea). BoNAC019 was localized in the nucleus and functioned as a transcriptional activator. The expression of BoNAC019 was induced by dehydration, salt, abscisic acid (ABA), and H2O2 treatments. BoNAC019 overexpressing plants were generated to explore the function of BoNAC019 in response to drought stress. Overexpression (OE) of BoNAC019 reduced drought tolerance with lower survival rate, higher water loss rate, lower proline content and ABA content. The seed germination and root length assays of BoNAC019-OE plants showed decreased sensitivity to ABA. Under drought condition, antioxidant enzymes and anthocyanin content decreased in BoNAC019 -OE plants, resulting in the accumulation of more reactive oxygen species (ROS), which cause damage to plants. Several stress-responsive genes, antioxidant enzymatic genes, anthocyanin biosynthetic genes and ABA signaling genes were down-regulated under drought condition while the ABA catabolism genes were induced in BoNAC019-OE plants under both normal and drought conditions. Our results demonstrated that BoNAC019 might participated in regulating drought tolerance by inducing ABA catabolism genes and decreasing ABA content.
Collapse
Affiliation(s)
- Jinfang Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiran Lian
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yunyun Cao
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Gongle Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Chuandong Qi
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Lun Liu
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Sijia Qin
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Yuan
- Shandong Huasheng Agriculture Co., Ltd, Shandong, China
| | - Xingsheng Li
- Shandong Huasheng Agriculture Co., Ltd, Shandong, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA, 23806, USA
| | - Yang-Dong Guo
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
Wang Z, Yang C, Chen H, Wang P, Wang P, Song C, Zhang X, Wang D. Multi-gene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:410-419. [PMID: 30080629 DOI: 10.1016/j.plantsci.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 05/04/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oil crop worldwide. For current B. napus production, it is urgent to develop new varieties with higher seed productivity and increased stress tolerance for better adaptation to the abiotic stresses as a result of global climate change. Genetic engineering, to some extent, can overcome the limitations of genetic exchange in conventional breeding. Consequently, it considered as an effective method for improving modern crop breeding for B. napus. Since crop stress resistance is a polygenic complex trait, only by multi-gene synergistic effects can effectively achieve the comprehensive stress resistance of crops. Hence, in the present study, five stress resistance genes, NCED3, ABAR, CBF3, LOS5, and ICE1 were transferred into B. napus. Compared with wildtype (WT) plants, the multi-gene transformants K15 exhibited pronounced growth advantage under both normal growth and stress conditions. Additionally, K15 plants also showed significantly higher resistance response to multiple stresses at seed germination and seedling stages than WT plants. Furthermore, K15 plants had significantly higher leaf temperature and significantly lower stomatal aperture and water loss rate than WT plants, which indicated that the water-holding capacity of K15 plants was significantly superior to that of WT plants after stress treatment. In addition, K15 plants had significantly higher abscisic acid (ABA) content and significantly lower malondialdehyde (MDA) content than WT plants. In conclusion, the above results suggested that multi-gene co-expression could rapidly trigger plant stress resistance, reduce the stress injury on plants and synergistically improve the comprehensive resistance of B. napus.
Collapse
Affiliation(s)
- Zaiqing Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Cuiling Yang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hao Chen
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Pei Wang
- School of Mathematics and Statistics, Henan University, Kaifeng, Henan, 475004, China
| | - Pengtao Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chunpeng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Daojie Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|