1
|
Chaplin E, Coleman G, Merchant A, Salter W. FieldDino: Rapid In-Field Stomatal Anatomy and Physiology Phenotyping. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40421704 DOI: 10.1111/pce.15639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
Stomatal anatomy and physiology define CO2 availability for photosynthesis and regulate plant water use. Despite being key drivers of yield and dynamic responsiveness to abiotic stresses, conventional measurement techniques of stomatal traits are laborious and slow, limiting adoption in plant breeding. Advances in instrumentation and data analyses present an opportunity to screen stomatal traits at scales relevant to plant breeding. We present a high-throughput robust field-based phenotyping approach, FieldDino, for screening stomatal physiology and anatomy. The method allows measurements to be collected in < 15 s and consists of: (1) stomatal conductance measurements using a handheld porometer; (2) in situ collection of epidermal images with a digital microscope, 3D-printed leaf clip and Python-based app; and (3) automated deep-learning analysis of stomatal features. The YOLOv8-M model trained on images collected in the field achieved strong performance metrics with an mAp@0.5 of 97.1% for stomatal detection. When validated in large field trials of 200 wheat genotypes under two irrigation treatments, FieldDino captured wide diversity in stomatal traits. FieldDino enables stomatal data collection and analysis at unprecedented scales in the field. This will advance research on stomatal biology and accelerate the incorporation of stomatal traits into plant breeding programs for resilience to abiotic stress.
Collapse
Affiliation(s)
- Edward Chaplin
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Guy Coleman
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Andrew Merchant
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - William Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
- The Australian Plant Phenomics Network, The University of Sydney, Narrabri, New South Wales, Australia
| |
Collapse
|
2
|
Pan G, Zhong M, Zhang J, Chai X, Yang X, Wang T, Kang Y. High relative humidity mitigates the adverse effects of excessive light by protecting photosynthetic machinery in flowering Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109701. [PMID: 40020605 DOI: 10.1016/j.plaphy.2025.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Increasing canopy relative air humidity (RH) facilitates the resistance of flowering Chinese cabbage plants against excessive light exposure in a plant factory with artificial lighting (PFAL), thereby completely inhibiting leaf burn occurrence. To clarify this high RH-mediated resistance mechanism, we further analyzed the transcriptomes, gas exchange parameters, and chlorophyll fluorescence of flowering Chinese cabbage plants subjected to two levels of canopy RH (70% and 90%). Transcriptomic data revealed a significant enrichment of photosynthesis antenna proteins pathway, which was notably downregulated in both the cotyledons and the first true leaves of the plants grown at 70% RH from the 10th to the 14th day after sowing. However, the downregulation of the photosynthesis-antenna proteins pathway in the first true leaves was notably attenuated by increasing the RH from 70% to 90%, consequently inhibiting the down-regulated expression of all light-harvesting complex I- and II-subunit-encoding mRNAs. The 70% RH-treated seedlings exhibited serious photoinhibition, as indicated by relatively lower non-photochemical quenching (NPQ), maximal quantum yield of photosystem I and II, and adaptation of the photosynthetic apparatus to high irradiance. The 90% RH treatment greatly lessened the reduction of NPQ and relative electron transport rates, which favored dissipating the excess excited energy, protected the photosynthetic apparatus against photodamage, and ultimately completely inhibited leaf burn occurrence. Overall, our results indicate that high canopy RH could improve the resistance of plants to intense light by maintaining efficient photosynthesis, thereby minimizing reliance on supplemental artificial lighting.
Collapse
Affiliation(s)
- Gengzhen Pan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jintao Zhang
- Guangzhou Zengcheng Vocational Technical School, Guangzhou, 511316, China
| | - Xirong Chai
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tingqin Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Jiang Z, Yao L, Zhu X, Hao G, Ding Y, Zhao H, Wang S, Wen CK, Xu X, Xin XF. Ethylene signaling modulates air humidity responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:653-668. [PMID: 37997486 DOI: 10.1111/tpj.16556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Air humidity significantly impacts plant physiology. However, the upstream elements that mediate humidity sensing and adaptive responses in plants remain largely unexplored. In this study, we define high humidity-induced cellular features of Arabidopsis plants and take a quantitative phosphoproteomics approach to obtain a high humidity-responsive landscape of membrane proteins, which we reason are likely the early checkpoints of humidity signaling. We found that a brief high humidity exposure (i.e., 0.5 h) is sufficient to trigger extensive changes in membrane protein abundance and phosphorylation. Enrichment analysis of differentially regulated proteins reveals high humidity-sensitive processes such as 'transmembrane transport', 'response to abscisic acid', and 'stomatal movement'. We further performed a targeted screen of mutants, in which high humidity-responsive pathways/proteins are disabled, to uncover genes mediating high humidity sensitivity. Interestingly, ethylene pathway mutants (i.e., ein2 and ein3eil1) display a range of altered responses, including hyponasty, reactive oxygen species level, and responsive gene expression, to high humidity. Furthermore, we observed a rapid induction of ethylene biosynthesis genes and ethylene evolution after high humidity treatment. Our study sheds light on the potential early signaling events in humidity perception, a fundamental but understudied question in plant biology, and reveals ethylene as a key modulator of high humidity responses in plants.
Collapse
Affiliation(s)
- Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxia Ding
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai, China
| |
Collapse
|
4
|
Verdonk JC, van Ieperen W, Carvalho DRA, van Geest G, Schouten RE. Effect of preharvest conditions on cut-flower quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1281456. [PMID: 38023857 PMCID: PMC10667726 DOI: 10.3389/fpls.2023.1281456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The cut flower industry has a global reach as flowers are often produced in countries around the equator and transported by plane or ship (reefer) mostly to the global north. Vase-life issues are often regarded as linked to only postharvest conditions while cultivation factors are just as important. Here, we review the main causes for quality reduction in cut flowers with the emphasis on the importance of preharvest conditions. Cut flower quality is characterised by a wide range of features, such as flower number, size, shape, colour (patterns), fragrance, uniformity of blooming, leaf and stem colour, plant shape and developmental stage, and absence of pests and diseases. Postharvest performance involves improving and preserving most of these characteristics for as long as possible. The main causes for cut flower quality loss are reduced water balance or carbohydrate availability, senescence and pest and diseases. Although there is a clear role for genotype, cultivation conditions are just as important to improve vase life. The role of growth conditions has been shown to be essential; irrigation, air humidity, and light quantity and quality can be used to increase quality. For example, xylem architecture is affected by the irrigation scheme, and the relative humidity in the greenhouse affects stomatal function. Both features determine the water balance of the flowering stem. Light quality and period drives photosynthesis, which is directly responsible for accumulation of carbohydrates. The carbohydrate status is important for respiration, and many senescence related processes. High carbohydrates can lead to sugar loss into the vase water, leading to bacterial growth and potential xylem blockage. Finally, inferior hygiene during cultivation and temperature and humidity control during postharvest can lead to pathogen contamination. At the end of the review, we will discuss the future outlook focussing on new phenotyping tools necessary to quantify the complex interactions between cultivation factors and postharvest performance of cut flowers.
Collapse
Affiliation(s)
- Julian C. Verdonk
- Department of Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Wim van Ieperen
- Department of Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Geert van Geest
- Interfaculty Bioinformatics, Institut für Biologie, Fakultät für Naturwissenschaften und Naturwissenschaften, Universität Bern, Bern, Switzerland
| | - Rob E. Schouten
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
5
|
Yao L, Jiang Z, Wang Y, Hu Y, Hao G, Zhong W, Wan S, Xin X. High air humidity dampens salicylic acid pathway and NPR1 function to promote plant disease. EMBO J 2023; 42:e113499. [PMID: 37728254 PMCID: PMC10620762 DOI: 10.15252/embj.2023113499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
The occurrence of plant disease is determined by interactions among host, pathogen, and environment. Air humidity shapes various aspects of plant physiology and high humidity has long been known to promote numerous phyllosphere diseases. However, the molecular basis of how high humidity interferes with plant immunity to favor disease has remained elusive. Here we show that high humidity is associated with an "immuno-compromised" status in Arabidopsis plants. Furthermore, accumulation and signaling of salicylic acid (SA), an important defense hormone, are significantly inhibited under high humidity. NPR1, an SA receptor and central transcriptional co-activator of SA-responsive genes, is less ubiquitinated and displays a lower promoter binding affinity under high humidity. The cellular ubiquitination machinery, particularly the Cullin 3-based E3 ubiquitin ligase mediating NPR1 protein ubiquitination, is downregulated under high humidity. Importantly, under low humidity the Cullin 3a/b mutant plants phenocopy the low SA gene expression and disease susceptibility that is normally observed under high humidity. Our study uncovers a mechanism by which high humidity dampens a major plant defense pathway and provides new insights into the long-observed air humidity influence on diseases.
Collapse
Affiliation(s)
- Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yiping Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yezhou Hu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Weili Zhong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Xiu‐Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial SciencesShanghaiChina
| |
Collapse
|
6
|
Li X, Zhang P, Liu J, Wang H, Liu J, Li H, Xie H, Wang Q, Li L, Zhang S, Huang L, Liu C, Qin P. Integrated Metabolomic and Transcriptomic Analysis of the Quinoa Seedling Response to High Relative Humidity Stress. Biomolecules 2023; 13:1352. [PMID: 37759752 PMCID: PMC10527060 DOI: 10.3390/biom13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety ("Dianli-439") and a sensitive variety ("Dianli-969") were subjected to morphological and physiological measurements and metabolome and transcriptome analyses to investigate their response to high RH stress. In total, 1060 metabolites were detected, and lipids and flavonoids were the most abundant, with 173 and 167 metabolites, respectively. In total, 13,095 differentially expressed genes were identified, and the results showed that abscisic acid, auxin, and jasmonic-acid-related genes involved in plant hormone signaling may be involved in the response of quinoa seedlings to high RH stress. The analysis of the transcription factors revealed that the AP2/ERF family may also play an important role in the response to high RH stress. We identified the possible regulatory mechanisms of the hormone signaling pathways under high RH stress. Our findings can provide a basis for the selection and identification of highly resistant quinoa varieties and the screening of the metabolite-synthesis- and gene-regulation-related mechanisms in quinoa in response to RH stress.
Collapse
Affiliation(s)
- Xinyi Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Jia Liu
- Yuxi Academy of Agricultural Science, Yuxi 653100, China;
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Shan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| |
Collapse
|
7
|
Fang J, Tan X, Yang Z, Shen W, Peñuelas J. Contrasting terpene emissions from canopy and understory vegetation in response to increases in nitrogen deposition and seasonal changes in precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120800. [PMID: 36473640 DOI: 10.1016/j.envpol.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Given global change and shifts in climate are expected to increase BVOC emissions, the quantification of links between environmental conditions, plant physiology, and terpene emission dynamics is required to improve model predictions of ecosystem responses to increasing nitrogen deposition and changes in precipitation regimes. Here, we conducted a two-factor field experiment in sub-tropical forest plots to determine effects of N addition (N), precipitation change (PC), and NP (N and PC combined treatment) on wet and dry season terpene emissions and leaf photosynthetic parameters from canopy and understory species. Changes of β-ocimene and sabinene under PC and NP in the wet season (0.4-5.6-fold change) were the largest contributor to changes in total terpene emissions. In the dry season, the standardized total terpene emission rate was enhanced by 144.9% under N addition and 185.7% under PC for the understory species, while the total terpene emission rate was lower under NP than N addition and PC, indicating that N addition tended to moderate increases in PC-induced understory total terpene emissions. In the wet season, the total terpene emission rate under N and PC was close to ambient conditions for the canopy species, while the total terpene emission rate was enhanced by 54.6% under NP, indicating that N and PC combined treatment had an additive effect on canopy total terpene emissions. Total terpene emission rates increased with rates of net leaf photosynthesis (Pn) and transpiration (Tr) and there was a decoupling between terpene emission rates and Pn under NP, indicating that complex effects between PC and N decreased the regularity of single-factor effects. We recommend that N and PC interaction effects are included in models for the prediction of terpene emissions, particularly from canopy vegetation during the wet season as a major source of forest ecosystem terpene emissions.
Collapse
Affiliation(s)
- Jianbo Fang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangping Tan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ziyin Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Josep Peñuelas
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF - CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
| |
Collapse
|
8
|
Zhang P, Yang X, Manevski K, Li S, Wei Z, Andersen MN, Liu F. Physiological and Growth Responses of Potato ( Solanum Tuberosum L.) to Air Temperature and Relative Humidity under Soil Water Deficits. PLANTS (BASEL, SWITZERLAND) 2022; 11:1126. [PMID: 35567127 PMCID: PMC9105088 DOI: 10.3390/plants11091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Drought stress often occurs concurrently with heat stress, yet the interacting effect of high vapor pressure deficit (VPD) and soil drying on the physiology of potato plants remains poorly understood. This study aimed to investigate the physiological and growth responses of potatoes to progressive soil drying under varied VPDs. Potato plants were grown either in four separate climate-controlled greenhouse cells with different VPD levels (viz., 0.70, 1.06, 1.40, and 2.12 kPa, respectively) or under a rainout shelter in the field. The VPD of each greenhouse cell was caused by two air temperature levels (23 and 30 °C) combined with two relative humidity levels (50 and 70%), and the VPD of the field was natural conditions. Irrigation treatments were commenced three or four weeks after planting in greenhouse cells or fields, respectively. The results indicated that soil water deficits limited leaf gas exchange and shoot dry matter (DMshoot) of plants while increasing the concentration of abscisic acid (ABA) in the leaf and xylem, as well as water use efficiency (WUE) across all VPD levels. High VPD decreased stomatal conductance (gs) but increased transpiration rate (Tr). High VPD increased the threshold of soil water for Tr began to decrease, while the soil water threshold for gs depended on temperature due to the varied ABA response to temperature. High VPD decreased leaf water potential, leaf area, and DMshoot, which exacerbated the inhibition of soil drying to plant growth. Across the well-watered plants in both experiments, negative linear relationships of gs and WUE to VPD and positive linear relations between Tr and VPD were found. The results provide some novel information for developing mechanistic models simulating crop WUE and improving irrigation scheduling in future arid climates.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China;
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.M.); (M.N.A.)
| | - Xin Yang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China;
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kiril Manevski
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.M.); (M.N.A.)
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Shenglan Li
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
| | - Zhenhua Wei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China;
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.M.); (M.N.A.)
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| |
Collapse
|
9
|
Abstract
Several investigations have shown that enhanced mixing brought about by wind turbines alters near-surface meteorological conditions within and downstream of a wind farm. When scalar meteorological parameters have been considered, the focus has most often centered on temperature changes. A subset of these works has also considered humidity to various extents. These limited investigations are complemented by just a few studies dedicated to analyzing humidity changes. With onshore wind turbines often sited in agricultural areas, any changes to the microclimate surrounding a turbine can impact plant health and the length of the growing season; any changes to the environment around an offshore wind farm can change cloud and fog formation and dissipation, among other impacts. This article provides a review of observational field campaigns and numerical investigations examining changes to humidity within wind turbine array boundary layers. Across the range of empirical observations and numerical simulations, changes to humidity were observed in stably stratified conditions. In addition to the role of atmospheric stability, this review reveals that the nature of the change depends on the upstream moisture profile; robustness of the mixing; turbine array layout; distance from the turbine, in all three directions; and vertical temperature profile.
Collapse
|
10
|
Zhang D, Du Q, Sun P, Lou J, Li X, Li Q, Wei M. Physiological and Transcriptomic Analyses Revealed the Implications of Abscisic Acid in Mediating the Rate-Limiting Step for Photosynthetic Carbon Dioxide Utilisation in Response to Vapour Pressure Deficit in Solanum Lycopersicum (Tomato). FRONTIERS IN PLANT SCIENCE 2021; 12:745110. [PMID: 34858453 PMCID: PMC8631768 DOI: 10.3389/fpls.2021.745110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The atmospheric vapour pressure deficit (VPD) has been demonstrated to be a significant environmental factor inducing plant water stress and affecting plant photosynthetic productivity. Despite this, the rate-limiting step for photosynthesis under varying VPD is still unclear. In the present study, tomato plants were cultivated under two contrasting VPD levels: high VPD (3-5 kPa) and low VPD (0.5-1.5 kPa). The effect of long-term acclimation on the short-term rapid VPD response was examined across VPD ranging from 0.5 to 4.5 kPa. Quantitative photosynthetic limitation analysis across the VPD range was performed by combining gas exchange and chlorophyll fluorescence. The potential role of abscisic acid (ABA) in mediating photosynthetic carbon dioxide (CO2) uptake across a series of VPD was evaluated by physiological and transcriptomic analyses. The rate-limiting step for photosynthetic CO2 utilisation varied with VPD elevation in tomato plants. Under low VPD conditions, stomatal and mesophyll conductance was sufficiently high for CO2 transport. With VPD elevation, plant water stress was gradually pronounced and triggered rapid ABA biosynthesis. The contribution of stomatal and mesophyll limitation to photosynthesis gradually increased with an increase in the VPD. Consequently, the low CO2 availability inside chloroplasts substantially constrained photosynthesis under high VPD conditions. The foliar ABA content was negatively correlated with stomatal and mesophyll conductance for CO2 diffusion. Transcriptomic and physiological analyses revealed that ABA was potentially involved in mediating water transport and photosynthetic CO2 uptake in response to VPD variation. The present study provided new insights into the underlying mechanism of photosynthetic depression under high VPD stress.
Collapse
Affiliation(s)
- Dalong Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Beijing, China
| | - Qingjie Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Po Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jie Lou
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaotian Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Qingming Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Beijing, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Beijing, China
| |
Collapse
|
11
|
Innes SN, Solhaug KA, Torre S, Dodd IC. Different abscisic acid-deficient mutants show unique morphological and hydraulic responses to high air humidity. PHYSIOLOGIA PLANTARUM 2021; 172:1795-1807. [PMID: 33826767 DOI: 10.1111/ppl.13417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
High relative humidity (RH) perturbs plant growth, stomatal functioning and abscisic acid (ABA) homeostasis, but the role of ABA in this physiological regulation is equivocal. To determine the role(s) of ABA in plant responses to high RH, wild-type (WT) tomato and barley plants and their respective ABA-deficient mutants flacca and Az34 (which are mutated in the same locus of the ABA biosynthesis pathway) were grown in contrasting RHs (60% and 90%) to measure biomass partitioning, stomatal traits and water relations. Surprisingly, growth RH did not affect foliar ABA levels in either species. While Az34 showed similar stomatal size and density as WT plants, flacca had larger and more abundant stomata. High RH increased stomatal size in tomato, but decreased it in barley, and decreased stomatal density in tomato, but not in barley. Altered stomatal responses in ABA-deficient plants to high RH had little effect on tomato photosynthesis, but Az34 barley showed lower photosynthesis. ABA deficiency decreased relative shoot growth rate (RGRSHOOT ) in both species, yet this was counteracted by high RH increasing leaf water status in tomato, but not in barley. High RH increased RGRSHOOT in flacca, but not in WT tomatoes, while having no effect on RGRSHOOT in barley, but affecting barley net assimilation rate, leaf area ratio (LAR) and specific leaf area in an ABA-dependent manner. ABA-RH interaction affected leaf development in tomato only. Thus, different crop species show variable responses to both high RH and ABA deficiency, making it difficult to generalise on the role of ABA in growth regulation at contrasting RHs.
Collapse
Affiliation(s)
- Sheona N Innes
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Sissel Torre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
12
|
Mechanisms of the Morphological Plasticity Induced by Phytohormones and the Environment in Plants. Int J Mol Sci 2021; 22:ijms22020765. [PMID: 33466729 PMCID: PMC7828791 DOI: 10.3390/ijms22020765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
Plants adapt to environmental changes by regulating their development and growth. As an important interface between plants and their environment, leaf morphogenesis varies between species, populations, or even shows plasticity within individuals. Leaf growth is dependent on many environmental factors, such as light, temperature, and submergence. Phytohormones play key functions in leaf development and can act as molecular regulatory elements in response to environmental signals. In this review, we discuss the current knowledge on the effects of different environmental factors and phytohormone pathways on morphological plasticity and intend to summarize the advances in leaf development. In addition, we detail the molecular mechanisms of heterophylly, the representative of leaf plasticity, providing novel insights into phytohormones and the environmental adaptation in plants.
Collapse
|
13
|
An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model. FORESTS 2020. [DOI: 10.3390/f11090954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stomata are microscopic pores on the plant epidermis that regulate the water content and CO2 levels in leaves. Thus, they play an important role in plant growth and development. Currently, most of the common methods for the measurement of pore anatomy parameters involve manual measurement or semi-automatic analysis technology, which makes it difficult to achieve high-throughput and automated processing. This paper presents a method for the automatic segmentation and parameter calculation of stomatal pores in microscope images of plant leaves based on deep convolutional neural networks. The proposed method uses a type of convolutional neural network model (Mask R-CNN (region-based convolutional neural network)) to obtain the contour coordinates of the pore regions in microscope images of leaves. The anatomy parameters of pores are then obtained by ellipse fitting technology, and the quantitative analysis of pore parameters is implemented. Stomatal microscope image datasets for black poplar leaves were obtained using a large depth-of-field microscope observation system, the VHX-2000, from Keyence Corporation. The images used in the training, validation, and test sets were taken randomly from the datasets (562, 188, and 188 images, respectively). After 10-fold cross validation, the 188 test images were found to contain an average of 2278 pores (pore widths smaller than 0.34 μm (1.65 pixels) were considered to be closed stomata), and an average of 2201 pores were detected by our network with a detection accuracy of 96.6%, and the intersection of union (IoU) of the pores was 0.82. The segmentation results of 2201 stomatal pores of black poplar leaves showed that the average measurement accuracies of the (a) pore length, (b) pore width, (c) area, (d) eccentricity, and (e) degree of stomatal opening, with a ratio of width-to-maximum length of a stomatal pore, were (a) 94.66%, (b) 93.54%, (c) 90.73%, (d) 99.09%, and (e) 92.95%, respectively. The proposed stomatal pore detection and measurement method based on the Mask R-CNN can automatically measure the anatomy parameters of pores in plants, thus helping researchers to obtain accurate stomatal pore information for leaves in an efficient and simple way.
Collapse
|
14
|
Fanourakis D, Aliniaeifard S, Sellin A, Giday H, Körner O, Rezaei Nejad A, Delis C, Bouranis D, Koubouris G, Kambourakis E, Nikoloudakis N, Tsaniklidis G. Stomatal behavior following mid- or long-term exposure to high relative air humidity: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:92-105. [PMID: 32485617 DOI: 10.1016/j.plaphy.2020.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/21/2020] [Indexed: 05/07/2023]
Abstract
High relative air humidity (RH ≥ 85%) is frequent in controlled environments, and not uncommon in nature. In this review, we examine the high RH effects on plants with a special focus on stomatal characters. All aspects of stomatal physiology are attenuated by elevated RH during leaf expansion (long-term) in C3 species. These include impaired opening and closing response, as well as weak diel oscillations. Consequently, the high RH-grown plants are not only vulnerable to biotic and abiotic stress, but also undergo a deregulation between CO2 uptake and water loss. Stomatal behavior of a single leaf is determined by the local microclimate during expansion, and may be different than the remaining leaves of the same plant. No effect of high RH is apparent in C4 and CAM species, while the same is expected for species with hydropassive stomatal closure. Formation of bigger stomata with larger pores is a universal response to high RH during leaf expansion, whereas the effect on stomatal density appears to be species- and leaf side-specific. Compelling evidence suggests that ABA mediates the high RH-induced stomatal malfunction, as well as the stomatal size increase. Although high RH stimulates leaf ethylene evolution, it remains elusive whether or not this contributes to stomatal malfunction. Most species lose stomatal function following mid-term (4-7 d) exposure to high RH following leaf expansion. Consequently, the regulatory role of ambient humidity on stomatal functionality is not limited to the period of leaf expansion, but holds throughout the leaf life span.
Collapse
Affiliation(s)
- Dimitrios Fanourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71500, Heraklion, Greece; Giannakakis SA, Export Fruits and Vegetables, Tympaki, Greece.
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Habtamu Giday
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | - Oliver Körner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Abdolhossein Rezaei Nejad
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, GR-24100, Kalamata, Greece
| | - Dimitris Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Athens, Greece
| | - Georgios Koubouris
- Laboratory of Olive Cultivation, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization Demeter, Crete, Greece
| | - Emmanouil Kambourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71500, Heraklion, Greece
| | - Nikolaos Nikoloudakis
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus
| | - Georgios Tsaniklidis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization 'Demeter' (NAGREF), P.O. Box 2228, 71003, Heraklio, Greece
| |
Collapse
|
15
|
Zhang X, Mei X, Wang Y, Huang G, Feng F, Liu X, Guo R, Gu F, Hu X, Yang Z, Zhong X, Li Y. Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity. PeerJ 2020; 8:e8927. [PMID: 32391197 PMCID: PMC7199760 DOI: 10.7717/peerj.8927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
A good understanding of the response of photosynthesis rate (P N) and transpiration rate (Tr) to stomatal alteration during the diurnal variations is important to cumulative photosynthetic production and water loss of crops. Six wheat genotypes were studied for 2 years with pot cultivation in rain-shelter. Among different genotypes, stomatal conductance (g s) was significantly correlated with both P N and Tr. But for each genotype, though g s was significantly correlated with P N regardless of relative air humidity (RH) status and it was also significantly correlated with Tr under lower RH (LRH, 15.4%) and moderate RH (MRH, 28.3%), it was not correlated with Tr under higher RH (HRH, 36.7%) during the diurnal changes. The conditional correlation between g s and Tr of wheat evoked new thinking on the relationships among g s, P N and Tr. Path analysis was further carried out to clarify the correlations of g s with the four atmospheric factors, that of Tr with g s and the four factors and the direct and indirect effects of the factors, during their diurnal dynamic variation. The effects of these factors on g s or Tr were related to RH. All the four factors had a much higher correlation with g s under HRH than that under LRH and MRH. Air temperature (T) had a rather higher direct effect than RH and photosynthetically active radiation (PAR). Also, the other factors had a much higher indirect effect on g s through vapor pressure deficit (VPD) and T. Transpiration rate was highly correlated with g s under LRH and MRH, with g s having a higher direct effect on it. In comparison, Tr was not correlated with g s under HRH but highly correlated with the atmospheric factors, with T, RH, and PAR having a higher indirect effect through VPD.
Collapse
Affiliation(s)
- Xinying Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Xurong Mei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Yajing Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Guirong Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Fu Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Xiaoying Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Fengxue Gu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Xin Hu
- Institute of Wheat Research, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu, China
| | - Ziguang Yang
- Luoyang Academy of Agriculture and Forestry, Luoyang, China
| | - Xiuli Zhong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| |
Collapse
|
16
|
Fanourakis D, Nikoloudakis N, Pappi P, Markakis E, Doupis G, Charova SN, Delis C, Tsaniklidis G. The Role of Proteases in Determining Stomatal Development and Tuning Pore Aperture: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E340. [PMID: 32182645 PMCID: PMC7154916 DOI: 10.3390/plants9030340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Plant proteases, the proteolytic enzymes that catalyze protein breakdown and recycling, play an essential role in a variety of biological processes including stomatal development and distribution, as well as, systemic stress responses. In this review, we summarize what is known about the participation of proteases in both stomatal organogenesis and on the stomatal pore aperture tuning, with particular emphasis on their involvement in numerous signaling pathways triggered by abiotic and biotic stressors. There is a compelling body of evidence demonstrating that several proteases are directly or indirectly implicated in the process of stomatal development, affecting stomatal index, density, spacing, as well as, size. In addition, proteases are reported to be involved in a transient adjustment of stomatal aperture, thus orchestrating gas exchange. Consequently, the proteases-mediated regulation of stomatal movements considerably affects plants' ability to cope not only with abiotic stressors, but also to perceive and respond to biotic stimuli. Even though the determining role of proteases on stomatal development and functioning is just beginning to unfold, our understanding of the underlying processes and cellular mechanisms still remains far from being completed.
Collapse
Affiliation(s)
- Dimitrios Fanourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion, 71500 Crete, Greece;
- Giannakakis SA, Export Fruits and Vegetables, Tympaki, 70200 Crete, Greece
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus;
| | - Polyxeni Pappi
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Emmanouil Markakis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Georgios Doupis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Development, Heraklion, 70013 Crete, Greece;
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Georgios Tsaniklidis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| |
Collapse
|
17
|
Czékus Z, Poór P, Tari I, Ördög A. Effects of Light and Daytime on the Regulation of Chitosan-Induced Stomatal Responses and Defence in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E59. [PMID: 31906471 PMCID: PMC7020449 DOI: 10.3390/plants9010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022]
Abstract
Closure of stomata upon pathogenesis is among the earliest plant immune responses. However, our knowledge is very limited about the dependency of plant defence responses to chitosan (CHT) on external factors (e.g., time of the day, presence, or absence of light) in intact plants. CHT induced stomatal closure before dark/light transition in leaves treated at 17:00 hrs and stomata were closed at 09:00 hrs in plants treated at dawn and in the morning. CHT was able to induce generation of reactive oxygen species (ROS) in guard cells in the first part of the light phase, but significant nitric oxide production was observable only at 15:00 hrs. The actual quantum yield of PSII electron transport (ΦPSII) decreased upon CHT treatments at 09:00 hrs in guard cells but it declined only at dawn in mesophyll cells after the treatment at 17:00 hrs. Expression of Pathogenesis-related 1 (PR1) and Ethylene Response Factor 1 were already increased at dawn in the CHT-treated leaves but PR1 expression was inhibited in the dark. CHT-induced systemic response was also observed in the distal leaves of CHT-treated ones. Our results suggest a delayed and daytime-dependent defence response of tomato plants after CHT treatment at night and under darkness.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| | - Irma Tari
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| |
Collapse
|
18
|
Terfa MT, Olsen JE, Torre S. Blue Light Improves Stomatal Function and Dark-Induced Closure of Rose Leaves ( Rosa x hybrida) Developed at High Air Humidity. FRONTIERS IN PLANT SCIENCE 2020; 11:1036. [PMID: 32849674 PMCID: PMC7399379 DOI: 10.3389/fpls.2020.01036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 05/02/2023]
Abstract
Plants developed under constant high (>85%) relative air humidity (RH) have larger stomata that are unable to close completely in response to closing stimuli. Roses (Rosa x hybrida) developed in high RH have previously been shown to have high water loss during leaf dehydration and reduced dark-induced closure resulting in a shorter postharvest life. In this study, the effect of B-light on stomatal function under high RH conditions was investigated. The ability of rose leaves developed under continuous high (90%) or moderate (60%) RH to close their stomata in response to darkness and leaf dehydration assay was studied. Moreover, the level and regulation of ABA in light and darkness in relation to B-light was measured. Our results show that increased B-light proportion improved stomatal function and dark-induced stomatal closure under high RH conditions and that was associated with increased [ABA] in general and a dynamic ABA peak during darkness. Furthermore, increased B-light during the day was associated with the presence of high β-glucosidase activity during night. This indicates that B-light is important as a signal to activate the β-glucosidase enzyme and release ABA during night. Altogether, the improved stomatal function and reduced transpiration in combination with increased [ABA] indicate that preharvest B-light plays an important role in governing stomatal functionality and ABA homeostasis under high RH and can be a useful method to improve postharvest water balance of roses.
Collapse
Affiliation(s)
- Meseret Tesema Terfa
- Department of Plant Sciences (IPV), Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- School of Plant and Horticulture Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Jorunn Elisabeth Olsen
- Department of Plant Sciences (IPV), Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Sissel Torre
- Department of Plant Sciences (IPV), Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- *Correspondence: Sissel Torre,
| |
Collapse
|
19
|
Innes SN, Arve LE, Zimmermann B, Nybakken L, Melby TI, Solhaug KA, Olsen JE, Torre S. Elevated air humidity increases UV mediated leaf and DNA damage in pea (Pisum sativum) due to reduced flavonoid content and antioxidant power. Photochem Photobiol Sci 2019; 18:387-399. [PMID: 30480699 DOI: 10.1039/c8pp00401c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/15/2018] [Indexed: 11/21/2022]
Abstract
Growth in high relative air humidity (RH, >85%) affects plant morphology and causes diminished response to stomatal closing signals. Many greenhouses are prone to high RH conditions, which may negatively affect production and post-harvest quality. UV radiation induces stomatal closure in several species, and facilitates disease control. We hypothesised that UV exposure may trigger stomatal closure in pea plants (Pisum sativum) grown in high RH, thereby restoring stomatal function. The effects of UV exposure were tested on plants grown in moderate (60%) or high (90%) RH. UV exposure occurred at night, according to a disease control protocol. Lower stomatal conductance rates were found in UV-exposed plants, though UV exposure did not improve the rate of response to closing stimuli or desiccation tolerance. UV-exposed plants showed leaf curling, chlorosis, necrosis, and DNA damage measured by the presence of cyclobutane pyrimidine dimers (CPD), all of which were significantly greater in high RH plants. These plants also had lower total flavonoid content than moderate RH plants, and UV-exposed plants had less than controls. Plants exposed to UV had a higher content of cuticular layer uronic compounds than control plants. However, high RH plants had a higher relative amount of cuticular waxes, but decreased proteins and uronic compounds. Plants grown in high RH had reduced foliar antioxidant power compared to moderate RH. These results indicate that high RH plants were more susceptible to UV-induced damage than moderate RH plants due to reduced flavonoid content and oxidative stress defence.
Collapse
Affiliation(s)
- Sheona N Innes
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1430, Norway
- CERAD, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - Louise E Arve
- The Norwegian Food Safety Authority, Brumundal, 2831, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - Line Nybakken
- CERAD, Norwegian University of Life Sciences, Ås, 1430, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - Tone I Melby
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - Knut Asbjørn Solhaug
- CERAD, Norwegian University of Life Sciences, Ås, 1430, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - Jorunn E Olsen
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1430, Norway
- CERAD, Norwegian University of Life Sciences, Ås, 1430, Norway
| | - Sissel Torre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1430, Norway.
- CERAD, Norwegian University of Life Sciences, Ås, 1430, Norway.
| |
Collapse
|
20
|
Extraction of Leaf Biophysical Attributes Based on a Computer Graphic-based Algorithm Using Terrestrial Laser Scanning Data. REMOTE SENSING 2018. [DOI: 10.3390/rs11010015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Leaf attribute estimation is crucial for understanding photosynthesis, respiration, transpiration, and carbon and nutrient cycling in vegetation and evaluating the biological parameters of plants or forests. Terrestrial laser scanning (TLS) has the capability to provide detailed characterisations of individual trees at both the branch and leaf scales and to extract accurate structural parameters of stems and crowns. In this paper, we developed a computer graphic-based 3D point cloud segmentation approach for accurately and efficiently detecting tree leaves and their morphological features (i.e., leaf area and leaf angle distributions (leaf azimuthal angle and leaf inclination angle)) from single leaves. To this end, we adopted a sphere neighbourhood model with an adaptive radius to extract the central area points of individual leaves with different morphological structures and complex spatial distributions; meanwhile, four auxiliary criteria were defined to ensure the accuracy of the extracted central area points of individual leaf surfaces. Then, the density-based spatial clustering of applications with noise (DBSCAN) algorithm was used to cluster the central area points of leaves and to obtain the centre point corresponding to each leaf surface. We also achieved segmentation of individual leaf blades using an advanced 3D watershed algorithm based on the extracted centre point of each leaf surface and two morphology-related parameters. Finally, the leaf attributes (leaf area and leaf angle distributions) were calculated and assessed by analysing the segmented single-leaf point cloud. To validate the final results, the actual leaf area, leaf inclination and azimuthal angle data of designated leaves on the experimental trees were manually measured during field activities. In addition, a sensitivity analysis investigated the effect of the parameters in our segmentation algorithm. The results demonstrated that the segmentation accuracy of Ehretia macrophylla (94.0%) was higher than that of crape myrtle (90.6%) and Fatsia japonica (88.8%). The segmentation accuracy of Fatsia japonica was the lowest of the three experimental trees. In addition, the single-leaf area estimation accuracy for Ehretia macrophylla (95.39%) was still the highest among the three experimental trees, and the single-leaf area estimation accuracy for crape myrtle (91.92%) was lower than that for Ehretia macrophylla (95.39%) and Fatsia japonica (92.48%). Third, the method proposed in this paper provided accurate leaf inclination and azimuthal angles for the three experimental trees (Ehretia macrophylla: leaf inclination angle: R 2 = 0.908, RMSE = 6.806° and leaf azimuth angle: R 2 = 0.981, RMSE = 7.680°; crape myrtle: leaf inclination angle: R 2 = 0.901, RMSE = 8.365° and leaf azimuth angle: R 2 = 0.938, RMSE = 7.573°; Fatsia japonica: leaf inclination angle: R 2 = 0.849, RMSE = 6.158° and leaf azimuth angle: R 2 = 0.947, RMSE = 3.946°). The results indicate that the proposed method is effective and operational for providing accurate, detailed information on single leaves and vegetation structure from scanned data. This capability facilitates improvements in applications such as the estimation of leaf area, leaf angle distribution and biomass.
Collapse
|
21
|
Giorio P, Guida G, Mistretta C, Sellami MH, Oliva M, Punzo P, Iovieno P, Arena C, De Maio A, Grillo S, Albrizio R. Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:995-1004. [PMID: 30098088 DOI: 10.1111/plb.12891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/06/2018] [Indexed: 05/22/2023]
Abstract
Mediterranean tomato landraces adapted to arid environments represent an option to counteract drought, and to address the complexity of responses to water deficit and recovery, which is a crucial component of plant adaptation mechanisms. We investigated physiological, biochemical and molecular responses of two Mediterranean tomato landraces, 'Locale di Salina' (Lc) and 'Pizzutello di Sciacca' (Pz) under two dehydration periods and intermediate rehydration in greenhouse pot experiments. Relationship between CO2 assimilation (A) and stomatal conductance under severe water stress (gs < 0.05 mol·m-2 ·s-1 ) indicated the occurrence of stomatal and non-stomatal limitations of photosynthesis. Gas exchange promptly recovered within 2-3 days of rehydration. ABA and gs showed a strict exponential relationship. Both leaf ABA and proline peaked under severe water stress. Lc showed higher accumulation of ABA and higher induction of the expression of both NCED and P5CS genes than Pz. Poly(ADP-ribose) polymerase increased during imposition of stress, mainly in Lc, and decreased under severe water stress. The two landraces hardly differed in their physiological performance. Under severe water stress, gs showed low sensitivity to ABA, which instead controlled stomatal closure under moderate water stress (gs > 0.15 mol·m-2 ·s-1 ). The prompt recovery after rehydration of both landraces confirmed their drought-tolerant behaviour. Differences between the two landraces were instead observed at biochemical and molecular levels.
Collapse
Affiliation(s)
- P Giorio
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Naples, Italy
| | - G Guida
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Naples, Italy
| | - C Mistretta
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Naples, Italy
| | - M H Sellami
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Naples, Italy
| | - M Oliva
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Naples, Italy
| | - P Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Research Division Portici, Naples, Italy
| | - P Iovieno
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Research Division Portici, Naples, Italy
| | - C Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A De Maio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - S Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Research Division Portici, Naples, Italy
| | - R Albrizio
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Naples, Italy
| |
Collapse
|
22
|
Fritz MA, Rosa S, Sicard A. Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology. Front Genet 2018; 9:478. [PMID: 30405690 PMCID: PMC6207588 DOI: 10.3389/fgene.2018.00478] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation.
Collapse
Affiliation(s)
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Adrien Sicard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
23
|
Kardiman R, Ræbild A. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. TREE PHYSIOLOGY 2018; 38:696-705. [PMID: 29186586 DOI: 10.1093/treephys/tpx149] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/02/2017] [Indexed: 05/07/2023]
Abstract
Recent studies have suggested that an association between size and speed of stomatal opening of stomata within taxa is likely to play a role in photosynthesis and transpiration. In this study we investigate whether this correlation applies for seedlings of 11 rainforest species from different taxa, and whether differences in stomatal and gas exchange parameters were related to initial growth under field and controlled conditions. The experiment was conducted on seedlings of nine late successional species and two early successional species, placed in full sunlight or 70% shade. We assessed density, size, length and width of guard cells, coupled with gas exchange parameters in the transition from darkness to light, recording minimum stomatal conductance during daytime darkness (gs-dark), operating maximum stomatal conductance (gs-op), speed of stomatal opening and the time to reach 50% conductance (T-50%). All stomata and gas exchange parameters were different between species. Shade significantly affected size and density, and all gas exchange parameters except gs-op were different between light situations. Stomatal size correlated negatively with speed of opening and positively with T-50%, confirming that smaller stomata open faster than large stomata. The two early successional species were very different in stomatal size and density, and in response to light. Anatomic parameters and physiological traits were not related to height growth, but gs-dark, gs-op and speed of stomatal opening were associated with biomass growth in a subselection of six late successional species.
Collapse
Affiliation(s)
- Reki Kardiman
- Burung Indonesia, Jl. Dadali No. 32, PO Box 310/Boo, Bogor 16161, Indonesia
- Department of Biology, University of Andalas, Limau Manis, Padang 25163, Indonesia
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Anders Ræbild
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| |
Collapse
|
24
|
Oksanen E, Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sellin A, Sõber A. Northern Forest Trees Under Increasing Atmospheric Humidity. PROGRESS IN BOTANY 2018:317-336. [PMID: 0 DOI: 10.1007/124_2017_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
25
|
Haque MS, de Sousa A, Soares C, Kjaer KH, Fidalgo F, Rosenqvist E, Ottosen CO. Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance. FRONTIERS IN PLANT SCIENCE 2017; 8:1602. [PMID: 28979273 PMCID: PMC5611624 DOI: 10.3389/fpls.2017.01602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/31/2017] [Indexed: 05/21/2023]
Abstract
The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs ) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms.
Collapse
Affiliation(s)
- Mohammad S. Haque
- Department of Crop Botany, Bangladesh Agricultural UniversityMymensingh, Bangladesh
- Department of Food Science, Aarhus UniversityAarhus, Denmark
| | - Alexandra de Sousa
- Departamento de Biologia, Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | - Cristiano Soares
- Departamento de Biologia, Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | | | - Fernanda Fidalgo
- Departamento de Biologia, Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | | |
Collapse
|
26
|
Arve LE, Kruse OMO, Tanino KK, Olsen JE, Futsæther C, Torre S. Daily changes in VPD during leaf development in high air humidity increase the stomatal responsiveness to darkness and dry air. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:63-69. [PMID: 28161560 DOI: 10.1016/j.jplph.2016.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
Previous studies have shown that plants developed under high relative air humidity (RH>85%) develop malfunctioning stomata and therefor have increased transpiration and reduced desiccation tolerance when transferred to lower RH conditions and darkness. In this study, plants developed at high RH were exposed to daily VPD fluctuations created by changes in temperature and/or RH to evaluate the potential improvements in stomatal functioning. Daily periods with an 11°C temperature increase and consequently a VPD increase (vpd: 0.36-2.37KPa) reduced the stomatal apertures and improved the stomatal functionality and desiccation tolerance of the rosette plant Arabidopsis thaliana. A similar experiment was performed with only a 4°C temperature increase and/or a RH decrease on tomato. The results showed that a daily change in VPD (vpd: 0.36-1.43KPa) also resulted in improved stomatal responsiveness and decreased water usage during growth. In tomato, the most effective treatment to increase the stomatal responsiveness to darkness as a signal for closure was daily changes in RH without a temperature increase.
Collapse
Affiliation(s)
- Louise E Arve
- Norwegian University of Life Sciences, Department of Plant Sciences, P.O. Box 5003, 1432 Aas, Norway.
| | - Ole Mathis Opstad Kruse
- Norwegian University of Life Sciences, Department of Mathematical Sciences and Technology, P.O. Box 5003, 1432 Aas, Norway.
| | - Karen K Tanino
- University of Saskatchewan, Department of Plant Sciences, Saskatoon, SK S7N 5A8, Canada.
| | - Jorunn E Olsen
- Norwegian University of Life Sciences, Department of Plant Sciences, P.O. Box 5003, 1432 Aas, Norway.
| | - Cecilia Futsæther
- Norwegian University of Life Sciences, Department of Mathematical Sciences and Technology, P.O. Box 5003, 1432 Aas, Norway.
| | - Sissel Torre
- Norwegian University of Life Sciences, Department of Plant Sciences, P.O. Box 5003, 1432 Aas, Norway.
| |
Collapse
|