1
|
Dai W, Li Y, Chen Z, He F, Wang H, Peng J, Liu K, Wang H, An X, Zhao S. Gibberellin Regulates LBD38-1 Responses to Xanthomonas arboricola pv. juglandis Infection in Walnut Bacterial Blight Pathogenesis. BMC Genomics 2025; 26:370. [PMID: 40229735 PMCID: PMC11995547 DOI: 10.1186/s12864-025-11518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Plant responses to biotic and abiotic stresses are complex processes. Previous studies have shown that the LBD gene family plays important roles in plant growth and development as well as in plant defense against biotic and abiotic stresses. The expression of LBD genes was investigated in walnuts under biotic and abiotic stresses, revealing that LBD38-1 may be a key gene in the plant stress response. This study provides new insights into the roles of LBD genes in plant responses to biotic stress. RESULTS Forty-nine members of the JrLBD gene family were identified in the walnut genome and classified into six subfamilies. Comparative homology analysis through phylogenetic trees revealed that the presence of Group I-a and Group VI plays an important role in resistance to stressors. The expression of walnut LBD genes under cold-temperature, high-temperature, mechanical damage, and biotic stresses was analyzed via transcriptome sequencing, and the expression of JrLBD38-1 in the Group VI subfamily was particularly prominent. According to transcriptome profile analysis, JrLBD38-1 is highly expressed in different tissues of walnuts, suggesting that it plays a regulatory role in the growth and development of different tissues. The function of the Gibberellin (GA) response element in the JrLBD38-1 promoter was further analyzed and verified. These findings confirmed that GA regulated JrLBD38-1 expression changes during Xanthomonas arboricola pv. juglandis infestation of walnut leaves. CONCLUSION Forty-nine walnut JrLBDs were identified and classified into six subfamilies. JrLBD38-1 has GA-inducible expression, is regulated by GA under pathogenic bacterial stress, and is involved in the response to biotic stress. This function of JrLBD38-1 provides new insights into walnut disease resistance mechanisms.
Collapse
Affiliation(s)
- Wenqiang Dai
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Yaoling Li
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Zhenghan Chen
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fuqiang He
- College of Biochemical and Environmental Engineering, Baoding University, Baoding, 071001, China
| | - Hui Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Jiali Peng
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Kai Liu
- College of Biological Engineering, Binzhou Polytechnic, Binzhou, 256603, China
| | - Hongxia Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Xiuhong An
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Shugang Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Senizza B, Araniti F, Lewin S, Wende S, Kolb S, Lucini L. A multi-omics approach to unravel the interaction between heat and drought stress in the Arabidopsis thaliana holobiont. FRONTIERS IN PLANT SCIENCE 2024; 15:1484251. [PMID: 39748821 PMCID: PMC11693709 DOI: 10.3389/fpls.2024.1484251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
The impact of combined heat and drought stress was investigated in Arabidopsis thaliana and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments. Overall, phenylpropanoids and nitrogen-containing compounds, hormones and amino acids showed the highest discriminant potential. A decrease in alpha-diversity of Bacteria was observed upon stress, with stress-dependent differences in bacterial microbiota composition. The shift in beta-diversity highlighted the pivotal enrichment of Proteobacteria, including Rhizobiales, Enterobacteriales and Azospirillales. The results corroborate the concept of stress interaction, where the combined heat and drought stress is not the mere combination of the single stresses. Intriguingly, multi-omics interpretations evidenced a good correlation between root metabolomics and root bacterial microbiota, indicating an orchestrated modulation of the whole holobiont.
Collapse
Affiliation(s)
- Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia (Di.S.A.A.), Università degli Studi di Milano, Milano, Italy
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
| | - Sonja Wende
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
3
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
4
|
dos Santos SK, Gomes DDS, Soares VDA, Dantas EFO, de Oliveira AFP, Gusmão MHA, de Matos EM, Souza T, Viccini LF, Grazul RM, Henschel JM, Batista DS. Salicylic Acid and Water Stress: Effects on Morphophysiology and Essential Oil Profile of Eryngium foetidum. Metabolites 2024; 14:241. [PMID: 38668369 PMCID: PMC11052287 DOI: 10.3390/metabo14040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The exogenous application of bioregulators, such as salicylic acid (SA), has exhibited promising outcomes in alleviating drought stress. Nevertheless, its impact on culantro (Eryngium foetidum L.) remains unexplored. Thus, the aim of this study was to assess how SA impacts the growth, morphophysiology, and essential oil composition of culantro when subjected to drought. To achieve this, culantro plants were grown under three different watering regimes: well-watered, drought-stressed, and re-watered. Additionally, they were either treated with SA (100 µM) or left untreated, with water serving as the control. SA application did not mitigate the effects of drought in biomass production but increased biomass, leaf number, leaf area, and photosynthetic pigments under well-irrigated and re-watered conditions. After a drought period followed by re-watering, plants recovered membrane integrity independently of SA application. Water stress and the exogenous application of SA also modulated the profile of essential oils. This is the first report about SA and drought affecting growth and essential oil composition in culantro.
Collapse
Affiliation(s)
- Sabrina Kelly dos Santos
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | - Daniel da Silva Gomes
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | - Vanessa de Azevedo Soares
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | | | | | - Moises Henrique Almeida Gusmão
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (M.H.A.G.); (E.M.d.M.); (L.F.V.)
| | - Elyabe Monteiro de Matos
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (M.H.A.G.); (E.M.d.M.); (L.F.V.)
| | - Tancredo Souza
- Postgraduate Program in Agroecology, Federal University of Paraiba, Bananeiras 58220-000, Paraíba, Brazil;
| | - Lyderson Facio Viccini
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (M.H.A.G.); (E.M.d.M.); (L.F.V.)
| | - Richard Michael Grazul
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.F.P.d.O.); (R.M.G.)
| | - Juliane Maciel Henschel
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
| | - Diego Silva Batista
- Postgraduate Program in Agronomy, Federal University of Paraiba, Areia 58397-000, Paraíba, Brazil; (S.K.d.S.); (D.d.S.G.); (V.d.A.S.); (J.M.H.)
- Department of Agriculture, Federal University of Paraiba, Bananeiras 58220-000, Paraíba, Brazil;
- Postgraduate Program in Agroecology, Federal University of Paraiba, Bananeiras 58220-000, Paraíba, Brazil;
| |
Collapse
|
5
|
Zhu Y, Hu S, Min J, Zhao Y, Yu H, Irfan M, Xu C. Transcriptomic analysis provides an insight into the function of CmGH9B3, a key gene of β-1, 4-glucanase, during the graft union healing of oriental melon scion grafted onto squash rootstock. Biotechnol J 2024; 19:e2400006. [PMID: 38581090 DOI: 10.1002/biot.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of β-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Shengwei Hu
- Hermiston Agricultural Research and Extension Station, Oregon State University, Hermiston, Oregon, USA
| | - Jiahuan Min
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Yingtong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Hanqi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of science, University of Sargodha Pakistan, Sargodha, Pakistan
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang, China
| |
Collapse
|
6
|
Hernández-Carranza P, Avila-Sosa R, Vera-López O, Navarro-Cruz AR, Ruíz-Espinosa H, Ruiz-López II, Ochoa-Velasco CE. Uncovering the Role of Hormones in Enhancing Antioxidant Defense Systems in Stressed Tomato ( Solanum lycopersicum) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3648. [PMID: 37896111 PMCID: PMC10610232 DOI: 10.3390/plants12203648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023]
Abstract
Tomato is one of the most important fruits worldwide. It is widely consumed due to its sensory and nutritional attributes. However, like many other industrial crops, it is affected by biotic and abiotic stress factors, reducing its metabolic and physiological processes. Tomato plants possess different mechanisms of stress responses in which hormones have a pivotal role. They are responsible for a complex signaling network, where the antioxidant system (enzymatic and non-enzymatic antioxidants) is crucial for avoiding the excessive damage caused by stress factors. In this sense, it seems that hormones such as ethylene, auxins, brassinosteroids, and salicylic, jasmonic, abscisic, and gibberellic acids, play important roles in increasing antioxidant system and reducing oxidative damage caused by different stressors. Although several studies have been conducted on the stress factors, hormones, and primary metabolites of tomato plants, the effect of endogenous and/or exogenous hormones on the secondary metabolism is still poorly studied, which is paramount for tomato growing management and secondary metabolites production. Thus, this review offers an updated overview of both endogenous biosynthesis and exogenous hormone application in the antioxidant system of tomato plants as a response to biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Raúl Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Obdulia Vera-López
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Addí R. Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Héctor Ruíz-Espinosa
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Irving I. Ruiz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Carlos E. Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| |
Collapse
|
7
|
Lu X, Wu Q, Nie K, Wu H, Chen G, Wang J, Ma Z. Exogenous phthalanilic acid induces resistance to drought stress in pepper seedlings ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1156276. [PMID: 37828921 PMCID: PMC10565039 DOI: 10.3389/fpls.2023.1156276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
Drought stress (DS) is one of the main abiotic negative factors for plants. Phthalanilic acid (PPA), as a plant growth regulator, can promote the growth and development of crops. In order to evaluate the ideal application concentration and frequency of PPA-induced drought resistance in pepper (Capsicum annuum) seedlings, the concentration of PPA was 133.3 mg·L-1; 200.0 mg·L-1; 266.7 mg·L-1, and some key indicators were investigated, including leaf wilting index (LWI), relative water content (RWC), and malondialdehyde (MDA). We found that the LWI and RWC in the PPA-applied pepper leaves under light drought stress (LDS) and moderate drought stress (MDS) were all elevated, while MDA contents were decreased. To better understand how PPA makes pepper drought resistant, we examined the photosynthetic characteristics, growth parameters, antioxidant activities, and osmotic substances in pepper seedlings treated twice with PPA at a concentration of 133.3 mg·L-1 under LDS, MDS, and severe drought stress (SDS). Results showed that PPA increased the chlorophyll, plant height, stem diameter, root-shoot ratio, and seedling index of pepper leaves under LDS, MDS, and SDS. The net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rates (Tr), and water-use efficiency (WUE) in the PPA-treated pepper leaves under LDS and MDS were improved, while their stomatal limitation (Ls) were reduced. PPA also boosted the activities of enzymatic antioxidants (superoxide dismutase, catalase, and peroxidase), as well as enhanced the accumulation of osmotic substances such as soluble sugar, soluble protein, and free proline in pepper leaves under LDS, MDS, and SDS. Thus, PPA can alleviate the growth inhibition and damage to pepper seedlings caused by DS, and the PPA-mediated efficacy may be associated with the improvement in PPA-mediated antioxidant activities, Pn, and accumulation of osmotic substances.
Collapse
Affiliation(s)
- Xiaopeng Lu
- College of Plant Protection, Northwest A & F University, Yangling, China
| | - Qiong Wu
- College of Plant Protection, Northwest A & F University, Yangling, China
| | - Keyi Nie
- College of Plant Protection, Northwest A & F University, Yangling, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi, China
| | - Guangyou Chen
- College of Plant Protection, Northwest A & F University, Yangling, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi, China
| | - Jun Wang
- Institute of Water Conservancy and Soil Fertilizer, Xinjiang Academy of Agricultural Sciences/Northwest Oasis Water-saving Agriculture Key Laboratory, Ministry of Agriculture and Rural Affairs, Shihezi, Xinjiang, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Fu X, Lv CY, Zhang YY, Ai XZ, Bi HG. Comparative transcriptome analysis of grafting to improve chilling tolerance of cucumber. PROTOPLASMA 2023; 260:1349-1364. [PMID: 36949344 DOI: 10.1007/s00709-023-01854-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Grafting with pumpkin as rootstock could improve chilling tolerance of cucumber; however, the underlying mechanism of grafting-induced chilling tolerance remains unclear. Here, we analyzed the difference of physiological and transcriptional level between own-rooted (Cs/Cs) and hetero-grafted (Cs/Cm) cucumber seedlings under chilling stress. The results showed that grafting with pumpkin significantly alleviated the chilling injury as evidenced by slightly symptoms, lower contents of electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2-) and higher relative water content in Cs/Cm seedlings compared with Cs/Cs seedlings under chilling stress. RNA-seq data showed that grafting induced more DGEs at 8 °C/5 °C compared with 25 °C/18 °C. In accordance with the increase of the activities of antioxidant enzymes (SOD, POD, CAT, APX), grafting upregulated the expression of the regulated redox-related genes such as GST, SOD, and APX. Moreover, grafting increased the expression of genes participated in central carbon metabolism to promote the conversion and decomposition of sugar, which provided more energy for the growth of Cs/Cm seedlings under chilling stress. In addition, grafting regulated the genes involved in the intracellular signal transduction pathways such as calcium signal (CAML, CML, and CDPK) and inositol phospholipid signal (PLC), as well as changed the gene expression of plant hormone signal transduction pathways (ARF, GAI, ABF, and PYR/PYL). These results provide a physiological and transcriptional basis for the molecular mechanism of grafting-induced chilling tolerance of cucumber seedlings.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Yu Lv
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yan-Yan Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Tai'an Academy of Agricultural Sciences, Tai'an, 271000, China
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
9
|
Zhao B, Liu Z, Zhu C, Zhang Z, Shi W, Lu Q, Sun J. Saline-Alkaline Stress Resistance of Cabernet Sauvignon Grapes Grafted on Different Rootstocks and Rootstock Combinations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2881. [PMID: 37571034 PMCID: PMC10421111 DOI: 10.3390/plants12152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Grafting the wine grape variety Cabernet Sauvignon onto salinity-tolerant rootstocks can improve salinity tolerance and grape yields in regions with high salinity soils. In this experiment, the effects of different rootstocks and rootstock combinations on the saline-alkaline stress (modified Hoagland nutrient solution + 50 mmol L-1 (NaCl + NaHCO3)) of Cabernet Sauvignon were studied. Correlation and principal component analyses were conducted on several physiological indicators of saline-alkaline stress. Salinity limited biomass accumulation, induced damage to the plant membrane, reduced the chlorophyll content and photosynthetic capacity of plants, and increased the content of malondialdehyde, sodium (Na+)/potassium (K+) ratio, and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase). Significant differences in several indicators were observed among the experimental groups. The results indicate that the saline-alkaline tolerance of Cabernet Sauvignon after grafting was the same as that of the rootstock, indicating that the increased resistance of Cabernet Sauvignon grapes to saline-alkaline stress stems from the transferability of the saline-alkaline stress resistance of the rootstock to the scion.
Collapse
Affiliation(s)
- Baolong Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhiyu Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Chunmei Zhu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhijun Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Wenchao Shi
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Qianjun Lu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Junli Sun
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (B.Z.); (Z.L.); (C.Z.); (Z.Z.); (W.S.); (Q.L.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| |
Collapse
|
10
|
Hura T, Hura K, Ostrowska A, Gadzinowska J, Urban K, Pawłowska B. The role of invasive plant species in drought resilience in agriculture: the case of sweet briar (Rosa rubiginosa L.). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2799-2810. [PMID: 36124695 DOI: 10.1093/jxb/erac377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/05/2022] [Indexed: 06/06/2023]
Abstract
Sweet briar (Rosa rubiginosa) belongs to the group of wild roses. Under natural conditions it grows throughout Europe, and was introduced also into the southern hemisphere, where it has efficiently adapted to dry lands. This review focuses on the high adaptation potential of sweet briar to soil drought in the context of global climatic changes, especially considering steppe formation and desertification of agricultural, orchard, and horticultural areas. We provide a comprehensive overview of current knowledge on sweet briar traits associated with drought tolerance and particularly water use efficiency, sugar accumulation, accumulation of CO2 in intercellular spaces, stomatal conductance, gibberellin level, effective electron transport between photosystem II and photosystem I, and protein content. We discuss the genetics and potential applications in plant breeding and suggest future directions of study concerning invasive populations of R. rubiginosa. Finally, we point out that sweet briar can provide new genes for breeding in the context of depleting gene pools of the crop plants.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Karolina Urban
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Bożena Pawłowska
- Department of Ornamental Plants and Garden Arts, Agricultural University, 29 Listopada 54 Avenue, 31-425 Kraków, Poland
| |
Collapse
|
11
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|
12
|
Xie X, Gu Y, Wang W, Abbas F, Qin S, Fu S, Mei J, Wang J, Ma D, Wen G, Yang Y, Sharma A, Wang X, Yan D, Zheng B, He Y, Yuan H. Exogenous spermidine improved drought tolerance in Ilex verticillata seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1065208. [PMID: 36743484 PMCID: PMC9895825 DOI: 10.3389/fpls.2023.1065208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Winterberry (Ilex verticillata (L.) A. Gray) is a recently introduced ornamental tree species in China that has not been closely investigated for its drought resistance. In this study, we used two-year-old cuttings from I. verticillata (L.) A. Gray and two representative varieties derived from it, I. verticillata 'Oosterwijk' and I. verticillata 'Jim Dandy', as materials to investigate how this plant responds to drought stress and whether exogenous spermidine (SPD) can alleviate the negative effects caused by drought stress. The results showed that as the degree of drought stress increased, the leaves of winterberry seedlings became chlorotic, and their edges became dry. Similarly, the relative water content, specific leaf weight, chlorophyll content, leaf nitrogen content, net photosynthetic rate, stomatal conductance and transpiration rate were significantly reduced, whereas the content of malondialdehyde continuously increased with the degree of drought stress. The activities of superoxide dismutase, peroxidase, and catalase increased under moderate drought stress and then decreased under severe drought stress. The levels of soluble sugar and abscisic acid continued to increase, while those of auxin and gibberellic acid decreased. When compared with individual drought stress, an increase in the amount of external SPD clearly alleviated the effect of drought stress on winterberry seedlings. The combined phenotypes and physiological indices of the winterberry leaves under drought stress conditions revealed that the drought resistance of the native species was significantly higher than its two varieties. This finding serves as an important theoretical foundation for the popularization and application of I. verticillata (L.) A. Gray and the two varieties.
Collapse
Affiliation(s)
- Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yujie Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Weili Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Farhat Abbas
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jiaqi Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jiayan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Dexuan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Guangchao Wen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
13
|
Yang L, Xia L, Zeng Y, Han Q, Zhang S. Grafting enhances plants drought resistance: Current understanding, mechanisms, and future perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:1015317. [PMID: 36275555 PMCID: PMC9583147 DOI: 10.3389/fpls.2022.1015317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 05/28/2023]
Abstract
Drought, one of the most severe and complex abiotic stresses, is increasingly occurring due to global climate change and adversely affects plant growth and yield. Grafting is a proven and effective tool to enhance plant drought resistance ability by regulating their physiological and molecular processes. In this review, we have summarized the current understanding, mechanisms, and perspectives of the drought stress resistance of grafted plants. Plants resist drought through adaptive changes in their root, stem, and leaf morphology and structure, stomatal closure modulation to reduce transpiration, activating osmoregulation, enhancing antioxidant systems, and regulating phytohormones and gene expression changes. Additionally, the mRNAs, miRNAs and peptides crossing the grafted healing sites also confer drought resistance. However, the interaction between phytohormones, establishment of the scion-rootstock communication through genetic materials to enhance drought resistance is becoming a hot research topic. Therefore, our review provides not only physiological evidences for selecting drought-resistant rootstocks or scions, but also a clear understanding of the potential molecular effects to enhance drought resistance using grafted plants.
Collapse
Affiliation(s)
- Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Reis ADP, Carvalho RF, Costa IB, Girio RJS, Gualberto R, Spers RC, Gaion LA. Hydrogen peroxide is involved in drought stress long-distance signaling controlling early stomatal closure in tomato plants. BRAZ J BIOL 2022; 82:e267343. [DOI: 10.1590/1519-6984.267343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract It has long been hypothesized that hydrogen peroxide (H2O2) may play an essential role in root-to-shoot long-distance signaling during drought conditions. Thus, to better understand the involvement of H2O2 in drought signaling, two experiments were carried out using tomato plants. In the first experiment, a split-root scheme was used, while in the second experiment, the tomato plants were grown in a single pot and subjected to drought stress. In both experiments, H2O2 and catalase were applied together with irrigation. Control plants continued to be irrigated according to the water loss. In the split-root experiment, it was verified that the application of H2O2 to roots induced a clear reduction in plant transpiration compared to untreated or catalase-treated plants. In the second experiment, we observed that H2O2-treated plants exhibited similar transpiration when compared to untreated and catalase-treated plants under drought stress. Similarly, no difference in water use efficiency was observed. Thus, we conclude that the increase in H2O2 in the root system can act as a long-distance signal leading to reduced transpiration even when there is no water limitation in the shoot. But it has little effect when there is a reduction in the shoot water potential.
Collapse
|
15
|
Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. PLANT CELL REPORTS 2022; 41:1-31. [PMID: 34351488 DOI: 10.1007/s00299-021-02759-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/20/2023]
Abstract
Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO2 concentration and temperature that lead to rise in new pests, weeds and pathogens. Climate change is one of the major constraints limiting plant growth and development worldwide. It impairs growth, disturbs photosynthesis, and reduces physiological responses in plants. The variations in global climate have gained the attention of researchers worldwide, as these changes negatively affect the agriculture by reducing crop productivity and food security. With this background, this review focuses on the effects of elevated atmospheric CO2 concentration, temperature, drought and salinity on the morphology, physiology and biochemistry of plants. Furthermore, this paper outlines an overview on the reactive oxygen species (ROS) production and their impact on the biochemical and molecular status of plants with increased climatic variations. Also additionally, different tolerance strategies adopted by plants to combat environmental adversities have been discussed.
Collapse
Affiliation(s)
- Smita Chaudhry
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
16
|
Andrade A, Boero A, Escalante M, Llanes A, Arbona V, Gómez-Cádenas A, Alemano S. Comparative hormonal and metabolic profile analysis based on mass spectrometry provides information on the regulation of water-deficit stress response of sunflower (Helianthus annuus L.) inbred lines with different water-deficit stress sensitivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:432-446. [PMID: 34715568 DOI: 10.1016/j.plaphy.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Water-deficit stress is the most important abiotic stress restricting plant growth, development and yield. The effects of this stress, however, depend on genotypes, among other factors. This study assembles morpho-physiological and metabolic approaches to assess hormonal and metabolic profile changes, upon water-deficit stress, in the shoot and roots of two contrasting sunflower inbred lines, B59 (water-deficit stress sensitive) and B71 (water-deficit stress tolerant). The analyses were carried out using mass spectrometry and performing a multivariate statistical analysis to identify relationships between the analyzed variables. Water-deficit stress reduced all morpho-physiological parameters, except for root length in the tolerant inbred line. The hormonal pathways were active in mediating the seedling performance to imposed water-deficit stress in both lines, although with some differences between lines at the organ level. B59 displayed a diverse metabolite battery, including organic acids, organic compounds as well as sugars, mainly in the shoot, whereas B71 showed primary amino acids, organic acids and organic compounds predominantly in its roots. The discrimination between control and water-deficit stress conditions was possible thanks to potential biomarkers of stress treatment, e.g., proline, maleic acid and malonic acid. This study indicated that the studied organs of sunflower seedlings have different mechanisms of regulation under water-deficit stress. These findings could help to better understand the physio-biochemical pathways underlying stress tolerance in sunflower at early-growth stage.
Collapse
Affiliation(s)
- Andrea Andrade
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Aldana Boero
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Maximiliano Escalante
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina
| | - Analía Llanes
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cádenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
17
|
Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1269-1290. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/28/2023]
Abstract
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
18
|
Padilla YG, Gisbert-Mullor R, López-Serrano L, López-Galarza S, Calatayud Á. Grafting Enhances Pepper Water Stress Tolerance by Improving Photosynthesis and Antioxidant Defense Systems. Antioxidants (Basel) 2021; 10:antiox10040576. [PMID: 33918024 PMCID: PMC8069515 DOI: 10.3390/antiox10040576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Currently, limited water supply is a major problem in many parts of the world. Grafting peppers onto adequate rootstocks is a sustainable technique used to cope with water scarcity in plants. For 1 month, this work compared grafted peppers by employing two rootstocks (H92 and H90), with different sensitivities to water stress, and ungrafted plants in biomass, photosynthesis, and antioxidant response terms to identify physiological–antioxidant pathways of water stress tolerance. Water stress significantly stunted growth in all the plant types, although tolerant grafted plants (variety grafted onto H92, Var/H92) had higher leaf area and fresh weight values. Var/H92 showed photosynthesis and stomata conductance maintenance, compared to sensitive grafted plants (Var/H90) and ungrafted plants under water stress, linked with greater instantaneous water use efficiency. The antioxidant system was effective in removing reactive oxygen species (ROS) that could damage photosynthesis; a significant positive and negative linear correlation was observed between the rate of CO2 uptake and ascorbic acid (AsA)/total AsA (AsAt) and proline, respectively. Moreover, in Var/H92 under water stress, both higher proline and ascorbate concentration were observed. Consequently, less membrane lipid peroxidation was quantified in Var/H92.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Lidia López-Serrano
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
- Correspondence:
| |
Collapse
|
19
|
D'Amico-Damião V, Dodd IC, Oliveira R, Lúcio JCB, Rossatto DR, Carvalho RF. Cryptochrome 1a of tomato mediates long-distance signaling of soil water deficit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110763. [PMID: 33487348 DOI: 10.1016/j.plantsci.2020.110763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Although the blue light photoreceptors cryptochromes mediate the expression of genes related to reactive oxygen species, whether cryptochrome 1a (cry1a) regulates local and long-distance signaling of water deficit in tomato (Solanum lycopersicum L.) is unknown. Thus the cry1a tomato mutant and its wild-type (WT) were reciprocally grafted (WT/WT; cry1a/cry1a; WT/cry1a; cry1a/WT; as scion/rootstock) or grown on their own roots (WT and cry1a) under irrigated and water deficit conditions. Plant growth, pigmentation, oxidative stress, water relations, stomatal characteristics and leaf gas exchange were measured. WT and cry1a plants grew similarly under irrigated conditions, whereas cry1a plants had less root biomass and length and higher tissue malondialdehyde concentrations under water deficit. Despite greater oxidative stress, cry1a maintained chlorophyll and carotenoid concentrations in drying soil. Lower stomatal density of cry1a likely increased its leaf relative water content (RWC). In grafted plants, scion genotype largely determined shoot and root biomass accumulation irrespective of water deficit. In chimeric plants grown in drying soil, cry1a rootstocks increased RWC while WT rootstocks maintained photosynthesis of cry1a scions. Manipulating tomato CRY1a may enhance plant drought tolerance by altering leaf pigmentation and gas exchange during soil drying via local and long-distance effects.
Collapse
Affiliation(s)
- Victor D'Amico-Damião
- Department of Biology Applied to Agriculture, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Reginaldo Oliveira
- Department of Biology Applied to Agriculture, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
| | - José C B Lúcio
- Department of Biology Applied to Agriculture, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
| | - Davi R Rossatto
- Department of Biology Applied to Agriculture, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
| | - Rogério F Carvalho
- Department of Biology Applied to Agriculture, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil.
| |
Collapse
|
20
|
Zulfiqar F, Ashraf M. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. PLANT MOLECULAR BIOLOGY 2021; 105:11-41. [PMID: 32990920 DOI: 10.1007/s11103-020-01077-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change. Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant's antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | | |
Collapse
|
21
|
Lucini L, Miras-Moreno B, Busconi M, Marocco A, Gatti M, Poni S. Molecular basis of rootstock-related tolerance to water deficit in Vitis vinifera L. cv. Sangiovese: A physiological and metabolomic combined approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110600. [PMID: 32900438 DOI: 10.1016/j.plantsci.2020.110600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The rootstock M4 (V. vinifera × V. berlandieri) × V. berlandieri cv. Resseguier n.1) is a recent selection reported to confer improved drought tolerance to grafted V. vinifera scions, a very desired feature in the era of global warming. Therefore, a short-term study was performed on a batch of 12 potted cv. Sangiovese vines grafted either on M4 or on the drought susceptible SO4 rootstock. Ecophysiological assessments as whole canopy net CO2 exchange rate (NCER), transpiration (Tc), and pre-dawn leaf water potential (Ψpd) and UHPLC-ESI/QTOF-MS metabolomics were then used to investigate the different vine responses during water limiting conditions. Water stress was induced by applying 50 % of estimated daily water use from days of year 184-208. M4 was able to deliver similar CO2, at a significantly reduced water use, compared to SO4 grafting. In turn, this resulted in enhanced canopy water use efficiency (NCER/Tc ratio) quantified as +15.1 % during water stress and +21.7 % at re-watering. Untargeted metabolomics showed a similar modulation of brassinosteroids and ABA between the two rootstocks, whereas the up accumulation of cytokinins and gibberellins under drought was peculiar of M4 grafted vines. The increase in gibberellins, together with a concurrent down accumulation of chlorophyll precursors and catabolites and an up accumulation of folates in M4 rootstock suggests that the capacity of limiting reactive-oxygen-species and redox imbalance under drought stress was improved. Finally, distinctive osmolyte accumulation patterns could be observed, with SO4 investing more on proline and glycine-betaine content and M4 primarily showing polyols accumulation.
Collapse
Affiliation(s)
- Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Begona Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Gatti
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
22
|
Gadzinowska J, Dziurka M, Ostrowska A, Hura K, Hura T. Phytohormone synthesis pathways in sweet briar rose (Rosa rubiginosa L.) seedlings with high adaptation potential to soil drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:745-750. [PMID: 32768989 DOI: 10.1016/j.plaphy.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The study aimed to determine the phytohormone profile of sweet briar rose (Rosa rubiginosa L.) seedlings and privileged synthesis pathways of individual hormones including gibberellins, cytokinins and auxins in response to long-term soil drought. We detected eight gibberellins, nine auxins and fifteen cytokinins. Abscisic acid (ABA) was also detected as a sensitive indicator of water stress. Thirty days of soil drought induced significant increase of ABA content and species-specific quantitative changes of other phytohormones. We established preferred synthesis pathways for three gibberellins, six auxins and eight cytokinins. Both an increase and decrease in gibberellin and cytokinin levels may modulate sweet briar's response to soil water shortage. In the case of auxins, induction of effective adaptation mechanisms to extremely dry environments is mostly triggered by their rising levels. Under drought stress, sweet briar seedlings increased their gibberellin pool at the expense of reducing the pool of cytokinins and auxins. This may indicate a specific role of gibberellins in adaptation mechanisms to long-term soil water deficit developed by sweet briar.
Collapse
Affiliation(s)
- Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| | - Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
23
|
Lu X, Liu W, Wang T, Zhang J, Li X, Zhang W. Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. FRONTIERS IN PLANT SCIENCE 2020; 11:460. [PMID: 32431719 PMCID: PMC7214726 DOI: 10.3389/fpls.2020.00460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Grafting is widely used in fruit, vegetable, and flower propagation to improve biotic and abiotic stress resistance, yield, and quality. At present, the systemic changes caused by grafting, as well as the mechanisms and effects of long-distance signal transport between rootstock and scion have mainly been investigated in model plants (Arabidopsis thaliana and Nicotiana benthamiana). However, these aspects of grafting vary when different plant materials are grafted, so the study of model plants provides only a theoretical basis and reference for the related research of grafted vegetables. The dearth of knowledge about the transport of signaling molecules in grafted vegetables is inconsistent with the rapid development of large-scale vegetable production, highlighting the need to study the mechanisms regulating the rootstock-scion interaction and long-distance transport. The rapid development of molecular biotechnology and "omics" approaches will allow researchers to unravel the physiological and molecular mechanisms involved in the rootstock-scion interaction in vegetables. We summarize recent progress in the study of the physiological aspects (e.g., hormones and nutrients) of the response in grafted vegetables and focus in particular on long-distance molecular signaling (e.g., RNA and proteins). This review provides a theoretical basis for studies of the rootstock-scion interaction in grafted vegetables, as well as provide guidance for rootstock breeding and selection to meet specific demands for efficient vegetable production.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
25
|
Liu F, Ma H, Peng L, Du Z, Ma B, Liu X. Effect of the inoculation of plant growth-promoting rhizobacteria on the photosynthetic characteristics of Sambucus williamsii Hance container seedlings under drought stress. AMB Express 2019; 9:169. [PMID: 31673866 PMCID: PMC6823468 DOI: 10.1186/s13568-019-0899-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/03/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that survive within the range of plant rhizosphere and can promote plant growth. The effects of PGPR in promoting plant growth, activating soil nutrients, reducing fertilizer application, and improving the resistance of plant inducible system have been widely investigated. However, few studies have investigated PGPR as elicitors of tolerance to abiotic stresses, especially drought stress. In this study, the effects of Acinetobacter calcoaceticus X128 on the photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci), and total chlorophyll content [Chl(a+b)] of Sambucus williamsii Hance seedling leaves under moderate drought stress and drought-rewatering conditions were determined. Compared with those of uninoculated seedlings, the average Pn values during the entire drought stress of inoculated seedlings increased by 12.99%. As the drought duration was lengthened, Ci of uninoculated leaves continued to increase after rapidly declining, whereas Gs continuously decreased. Furthermore, their photosynthetic properties were simultaneously restricted by stomatal and non-stomatal factors. After X128 inoculation, Ci and Gs of S. williamsii Hance leaves continued to decrease, and their photosynthetic properties were mainly restricted by stomatal factors. At the end of the drought stress, water stress reduced [Chl(a + b)] of S. williamsii Hance leaves by 13.49%. However, X128 inoculation decreased this deficit to only 7.39%. After water supply was recovered, Pn, Gs, and [Chl(a+b)] in uninoculated leaves were reduced by 14.23%, 12.02%, and 5.86%, respectively, relative to those under well-watered conditions. However, Ci increased by 6.48%. Compared with those of uninoculated seedlings, Pn, Gs, and [Chl(a+b)] in X128-inoculated seedlings were increased by 9.83%, 9.30%, and 6.85%, respectively. Therefore, the inoculation of X128 under arid environments can mitigate the reduction of chlorophyll, delay the restriction caused by non-stomatal factors to Pn in plant leaves under water stress, and can be more conducive to the recovery of photosynthetic functions of leaves after water supply is recovered.
Collapse
Affiliation(s)
- Fangchun Liu
- Institute of Resource and Environment, Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, 250014, Shandong, People's Republic of China
- Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| | - Hailin Ma
- Institute of Resource and Environment, Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, 250014, Shandong, People's Republic of China.
- Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China.
| | - Lin Peng
- Institute of Resource and Environment, Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, 250014, Shandong, People's Republic of China
- Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| | - Zhenyu Du
- Institute of Resource and Environment, Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, 250014, Shandong, People's Republic of China
- Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| | - Bingyao Ma
- Institute of Resource and Environment, Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xinghong Liu
- Institute of Resource and Environment, Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, 250014, Shandong, People's Republic of China
- Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| |
Collapse
|
26
|
Hasan MMU, Ma F, Islam F, Sajid M, Prodhan ZH, Li F, Shen H, Chen Y, Wang X. Comparative Transcriptomic Analysis of Biological Process and Key Pathway in Three Cotton ( Gossypium spp.) Species Under Drought Stress. Int J Mol Sci 2019; 20:E2076. [PMID: 31035558 PMCID: PMC6539811 DOI: 10.3390/ijms20092076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Drought is one of the most important abiotic stresses that seriously affects cotton growth, development, and production worldwide. However, the molecular mechanism, key pathway, and responsible genes for drought tolerance incotton have not been stated clearly. In this research, high-throughput next generation sequencing technique was utilized to investigate gene expression profiles of three cotton species (Gossypium hirsutum, Gossypium arboreum, and Gossypium barbadense L.) under drought stress. A total of 6968 differentially expressed genes (DEGs) were identified, where 2053, 742, and 4173 genes were tested as statistically significant; 648, 320, and 1998 genes were up-regulated, and 1405, 422, and 2175 were down-regulated in TM-1, Zhongmian-16, and Pima4-S, respectively. Total DEGs were annotated and classified into functional groups under gene ontology analysis. The biological process was present only in tolerant species(TM-1), indicating drought tolerance condition. The Kyoto encyclopedia of genes and genomes showed the involvement of plant hormone signal transduction and metabolic pathways enrichment under drought stress. Several transcription factors associated with ethylene-responsive genes (ICE1, MYB44, FAMA, etc.) were identified as playing key roles in acclimatizing to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to abscisic acid (ABA) responses (NCED, PYL, PP2C, and SRK2E), reactive oxygen species (ROS) related in small heat shock protein and 18.1 kDa I heat shock protein, YLS3, and ODORANT1 genes. These results will provide deeper insights into the molecular mechanisms of drought stress adaptation in cotton.
Collapse
Affiliation(s)
- Md Mosfeq-Ul Hasan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Examination Controller Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Fanglu Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Sajid
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zakaria H Prodhan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Yadong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018; 6:e4752. [PMID: 29761061 PMCID: PMC5947103 DOI: 10.7717/peerj.4752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
28
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018. [PMID: 29761061 DOI: 10.7287/peerj.preprints.26860v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|