1
|
Gajjar P, Ismail A, Islam T, Moniruzzaman M, Darwish AG, Dawood AS, Mohamed AG, Haikal AM, El-Saady AM, El-Kereamy A, Sherif SM, Abazinge MD, Kambiranda D, El-Sharkawy I. Transcriptome Profiling of a Salt Excluder Hybrid Grapevine Rootstock 'Ruggeri' throughout Salinity. PLANTS (BASEL, SWITZERLAND) 2024; 13:837. [PMID: 38592889 PMCID: PMC10974295 DOI: 10.3390/plants13060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Salinity is one of the substantial threats to plant productivity and could be escorted by other stresses such as heat and drought. It impairs critical biological processes, such as photosynthesis, energy, and water/nutrient acquisition, ultimately leading to cell death when stress intensity becomes uncured. Therefore, plants deploy several proper processes to overcome such hostile circumstances. Grapevine is one of the most important crops worldwide that is relatively salt-tolerant and preferentially cultivated in hot and semi-arid areas. One of the most applicable strategies for sustainable viticulture is using salt-tolerant rootstock such as Ruggeri (RUG). The rootstock showed efficient capacity of photosynthesis, ROS detoxification, and carbohydrate accumulation under salinity. The current study utilized the transcriptome profiling approach to identify the molecular events of RUG throughout a regime of salt stress followed by a recovery procedure. The data showed progressive changes in the transcriptome profiling throughout salinity, underpinning the involvement of a large number of genes in transcriptional reprogramming during stress. Our results established a considerable enrichment of the biological process GO-terms related to salinity adaptation, such as signaling, hormones, photosynthesis, carbohydrates, and ROS homeostasis. Among the battery of molecular/cellular responses launched upon salinity, ROS homeostasis plays the central role of salt adaptation.
Collapse
Affiliation(s)
- Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Tabibul Islam
- Plant Sciences Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Md Moniruzzaman
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Ahmed S Dawood
- Horticulture Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed G Mohamed
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Amr M Haikal
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | | | - Ashraf El-Kereamy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Sherif M Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Michael D Abazinge
- School of the Environment, Florida A&M University, Tallahassee, FL 32307, USA
| | - Devaiah Kambiranda
- Department of Plant and Soil Sciences, Southern University Agricultural Research and Extension Center, Baton Rouge, LA 70813, USA
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| |
Collapse
|
2
|
Zhan Z, Wang N, Chen Z, Zhang Y, Geng K, Li D, Wang Z. Effects of water stress on endogenous hormones and free polyamines in different tissues of grapevines ( Vitis vinifera L. cv. 'Merlot'). FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:993-1009. [PMID: 37788830 DOI: 10.1071/fp22225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Water stress can affect plant ecological distribution, crop growth and carbohydrate distribution, impacting berry quality. However, previous studies mainly focused on short-term water stress or osmotic stress and few studies paid attention to the responses of grape to long-term water stresses. Grapevines were subjected to no water stress (CK), mild water stress (T1) and moderate water stress (T2). Hundred-berry weight and malic acid content were reduced under T1 and T2; however, glucose and fructose content showed the opposite trend. Endogenous hormones and polyamines (PAs) can regulate plant growth and development as well as physiological metabolic processes. T1 and T2 could increase abscisic acid content, however, indole-3-acetic acid, jasmonate, gibberellins 3 and 4, cytokinin and trans -zeatin contents were slightly decreased. Three species of PAs (putrescine, spermidine and spermine) were detected, presenting obvious tissue specificity. Furthermore, there was a statistically positive correlation relating spermidine content in the pulp with glucose and fructose contents of grape berries; and a negative correlation with organic acid. In summary, water stress had a profound influence on hormonally-driven changes in physiology and berry quality, indicating that endogenous hormones and the PAs play a critical role in the development and ripening of grape berries under water stress.
Collapse
Affiliation(s)
- Zhennan Zhan
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Ning Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zumin Chen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yanxia Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Kangqi Geng
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Dongmei Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zhenping Wang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China; and School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| |
Collapse
|
3
|
Zi X, Zhou S, Wu B. Alpha-Linolenic Acid Mediates Diverse Drought Responses in Maize ( Zea mays L.) at Seedling and Flowering Stages. Molecules 2022; 27:molecules27030771. [PMID: 35164035 PMCID: PMC8839722 DOI: 10.3390/molecules27030771] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Water shortage caused by long-term drought is one of the most serious abiotic stress factors in maize. Different drought conditions lead to differences in growth, development, and metabolism of maize. In previous studies, proteomics and genomics methods have been widely used to explain the response mechanism of maize to long-term drought, but there are only a few articles related to metabolomics. In this study, we used transcriptome and metabolomics analysis to characterize the differential effects of drought stress imposed at seedling or flowering stages on maize. Through the association analysis of genes and metabolites, we found that maize leaves had 61 and 54 enriched pathways under seedling drought and flowering drought, respectively, of which 13 and 11 were significant key pathways, mostly related to the biosynthesis of flavonoids and phenylpropanes, glutathione metabolism and purine metabolism. Interestingly, we found that the α-linolenic acid metabolic pathway differed significantly between the two treatments, and a total of 10 differentially expressed genes and five differentially abundant metabolites have been identified in this pathway. Some differential accumulation of metabolites (DAMs) was related to synthesis of jasmonic acid, which may be one of the key pathways underpinning maize response to different types of long-term drought. In general, metabolomics provides a new method for the study of water stress in maize and lays a theoretical foundation for drought-resistant cultivation of silage maize.
Collapse
|
4
|
Zhang T, Li N, Chen G, Xu J, Ouyang G, Zhu F. Stress symptoms and plant hormone-modulated defense response induced by the uptake of carbamazepine and ibuprofen in Malabar spinach (Basella alba L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148628. [PMID: 34328997 DOI: 10.1016/j.scitotenv.2021.148628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Due to their wide applications and extensive discharges, pharmaceuticals have recently become a potential risk to aquatic and terrestrial organisms. The uptake of pharmaceuticals have been shown to stimulate plant defense systems and induce phytotoxic effects. Signaling molecules such as plant hormones play crucial roles in plant stress and defense responses, but the relationship between these molecules and pharmaceutical uptake has rarely been investigated. In this study, two common pharmaceuticals, carbamazepine and ibuprofen, and three stress-related plant hormones, jasmonic acid, salicylic acid, and abscisic acid, were simultaneously tracked in the roots and stems of Malabar spinach (Basella alba L.) via an in vivo solid phase microextraction (SPME) method. We also monitored stress-related physiological markers and enzymatic activities to demonstrate plant hormone modulation. The results indicate that pharmaceutical uptake, subsequent stress symptoms, and the defense response were all significantly correlated with the upregulation of plant hormones. Moreover, the plant hormones in the exposure group failed to recover to normal levels, indicating that plants containing pharmaceutical residues might be subject to potential risks.
Collapse
Affiliation(s)
- Tianlang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
5
|
Biotic and Abiotic Elicitors of Stilbenes Production in Vitis vinifera L. Cell Culture. PLANTS 2021; 10:plants10030490. [PMID: 33807609 PMCID: PMC8001344 DOI: 10.3390/plants10030490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the cell wall homogenate from Fusarium oxysporum and synthetic jasmonates. The sodium-orthovanadate, known as an inhibitor of hypersensitive necrotic response in treated plant cells able to enhance production and release of secondary metabolite into the cultivation medium, was used as an abiotic elicitor. Growth of cells and the content of phenolic compounds trans-resveratrol, trans-piceid, δ-viniferin, and ɛ-viniferin, were analyzed in grapevine cells treated by individual elicitors. The highest accumulation of analyzed individual stilbenes, except of trans-piceid has been observed after treatment with the cell wall homogenate from F. oxysporum. Maximum production of trans-resveratrol, δ- and ɛ-viniferins was triggered by treatment with cellulase from T. viride. The accumulation of trans-piceid in cell cultures elicited by this cellulase revealed exactly the opposite effect, with almost three times higher production of trans-resveratrol than that of trans-piceid. This study suggested that both used fungal elicitors can enhance production more effectively than commonly used jasmonates.
Collapse
|
6
|
Asfaw KG, Liu Q, Xu X, Manz C, Purper S, Eghbalian R, Münch SW, Wehl I, Bräse S, Eiche E, Hause B, Bogeski I, Schepers U, Riemann M, Nick P. A mitochondria-targeted coenzyme Q peptoid induces superoxide dismutase and alleviates salinity stress in plant cells. Sci Rep 2020; 10:11563. [PMID: 32665569 PMCID: PMC7360622 DOI: 10.1038/s41598-020-68491-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/10/2020] [Indexed: 11/08/2022] Open
Abstract
Salinity is a serious challenge to global agriculture and threatens human food security. Plant cells can respond to salt stress either by activation of adaptive responses, or by programmed cell death. The mechanisms deciding the respective response are far from understood, but seem to depend on the degree, to which mitochondria can maintain oxidative homeostasis. Using plant PeptoQ, a Trojan Peptoid, as vehicle, it is possible to transport a coenzyme Q10 (CoQ10) derivative into plant mitochondria. We show that salinity stress in tobacco BY-2 cells (Nicotiana tabacum L. cv Bright Yellow-2) can be mitigated by pretreatment with plant PeptoQ with respect to numerous aspects including proliferation, expansion, redox homeostasis, and programmed cell death. We tested the salinity response for transcripts from nine salt-stress related-genes representing different adaptive responses. While most did not show any significant response, the salt response of the transcription factor NtNAC, probably involved in mitochondrial retrograde signaling, was significantly modulated by the plant PeptoQ. Most strikingly, transcripts for the mitochondrial, Mn-dependent Superoxide Dismutase were rapidly and drastically upregulated in presence of the peptoid, and this response was disappearing in presence of salt. The same pattern, albeit at lower amplitude, was seen for the sodium exporter SOS1. The findings are discussed by a model, where plant PeptoQ modulates retrograde signalling to the nucleus leading to a strong expression of mitochondrial SOD, what renders mitochondria more resilient to perturbations of oxidative balance, such that cells escape salt induced cell death and remain viable.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Xiaolu Xu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Christina Manz
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Sabine Purper
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Rose Eghbalian
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Elisabeth Eiche
- Institute of Applied Geochemistry (AGW), Geochemistry and Economic Geology Group, Karlsruhe Institute of Technology (KIT), Adenauerring 20b, D-76131, Karlsruhe, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
7
|
Ma J, Qiu D, Gao H, Wen H, Wu Y, Pang Y, Wang X, Qin Y. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa. BMC PLANT BIOLOGY 2020; 20:226. [PMID: 32429844 PMCID: PMC7238615 DOI: 10.1186/s12870-020-02424-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND α-Tocopherol is one of the most important vitamin E components present in plant. α-Tocopherol is a potent antioxidant, which can deactivate photoproduced reactive oxygen species (ROS) and prevent lipids from oxidation when plants suffer drought stress. γ-Tocopherol methyltransferase (γ-TMT) catalyzes the formation of α-tocopherol in the tocopherol biosynthetic pathway. Our previous studies showed that over-expression of γ-TMT gene can increase the accumulation of α-tocopherol in alfalfa (Medicago sativa). However, whether these transgenic plants confer increased drought tolerance and the underlying mechanism are still unknown. RESULTS In the present study, we further evaluate transgenic alfalfa lines, and found that over-expression of MsTMT led to an increase in α-tocopherol and total tocopherol level in the transgenic lines compared with the control plant. It was revealed that drought tolerance of the transgenic alfalfa was remarkably increased, with alleviated oxidative damage and accumulation of more osmolytic substances. The stomatal development in transgenic plants was significantly inhibited on both sides of leaves, which may be resulted from the repression of MsSPCHLESS (MsSPCH) gene. The reduced stomatal density of transgenic plants contributes to a lower stomatal conductance and higher water use efficiency (WUE). Moreover, both RNA-seq and qRT-PCR analyses indicate that regulatory mechanism of MsTMT in drought involved in both ABA-dependent and ABA-independent pathways. CONCLUSION Our results suggest that MsTMT gene plays a positive role in regulating alfalfa response to PEG-simulated drought stress, which might involve complex mechanisms, including ROS scavenging system, stomatal development and multiple phytohormone signaling pathways. This study will broaden our view on the function of γ-TMT gene and provide new strategy for genetic engineering in alfalfa breeding.
Collapse
Affiliation(s)
- Jiangtao Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Deyun Qiu
- Division of biomedical science and biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601 Australia
| | - Hongwen Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hongyu Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yudi Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yongzhen Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yuchang Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
8
|
Fan Y, Liu J, Zou J, Zhang X, Jiang L, Liu K, Lü P, Gao J, Zhang C. The RhHB1/ RhLOX4 module affects the dehydration tolerance of rose flowers ( Rosa hybrida) by fine-tuning jasmonic acid levels. HORTICULTURE RESEARCH 2020; 7:74. [PMID: 32377364 PMCID: PMC7195446 DOI: 10.1038/s41438-020-0299-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 05/14/2023]
Abstract
Phytohormones are key factors in plant responsiveness to abiotic and biotic stresses, and maintaining hormone homeostasis is critically important during stress responses. Cut rose (Rosa hybrida) flowers experience dehydration stress during postharvest handling, and jasmonic acid (JA) levels change as a result of this stress. However, how JA is involved in dehydration tolerance remains unclear. We investigated the functions of the JA- and dehydration-induced RhHB1 gene, which encodes a homeodomain-leucine zipper I γ-clade transcription factor, in rose flowers. Silencing RhHB1 decreased petal dehydration tolerance and resulted in a persistent increase in JA-Ile content and reduced dehydration tolerance. An elevated JA-Ile level had a detrimental effect on rose petal dehydration tolerance. RhHB1 was shown to lower the transient induction of JA-Ile accumulation in response to dehydration. In addition to transcriptomic data, we obtained evidence that RhHB1 suppresses the expression of the lipoxygenase 4 (RhLOX4) gene by directly binding to its promoter both in vivo and in vitro. We propose that increased JA-Ile levels weaken the capacity for osmotic adjustment in petal cells, resulting in reduced dehydration tolerance. In conclusion, a JA feedback loop mediated by an RhHB1/RhLOX4 regulatory module provides dehydration tolerance by fine-tuning bioactive JA levels in dehydrated flowers.
Collapse
Affiliation(s)
- Youwei Fan
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Jitao Liu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, Guangdong 510642 China
| | - Jing Zou
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xiangyu Zhang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Liwei Jiang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Kun Liu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Peitao Lü
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Junping Gao
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Changqing Zhang
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
9
|
Su L, Fang L, Zhu Z, Zhang L, Sun X, Wang Y, Wang Q, Li S, Xin H. The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:621-634. [PMID: 32107612 DOI: 10.1007/s00299-020-02519-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
Collapse
Affiliation(s)
- Lingye Su
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, People's Republic of China
| | - Linchuan Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhenfei Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
10
|
Souid I, Toumi I, Hermosín-Gutiérrez I, Nasri S, Mliki A, Ghorbel A. The effect of salt stress on resveratrol and piceid accumulation in two Vitis vinifera L. cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:625-635. [PMID: 31168228 PMCID: PMC6522566 DOI: 10.1007/s12298-019-00668-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
Salinity is one of the most important abiotic stresses, especially in arid regions. Such devastating constraint is converted mainly to oxidative burst. Thus, plants have to develop strategies to scavenge salt-related regenerated oxidant molecules. In the present work, fully aged plants derived from two Vitis vinifera L. cultivars, the Tunisian autochthonous tolerant genotype Razegui and the salt sensitive Syrah, were analyzed regarding their short term response to 100 mM NaCl, in hydroponic cultures. The ratio [ASA/ASA + DHA] was calculated on the basis of the oxidation of ascorbic acid (ASA) into dehydroascorbic acid (DHA) in leaves. Results proved that oxidative stress was generated. This led to the accumulation of malondialdehyde which referred to a lipid peroxidation mainly in the sensitive Syrah. In order to cope with these oxidative disturbances, trans-resveratrol as well as its glucosides trans-piceid and cis-piceid have been de novo synthesized in the sensitive variety. Razegui stilbene concentrations were presented here for the first time and unexpectedly did not show a very important variation during the salt elicitation.
Collapse
Affiliation(s)
- Imen Souid
- Campus for Girls Study, Pre-Medical Department, Sciences Faculty, King Khaled University, Box 3340, Abha, Saudi Arabia
- Central Analytical Laboratory of Animal Feeds, Box 155, Chotrana 1, 2036 Soukra, Tunisia
| | - Imene Toumi
- Department of Biology, University of Crete, P.O. Box 2280, 71409 Heraklion, Greece
| | - Isidro Hermosín-Gutiérrez
- Escuela Universitaría de Ingeniería Técnica Agrícola, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Soumaia Nasri
- Campus for Girls Study, Pre-Medical Department, Sciences Faculty, King Khaled University, Box 3340, Abha, Saudi Arabia
| | - Ahmed Mliki
- Laboratory of Grapevine Molecular Physiology, University of Tunis II, Tunis, Tunisia
| | - Abdelwahed Ghorbel
- Laboratory of Grapevine Molecular Physiology, University of Tunis II, Tunis, Tunisia
| |
Collapse
|
11
|
Wang C, Wu J, Zhang Y, Lu J. Muscadinia rotundifolia 'Noble' defense response to Plasmopara viticola inoculation by inducing phytohormone-mediated stilbene accumulation. PROTOPLASMA 2018; 255:95-107. [PMID: 28653245 DOI: 10.1007/s00709-017-1118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Downy mildew (DM), one of the most devastating grape diseases worldwide, is caused by the biotrophic oomycete Plasmopara viticola (Pv). In general, grapevine responds to Pv infection with the accumulation of phytoalexins as part of the innate immune system, and diverse phytoalexins are induced on grapevines with different DM-resistance levels in response to Pv invasion. However, the regulation of phytoalexin biosynthesis during grapevine against Pv is still unclear. Herein, we detected stilbenes by UPLC-ESI-MS/MS and found that resveratrol was accumulated to higher level and earlier in the DM-immune Muscadinia rotundifolia 'Noble' than that in the DM-susceptible Vitis vinifera 'Thompson Seedless' after Pv inoculation. Additionally, a considerable amount of pterostilbene and ε-viniferin was found in 'Noble', while a little was detected in 'Thompson Seedless'. Resveratrol was glycosylated into piceid both in 'Noble' and 'Thompson Seedless' after Pv inoculation. The qPCR analysis of gene expression indicated that the resveratrol-synthesis gene (STS) was induced by Pv inoculation earlier in 'Noble' than that in 'Thompson Seedless', while the pterostilbene-synthesis gene (ROMT) was induced in 'Noble' but not in 'Thompson Seedless' at all. The piceid-synthesis gene (GT) was generally up-regulated in both cultivars. Sequence analysis of STS, ROMT, and GT promoters revealed that they contained cis-regulatory elements responsive to phytohormones and pathogens. Following Pv inoculation, the level of SA, MeJA, and ABA was found to be consistently higher in 'Noble' than those in 'Thompson Seedless'. The results of exogenous hormone elicitation further demonstrated that the accumulation of stilbenes was regulated by phytohormones. The earlier and higher accumulation of phytohormones and consequent induction of stilbene synthesis may play an important role in grapevine defense against downy mildew disease.
Collapse
Affiliation(s)
- Chaoxia Wang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiao Wu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China.
- Center for Viticulture and Enology, School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, 200024, People's Republic of China.
| |
Collapse
|
12
|
Chang X, Seo M, Takebayashi Y, Kamiya Y, Riemann M, Nick P. Jasmonates are induced by the PAMP flg22 but not the cell death-inducing elicitor Harpin in Vitis rupestris. PROTOPLASMA 2017; 254:271-283. [PMID: 26769707 DOI: 10.1007/s00709-016-0941-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/02/2016] [Indexed: 05/18/2023]
Abstract
Plants employ two layers of defence that differ with respect to cell death: pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). In our previous work, we have comparatively mapped the molecular events in a cell system derived from the wild American grape Vitis rupestris, where cell death-independent defence can be triggered by PAMP flg22, whereas the elicitor Harpin activates a cell death-related ETI-like response. Both defence responses overlapped with respect to early events, such as calcium influx, apoplastic alkalinisation, oxidative burst, mitogen-activated protein kinase (MAPK) signalling, activation of defence-related genes and accumulation of phytoalexins. However, timing and amplitude of early signals differed. In the current study, we address the role of jasmonates (JAs) as key signalling compounds in hypersensitive cell death. We find, in V. rupestris, that jasmonic acid and its bioactive conjugate jasmonoyl-isoleucine (JA-Ile) rapidly accumulate in response to flg22 but not in response to Harpin. However, Harpin can induce programmed cell death, whereas exogenous methyl jasmonate (MeJA) fails to do so, although both signals induce a similar response of defence genes. Also in a second cell line from V. vinifera cv. 'Pinot Noir', where Harpin cannot activate cell death and where flg22 fails to induce JA and JA-Ile, defence genes are activated in a similar manner. These findings indicate that the signal pathway culminating in cell death must act independently from the events culminating in the accumulation of toxic stilbenes.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Plant Pathology, Agricultural College, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany.
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany
| |
Collapse
|
13
|
Gu L, Jung HJ, Kim BM, Xu T, Lee K, Kim YO, Kang H. A chloroplast-localized S1 domain-containing protein SRRP1 plays a role in Arabidopsis seedling growth in the presence of ABA. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:34-41. [PMID: 26513458 DOI: 10.1016/j.jplph.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 05/07/2023]
Abstract
Although the roles of S1 domain-containing proteins have been characterized in diverse cellular processes in the cytoplasm, the functional roles of a majority of S1 domain-containing proteins targeted to the chloroplast are largely unknown. Here, we characterized the function of a nuclear-encoded chloroplast-targeted protein harboring two S1 domains, designated SRRP1 (for S1 RNA-binding ribosomal protein 1), in Arabidopsis thaliana. Subcellular localization analysis of SRRP1-GFP fusion proteins revealed that SRRP1 is localized to the chloroplast. The T-DNA tagged loss-of-function srrp1 mutants displayed poorer seedling growth and less cotyledon greening than the wild-type plants on MS medium supplemented with abscisic acid (ABA), suggesting that SRRP1 plays a role in seedling growth in the presence of ABA. Splicing of the trnL intron and processing of 5S rRNA in chloroplasts were altered in the mutant plants. Importantly, SRRP1 complemented the growth-defective phenotypes of an RNA chaperone-deficient Escherichia coli mutant at low temperatures and had nucleic acid-melting ability, indicating that SRRP1 possesses RNA chaperone activity. Taken together, these results suggest that SRRP1, the chloroplast-localized S1 domain-containing protein, harboring RNA chaperone activity affects the splicing and processing of chloroplast transcripts and plays a role in Arabidopsis seedling growth in the presence of ABA.
Collapse
Affiliation(s)
- Lili Gu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Bo Mi Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Tao Xu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeon-Ok Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|