1
|
Eftekhari F, Sarcheshmehpour M, Lohrasbi-Nejad A, Boroomand N. Effects of mycorrhizal and Trichoderma treatment on enhancing maize tolerance to salinity and drought stress, through metabolic and enzymatic evaluation. BMC PLANT BIOLOGY 2025; 25:687. [PMID: 40410728 PMCID: PMC12100791 DOI: 10.1186/s12870-025-06729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Nowadays, climate change has intensified environmental stresses, including salinity and drought stress. Salinity and drought significantly impair crop growth and yield by affecting physiological and biochemical processes. One of the ways to enhance environmental stress tolerance in plants is to improve their symbiotic relationships with soil microorganisms. This study investigates the impact of arbuscular mycorrhizal fungi (AMF) and Trichoderma harzianum (accession number: PV544806) inoculation on maize to trace the activated pathways under stress conditions. Maize plants were exposed to different stress conditions: salinity (S1D0), drought (S0D1), and a combination of both salinity and drought (S1D1). They received treatments with arbuscular mycorrhizal fungi (AMF) (M1T0), Trichoderma (M0T1), and a combination of both (M1T1). RESULTS Inoculation of maize plants with AMF and T. harzianum markedly enhanced root dry weight, root volume, and total biomass under stress conditions. Additionally, the simultaneous inoculation of AMF and T. harzianum under combined salinity and drought conditions significantly affected traits such as dry weight of aerial parts, total biomass, and root colonization percentage compared to the non-inoculated control. Physiologically, the results also indicated that the inoculation significantly increased the activity of antioxidant enzymes SOD and APX. Results from GC-MS analysis and metabolic pathway analysis showed that the combined inoculation of AMF and Trichoderma in maize plants stimulated the production of specific secondary metabolites such as oxaloacetate, Δ1-piperidine-6-carboxylate, and cadaverine under stress conditions. CONCLUSIONS Based on this study's findings, the use of AMF and T. harzianum can enhance maize growth and performance under salinity and drought stress by stimulating the production of secondary metabolites.
Collapse
Affiliation(s)
- Fatemeh Eftekhari
- Department of Soil Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Azadeh Lohrasbi-Nejad
- Department of System Biotechnology, Afzalipour Research Institute (ARI), Shahid Bahonar University of Kerman, Kerman, Iran
| | - Naser Boroomand
- Department of Soil Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Yang H, Zhang Y, Lyu S, Mao Y, Yu F, Liu S, Fang Y, Deng S. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1274-1289. [PMID: 39873956 DOI: 10.1111/jipb.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. H2O2, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear. Here, we report that CAT2 and CAT3 protein abundance was partially controlled using the 26S proteasome. To further identify candidate proteins that modulate the stability of CAT2, we performed yeast-two-hybrid screening and recovered several clones encoding a protein with RING and vWA domains, CIRP1 ( CAT2 Interacting RING Protein 1). Drought and oxidative stress downregulated CIRP1 transcripts. CIRP1 harbored E3 ubiquitination activity and accelerated the degradation of CAT2 and CAT3 by direct interaction and ubiquitination. The cirp1 mutants exhibited stronger drought and oxidative stress tolerance, which was opposite to the cat2 and cat3 mutants. Genetic analysis revealed that CIRP1 acts upstream of CAT2 and CAT3 to negatively regulate drought and oxidative stress tolerance. The increased drought and oxidative stress tolerance of the cirp1 mutants was due to enhanced catalase (CAT) activities and alleviated ROS levels. Our data revealed that the CIRP1-CAT2/CAT3 module plays a vital role in alleviating ROS levels and balancing growth and stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Heng Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yaping Mao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Fangqin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sai Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Fang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
3
|
Jiang Z, van Zanten M, Sasidharan R. Mechanisms of plant acclimation to multiple abiotic stresses. Commun Biol 2025; 8:655. [PMID: 40269242 PMCID: PMC12019247 DOI: 10.1038/s42003-025-08077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Plants frequently encounter a range of abiotic stresses and their combinations. Even though stresses rarely occur in isolation, research on plant stress resilience typically focuses on single environmental stressors. Plant responses to abiotic stress combinations are often distinct from corresponding individual stresses. Factors determining the outcomes of combined stresses are complex and multifaceted. In this review, we summarize advancements in our understanding of the mechanisms underlying plant responses to co-occurring (combined and sequential) abiotic stresses, focusing on morphological, physiological, developmental, and molecular aspects. Comprehensive understanding of plant acclimation, including the signaling and response mechanisms to combined and individual stresses, can contribute to the development of strategies for enhancing plant resilience in dynamic environments.
Collapse
Affiliation(s)
- Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Liu Q, Liu L, Xue J, Shi P, Liang S. Habitat Suitability Shifts of Eucommia ulmoides in Southwest China Under Climate Change Projections. BIOLOGY 2025; 14:451. [PMID: 40282316 PMCID: PMC12024585 DOI: 10.3390/biology14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
As a Chinese endemic species with dual medicinal-industrial importance, Eucommia ulmoides faces habitat challenges under climate change. Using 21 bioclimatic variables and 704 occurrence records, we modeled current and future (2021-2100) distributions via MaxEnt 3.4.4 and ArcGIS 10.8. The results indicate the following: (1) current optimal habitats cluster in the mid-elevation valleys of Daba-Wuling Mountains (Guizhou-Chongqing core); (2) SSP5-8.5 projections suggest a 19.2% reduction in high-suitability areas by 2081-2100 versus SSP1-2.6; and (3) distribution centroids migrate southward under both scenarios. Our multi-temporal analysis provides actionable intelligence for ex situ conservation and agroforestry planning.
Collapse
Affiliation(s)
- Qi Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Q.L.)
| | - Longjiang Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Q.L.)
| | - Juan Xue
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Q.L.)
| | - Peiyao Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Q.L.)
| | - Shanshan Liang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Q.L.)
- Provincial Inheritance Base of Traditional Chinese Medicine Processing under National Administration of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
5
|
Nguyen PT, Luong JC, Wishingrad V, Stratton L, Loik ME, Meyer RS. Soil biome variation of Lupinus nipomensis in wet-cool vs. dry-warm microhabitats and greenhouse. AMERICAN JOURNAL OF BOTANY 2025; 112:e70020. [PMID: 40116040 PMCID: PMC12012791 DOI: 10.1002/ajb2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
PREMISE Environmental DNA (eDNA) can be used to determine the composition of the soil biome community, revealing beneficial and antagonistic microbes and invertebrates associated with plants. eDNA analyses can complement traditional soil community studies, offering more comprehensive information for conservation practitioners. Studies are also needed to examine differences between field and greenhouse soil biomes because greenhouse-grown plants are often transplanted in the field during restoration efforts. METHODS We used eDNA multilocus metabarcoding to test how the soil biome of the federally and state-endangered species, Lupinus nipomensis, differed between wet-cool and dry-warm microhabitats. At Arroyo Grande, California, 20 experimental plots were sampled, representing a factorial combination of wet-cool vs. dry-warm soil and plots that did or did not contain L. nipomensis. In a simultaneous greenhouse study, L. nipomensis was grown in drought and well-watered conditions to compare soil communities between field and greenhouse. RESULTS A diversity of carbon-cycling microorganisms but not nitrogen-fixers were overrepresented in the field, and nitrogen-fixing bacteria were overrepresented in some greenhouse treatments. The microbial communities in the field soils were more species-rich and evenly distributed than in greenhouse communities. In field plots, microhabitats significantly influenced community beta diversity, while field plots with or without L. nipomensis had no significant differences in alpha or beta diversity. CONCLUSIONS Our study shows the utility of eDNA soil analysis in elucidating soil biome community differences for conservation and highlights the influence of plant microhabitats on soil microbe associations.
Collapse
Affiliation(s)
- Peter T. Nguyen
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta Cruz95064CAUSA
- Department of Life and Environmental SciencesUniversity of California MercedMerced95340CAUSA
| | - Justin C. Luong
- Department of Forestry, Fire & Rangeland ManagementCalifornia State Polytechnic University, HumboldtArcata95521CAUSA
- Department of Environmental StudiesUniversity of California Santa CruzSanta Cruz95064CAUSA
- Vernon and Mary Cheadle Center for Biodiversity and Ecological RestorationUniversity of CaliforniaSanta Barbara93105CAUSA
| | - Van Wishingrad
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta Cruz95064CAUSA
- Hawai'i Institute of Marine Biology46‐007 Lilipuna Road, KaneoheHawai'i96744USA
| | - Lisa Stratton
- Vernon and Mary Cheadle Center for Biodiversity and Ecological RestorationUniversity of CaliforniaSanta Barbara93105CAUSA
| | - Michael E. Loik
- Department of Environmental StudiesUniversity of California Santa CruzSanta Cruz95064CAUSA
| | - Rachel S. Meyer
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta Cruz95064CAUSA
| |
Collapse
|
6
|
Beugnon R, Eisenhauer N, Lochner A, Blechinger MJ, Buhr PE, Cesarz S, Farfan MA, Ferlian O, Rompeltien Howard AJ, Huang Y, Kuhlmann BS, Lienicke N, Mählmann S, Nowka A, Petereit E, Ristok C, Schädler M, Schmid JTM, Schulte LJ, Seim K, Thouvenot L, Tremmel R, Weber L, Weitowitz J, Yi H, Sünnemann M. Sustainable Land Use Enhances Soil Microbial Respiration Responses to Experimental Heat Stress. GLOBAL CHANGE BIOLOGY 2025; 31:e70214. [PMID: 40272845 PMCID: PMC12020990 DOI: 10.1111/gcb.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Soil microbial communities provide numerous ecosystem functions, such as nutrient cycling, decomposition, and carbon storage. However, global change, including land-use and climate changes, affects soil microbial communities and activity. As extreme weather events (e.g., heatwaves) tend to increase in magnitude and frequency, we investigated the effects of heat stress on the activity (e.g., respiration) of soil microbial communities that had experienced four different long-term land-use intensity treatments (ranging from extensive grassland and intensive grassland to organic and conventional croplands) and two climate conditions (ambient vs. predicted future climate). We hypothesized that both intensive land use and future climate conditions would reduce soil microbial respiration (H1) and that experimental heat stress would increase microbial respiration (H2). However, this increase would be less pronounced in soils with a long-term history of high-intensity land use and future climate conditions (H3), and soils with a higher fungal-to-bacterial ratio would show a more moderate response to warming (H4). Our study showed that soil microbial respiration was reduced under high land-use intensity (i.e., -43% between extensive grassland and conventional cropland) and future climate conditions (-12% in comparison to the ambient climate). Moreover, heat stress increased overall microbial respiration (+17% per 1°C increase), while increasing land-use intensity reduced the strength of this response (-25% slope reduction). In addition, increasing soil microbial biomass and fungal-to-bacterial ratio under low-intensity land use (i.e., extensive grassland) enhanced the microbial respiration response to heat stress. These findings show that intensive land use and climate change may compromise the activity of soil microbial communities as well as their respiration under heatwaves. In particular, soil microbial communities under high-intensity land use and future climate are less able to respond to additional stress, such as heatwaves, potentially threatening the critical ecosystem functions driven by soil microbes and highlighting the benefits of more sustainable agricultural practices.
Collapse
Affiliation(s)
- Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
- CEFE, University Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Paula E. Buhr
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Monica A. Farfan
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Nora Lienicke
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Selma Mählmann
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Anneke Nowka
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | | | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalleGermany
| | | | - Lara J. Schulte
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Kora‐Lene Seim
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Lise Thouvenot
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Raphael Tremmel
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
| | - Lara Weber
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Jule Weitowitz
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Huimin Yi
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig Institute of BiologyUniversität LeipzigLeipzigGermany
| |
Collapse
|
7
|
Segarra-Medina C, Gómez-Cadenas A, Zandalinas SI. Physiological, molecular, and metabolic adaptations of plants to combined salinity and high irradiance stress. PHYSIOLOGIA PLANTARUM 2025; 177:e70164. [PMID: 40128164 DOI: 10.1111/ppl.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
Global warming is expected to drive climate change, intensifying extreme weather events and aggravating stress conditions for plants due to the heightened frequency and severity of environmental factors. Among these stresses, the interplay of salinity and high irradiance is particularly critical, as it poses significant threats to crop productivity, food quality, and overall global food security. This review provides a comprehensive analysis of the physiological, molecular, and metabolic responses of various plant species to salinity (S), high irradiance (HL), and their combined stress (S + HL), highlighting the adaptative mechanisms plants employ to mitigate these adverse conditions. This study integrates in silico data, focusing on gene expression profiles and functional classification using Gene Ontology (GO) terms and analysis of transcription factor (TF) families such as MYB, WRKY and bHLH. Alongside gene expression data, we incorporated analyses of growth, development, and metabolism profiles across different species exposed to S, HL and S + HL. The findings point to adaptive mechanisms crucial for resilience, including reconfigurations in gene expression patterns, metabolic pathways and phytohormone profiles, demonstrating their potential in the development of climate-resilient crops. This review offers a framework for further research into multi-stress adaptation strategies. In addition, the importance of advancing crop resilience through these insights, contributing to the development of innovative approaches for sustainable agriculture in a rapidly changing climate, is outlined.
Collapse
Affiliation(s)
| | | | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Castellón, Spain
| |
Collapse
|
8
|
Nawaz AF, Gargiulo S, Pichierri A, Casolo V. Exploring the Role of Non-Structural Carbohydrates (NSCs) Under Abiotic Stresses on Woody Plants: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:328. [PMID: 39942890 PMCID: PMC11820143 DOI: 10.3390/plants14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Global climate change has increased the severity and frequency of abiotic stresses, posing significant challenges to the survival and growth of woody plants. Non-structural carbohydrates (NSCs), including starch and sugars, play a vital role in enabling plants to withstand these stresses, helping to stabilize cellular functions by buffering plant energy demands and facilitating recovery on the alleviation of stress. Despite the recognized multiple functions of NSCs, the contrasting effects of multiple abiotic stresses on NSCs dynamics in woody plants remain poorly understood. This review aims to explore the current knowledge of the contrasting effects of abiotic stress conditions including drought, salinity, heat, water logging, and cold on NSCs dynamics. The roles of NSCs in regulating stress-resilience responses in woody plants are also discussed, along with the challenges in NSC measurement, and options for future research directions are explored. This review is based on comprehensive literature research across different search engines like Scopus, Web of Science, and Google Scholar (2000-2024) using targeted keywords. This study compiles the current research on NSCs functions and provides insights into the adaptive strategies of woody plants in response to changing climate conditions, providing groundwork for future research to improve stress tolerance in woody plants.
Collapse
Affiliation(s)
- Ayesha Fazal Nawaz
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Sara Gargiulo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Alessandro Pichierri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| |
Collapse
|
9
|
Govaert L, Klauschies T. Eco-phenotypic feedback loops differ in multistressor environments. Ecology 2025; 106:e4480. [PMID: 39592230 PMCID: PMC11733661 DOI: 10.1002/ecy.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024]
Abstract
Natural communities are exposed to multiple environmental stressors, which simultaneously impact the population and trait dynamics of the species embedded within these communities. Given that certain traits, such as body size, are known to rapidly respond to environmental change, and given that they can strongly influence the density of populations, this raises the question of whether the strength of the eco-phenotypic feedback loop depends on the environment, and whether stressful environments would enhance or disrupt this feedback or causal linkage. We use two competing freshwater ciliates-Colpidium striatum and Paramecium aurelia-and expose their populations to a full-factorial design of increasing salinity and temperature conditions as well as interspecific competition. We found that salinity, temperature, and competition significantly affected the density and cell size dynamics of both species. Cell size dynamics strongly influenced density dynamics; however, the strength of this eco-phenotypic feedback loop weakened in stressful conditions and with interspecific competition. Our study highlights the importance of studying eco-phenotypic dynamics in different environments comprising stressful abiotic conditions and species interactions.
Collapse
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary and Integrative EcologyLeibniz‐Institut für Gewässerökologie und Binnenfischerei (IGB)BerlinGermany
| | - Toni Klauschies
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and Biology, University of PotsdamPotsdamGermany
| |
Collapse
|
10
|
Anee TI, Rachman RR, Ziqi Z, Suzuki N. A combination of salt stress and waterlogging provides protection to tomato plants against the negative effects of waterlogging individually applied. PHYSIOLOGIA PLANTARUM 2025; 177:e70116. [PMID: 39972984 DOI: 10.1111/ppl.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Salt stress and waterlogging are two of the most common abiotic stresses in nature, often occurring concurrently. However, our understanding of the mechanisms underlying responses of plants to a combination of these stresses remains limited. In this study, we investigated growth, physiological and biochemical responses of Solanum lycopersicum cv. Micro-Tom to salt stress, waterlogging and the combination of both. Under waterlogging individually, plants showed increased plant height and longer root length. However, they exhibited a significantly smaller leaf area, fewer leaves, reduced fresh and dry weights, and lower relative water content compared to plants grown under controlled conditions. These effects were more severe than those caused by salt stress alone. Interestingly, the growth inhibition from waterlogging was alleviated under combined salt and waterlogging stress. This attenuation may be associated with decreased accumulation of H₂O₂ and oxidized lipids, along with increased proline and photosynthetic pigment contents compared with waterlogging individually applied. However, ROS accumulations and contents of photosynthetic pigments were not straightforwardly linked to the activity of photosynthesis. In addition, activities of various antioxidant enzymes such as CAT, GPX and GST as well as those involved in the AsA-GSH cycle were differently altered by salt stress and waterlogging, individually and in combination. Taken together, these results suggest that the response of tomato plants to salt stress and waterlogging, individually and in combination, can be differently modulated via fine-tuning of acclimation mechanisms to oxidative stress.
Collapse
Affiliation(s)
- Taufika Islam Anee
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Rido Ramadano Rachman
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Zhao Ziqi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
11
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
12
|
Jené L, Massó‐Rodríguez M, Munné‐Bosch S. Interactive effects of Orobanche latisquama parasitism and drought stress in Salvia rosmarinus plants growing under Mediterranean field conditions. PHYSIOLOGIA PLANTARUM 2024; 176:e14652. [PMID: 39641143 PMCID: PMC11621997 DOI: 10.1111/ppl.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Mediterranean-type ecosystems are recognized as critical hotspots for both biodiversity and climate change. Within these environments, plants often interact with diverse species, including holoparasitic plants, while simultaneously facing increasing episodes of precipitation shortages and rising temperatures. Here, we investigated the impact of Orobanche latisquama Reut. ex Boiss infestation on the Mediterranean shrub Salvia rosmarinus (L.) Spenn (rosemary) across three populations along an altitudinal gradient, focusing on its effects on host tolerance and resilience to severe summer drought in its natural habitat. Results showed no major physiological impact of the parasite on the host during spring but revealed an enhanced photo- and antioxidant-protective response during the summer drought in rosemary plants infested with O. latisquama. Infested plants showed elevated contents of α-tocopherol and a shift in the ascorbate ratio towards its oxidized state during the summer, particularly in upper and sun-exposed leaves. This was accompanied by elevated malondialdehyde content, indicating enhanced lipid peroxidation. However, despite the heightened photo-oxidative stress observed in leaves from infested plants, no damage to photosystem II was observed, indicating a good tolerance of rosemary to the interaction between parasitism and drought. By autumn, all plants displayed similar recovery patterns, and the differences between infested and non-infested plants disappeared, thus indicating a high resilience to the combination of these biotic and abiotic stresses. Overall, these findings underscore the great adaptive mechanisms S. rosmarinus plants have evolved to endure severe summer drought, even when challenged by holoparasitic plant infestation, and provide new insights into plant-parasite interactions in Mediterranean-type ecosystems.
Collapse
Affiliation(s)
- Laia Jené
- Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaSpain
- Institute of Research in Biodiversity (IRBio), University of BarcelonaSpain
| | - Marcel Massó‐Rodríguez
- Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaSpain
| | - Sergi Munné‐Bosch
- Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaSpain
- Institute of Research in Biodiversity (IRBio), University of BarcelonaSpain
| |
Collapse
|
13
|
Terán F, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Facing climate change: plant stress mitigation strategies in agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14484. [PMID: 39157905 DOI: 10.1111/ppl.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Climate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity. Furthermore, the negative impacts of climate change on agriculture are exacerbated by anthropogenic factors, with agriculture itself contributing significantly to greenhouse gas emissions. To mitigate these challenges, various approaches have been explored. This work reviews the most important physical, chemical, and biological strategies most commonly used in a broad range of agricultural crops. Among physical strategies, increasing water use efficiency without yield reduction through different irrigation strategies, and the use of foliar treatments with reflective properties to mitigate the negative effects of different stresses have been proven to be effective. Concerning chemical approaches, the exogenous treatment of plants with chemicals induces existing molecular and physiological plant defense mechanisms, enhancing abiotic stress tolerance. Regarding biological treatments, plant inoculation with mycorrhiza and plant growth-promoting rhizobacteria (PGPR) can improve enzymatic antioxidant capacity and mineral solubilization, favoring root and plant growth and enhance plant performance under stressful conditions. While these strategies provide valuable short- to medium-term solutions, there is a pressing need for new biotechnological approaches aimed at developing genotypes resistant to stressful conditions. Collaborative efforts among researchers, policymakers, and agricultural stakeholders are essential to ensure global food security in the face of ongoing climate challenges.
Collapse
Affiliation(s)
- Fátima Terán
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
14
|
Lewandrowski W, Tudor EP, Ajduk H, Tomlinson S, Stevens JC. Spatiotemporal variation in ecophysiological traits align with high resolution niche modelling in the short-range banded ironstone endemic Aluta quadrata. CONSERVATION PHYSIOLOGY 2024; 12:coae030. [PMID: 38798718 PMCID: PMC11127796 DOI: 10.1093/conphys/coae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Defining plant ecophysiological responses across natural distributions enables a greater understanding of the niche that plants occupy. Much of the foundational knowledge of species' ecology and responses to environmental change across their distribution is often lacking, particularly for rare and threatened species, exacerbating management and conservation challenges. Combining high-resolution species distribution models (SDMs) with ecophysiological monitoring characterized the spatiotemporal variation in both plant traits and their interactions with their surrounding environment for the range-restricted Aluta quadrata Rye & Trudgen, and a common, co-occurring generalist, Eremophila latrobei subsp. glabra (L.S.Sm.) Chinnock., from the semi-arid Pilbara and Gascoyne region in northwest Western Australia. The plants reflected differences in gas exchange, plant health and plant water relations at sites with contrasting suitability from the SDM, with higher performance measured in the SDM-predicted high-suitability site. Seasonal differences demonstrated the highest variation across ecophysiological traits in both species, with higher performance in the austral wet season across all levels of habitat suitability. The results of this study allow us to effectively describe how plant performance in A. quadrata is distributed across the landscape in contrast to a common, widespread co-occurring species and demonstrate a level of confidence in the habitat suitability modelling derived from the SDM in predicting plant function determined through intensive ecophysiology monitoring programmes. In addition, the findings also provide a baseline approach for future conservation actions, as well as to explore the mechanisms underpinning the short-range endemism arid zone systems.
Collapse
Affiliation(s)
- Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| | - Emily P Tudor
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| | - Hayden Ajduk
- Rio Tinto, Central Park, 152–158 St Georges Terrace, Perth, Western Australia 6000, Australia
| | - Sean Tomlinson
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
- Geospatial Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jason C Stevens
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 2 Kattidj Close, Kings Park, WA 6005, Australia
| |
Collapse
|
15
|
Cagnola JI, D'Andrea KE, Rotili DH, Mercau JL, Ploschuk EL, Maddonni GA, Otegui ME, Casal JJ. Eco-physiology of maize crops under combined stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1856-1872. [PMID: 38113327 DOI: 10.1111/tpj.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The yield of maize (Zea mays L.) crops depends on their ability to intercept sunlight throughout the growing cycle, transform this energy into biomass and allocate it to the kernels. Abiotic stresses affect these eco-physiological determinants, reducing crop grain yield below the potential of each environment. Here we analyse the impact of combined abiotic stresses, such as water restriction and nitrogen deficiency or water restriction and elevated temperatures. Crop yield depends on the product of kernel yield per plant and the number of plants per unit soil area, but increasing plant population density imposes a crowding stress that reduces yield per plant, even within the range that maximises crop yield per unit soil area. Therefore, we also analyse the impact of abiotic stresses under different plant densities. We show that the magnitude of the detrimental effects of two combined stresses on field-grown plants can be lower, similar or higher than the sum of the individual stresses. These patterns depend on the timing and intensity of each one of the combined stresses and on the effects of one of the stresses on the status of the resource whose limitation causes the other. The analysis of the eco-physiological determinants of crop yield is useful to guide and prioritise the rapidly progressing studies aimed at understanding the molecular mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Juan I Cagnola
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Karina E D'Andrea
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Rotili
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge L Mercau
- INTA, Agencia de Extensión San Luis, San Luis, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo A Maddonni
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - María E Otegui
- CONICET at INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Pergamino, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Producción Vegetal, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Fisiología Vegetal, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
16
|
Balfagón D, Pascual LS, Sengupta S, Halliday KJ, Gómez-Cadenas A, Peláez-Vico MÁ, Sinha R, Mittler R, Zandalinas SI. WRKY48 negatively regulates plant acclimation to a combination of high light and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1642-1655. [PMID: 38315509 DOI: 10.1111/tpj.16658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.
Collapse
Affiliation(s)
- Damián Balfagón
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, 3H9 3BF, UK
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Soham Sengupta
- St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Karen J Halliday
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, 3H9 3BF, UK
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Ranjita Sinha
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| |
Collapse
|
17
|
Zandalinas SI, Peláez-Vico MÁ, Sinha R, Pascual LS, Mittler R. The impact of multifactorial stress combination on plants, crops, and ecosystems: how should we prepare for what comes next? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1800-1814. [PMID: 37996968 DOI: 10.1111/tpj.16557] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, Missouri, 65201, USA
| |
Collapse
|
18
|
Rajapakshe RPVGSW, Tomlinson S, Tudor EP, Turner SR, Elliott CP, Lewandrowski W. Same, same, but different: dissimilarities in the hydrothermal germination performance of range-restricted endemics emerge despite microclimatic similarities. CONSERVATION PHYSIOLOGY 2024; 12:coae009. [PMID: 38487732 PMCID: PMC10939308 DOI: 10.1093/conphys/coae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Seed germination responses for most narrow-range endemic species are poorly understood, imperilling their conservation management in the face of warming and drying terrestrial ecosystems. We quantified the realized microclimatic niches and the hydrothermal germination thresholds in four threatened taxa (Tetratheca erubescens, Tetratheca harperi, Tetratheca paynterae subsp. paynterae and Tetratheca aphylla subsp. aphylla) that are restricted to individual Banded Ironstone Formations in Western Australia. While T. aphylla subsp. aphylla largely failed to germinate in our trials, all other species demonstrated extended hydrothermal time accumulation (186-500°C MPa days), cool minimum temperatures (7.8-8.5°C), but broad base water potential thresholds (-2.46 to -5.41 MPa) under which germination occurred. These slow germination dynamics are suggestive of cool and wet winter months, where soil moisture is retained to a greater capacity in local microsites where these species occur, rather than the warmer and drier conditions in the surrounding arid environment. Hydrothermal time-to-event modelling showed that each species occupied unique hydrothermal germination niches, which correspond with the microclimatic differences the species are exposed to. Our results provide a baseline understanding for environmental and germination thresholds that govern the recruitment, and ultimately the population structure and persistence, of these short-range endemic plants. In addition, our results can aid future conservation, as well as restoration actions such as translocation to bolster population numbers and to mitigate against losses due to anthropogenic disturbance and global environmental change.
Collapse
Affiliation(s)
- Rajapakshe P V G S W Rajapakshe
- ARC Centre for Mine Site Restoration, Curtin University, Bentley, 6102, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
| | - Sean Tomlinson
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, 5000, Australia
| | - Emily P Tudor
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| | - Shane R Turner
- ARC Centre for Mine Site Restoration, Curtin University, Bentley, 6102, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Australia
| | - Carole P Elliott
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
19
|
Jing Z, Liu N, Zhang Z, Hou X. Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:469. [PMID: 38498439 PMCID: PMC10893109 DOI: 10.3390/plants13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
In the context of climate change, the frequency and intensity of extreme weather events are increasing, environmental pollution and global warming are exacerbated by anthropogenic activities, and plants will experience a more complex and variable environment of stress combinations. Research on plant responses to stress combinations is crucial for the development and utilization of climate-adaptive plants. Recently, the concept of stress combinations has been expanded from simple to multifactorial stress combinations (MFSCs). Researchers have realized the complexity and necessity of stress combination research and have extensively employed composite gradient methods, multi-omics techniques, and interdisciplinary approaches to integrate laboratory and field experiments. Researchers have studied the response mechanisms of plant reactive oxygen species (ROS), phytohormones, transcription factors (TFs), and other response mechanisms under stress combinations and reached some generalized conclusions. In this article, we focus on the research progress and methodological dynamics of plant responses to stress combinations and propose key scientific questions that are crucial to address, in the context of plant responses to stress assemblages, conserving biodiversity, and ensuring food security. We can enhance the search for universal pathways, identify targets for stress combinations, explore adaptive genetic responses, and leverage high-technology research. This is in pursuit of cultivating plants with greater tolerance to stress combinations and enabling their adaptation to and mitigation of the impacts of climate change.
Collapse
Affiliation(s)
- Zeyao Jing
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Na Liu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Zongxian Zhang
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Xiangyang Hou
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| |
Collapse
|
20
|
Alrajhi K, Bibi S, Abu-Dieyeh M. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi J Biol Sci 2024; 31:103911. [PMID: 38268781 PMCID: PMC10805673 DOI: 10.1016/j.sjbs.2023.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.
Collapse
Affiliation(s)
- Khazna Alrajhi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
21
|
Segarra-Medina C, Alseekh S, Fernie AR, Rambla JL, Pérez-Clemente RM, Gómez-Cádenas A, Zandalinas SI. Abscisic acid promotes plant acclimation to the combination of salinity and high light stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108008. [PMID: 37690143 DOI: 10.1016/j.plaphy.2023.108008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Plants encounter combinations of different abiotic stresses such as salinity (S) and high light (HL). These environmental conditions have a detrimental effect on plant growth and development, posing a threat to agricultural production. Metabolic changes play a crucial role in enabling plants to adapt to fluctuations in their environment. Furthermore, hormones such as abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) have been previously identified as regulators of plant responses to different abiotic stresses. Here we studied the response of Arabidopsis wild type (Col and Ler) plants and mutants impaired in hormone biosynthesis (aba2-11 and aba1-1 in ABA, aos in JA and sid2 in SA) to the combination of S and HL (S + HL). Our findings showed that aba2-11 plants displayed reduced growth, impaired photosystem II (PSII) function, increased leaf damage, and decreased survival compared to Col when subjected to stress combination. However, aos and sid2 mutants did not display significant changes in response to S + HL compared to Col, indicating a key role for ABA in promoting plant tolerance to S + HL and suggesting a marginal role for JA and SA in this process. In addition, we revealed differences in the metabolic response of plants to S + HL compared to S or HL. The analysis of altered metabolic pathways under S + HL suggested that the accumulation of flavonoids is ABA-dependent, whereas the accumulation of branched-chain amino acids (BCAAs) and proline is ABA-independent. Therefore, our study uncovered a key function for ABA in regulating the accumulation of different flavonoids in plants during S + HL.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - José L Rambla
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Rosa M Pérez-Clemente
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Aurelio Gómez-Cádenas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
22
|
Pascual LS, Mittler R, Sinha R, Peláez-Vico MÁ, López-Climent MF, Vives-Peris V, Gómez-Cadenas A, Zandalinas SI. Jasmonic acid is required for tomato acclimation to multifactorial stress combination. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2023; 213:105425. [PMID: 39239530 PMCID: PMC11376225 DOI: 10.1016/j.envexpbot.2023.105425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
As a result of global warming and climate change, the number and intensity of weather events such as droughts, heat waves, and floods are increasing, resulting in major losses in crop yield worldwide. Combined with the accumulation of different pollutants, this situation is leading to a gradual increase in the complexity of environmental factors affecting plants. We recently used the term 'multifactorial stress combination' (MFSC) to describe the impact of three or more stressors occurring simultaneously or sequentially on plants. Here, we show that a MFSC of six different abiotic stressors (high light, heat, nitrogen deficiency, paraquat, cadmium, and salinity) has a negative impact on the growth, photosystem II function, and photosynthetic activity of mature tomato plants. We further reveal a negative correlation between proline accumulation and the increasing number of stress factors combined, suggesting that proline could have an adverse effect on plants during MFSC. Our findings further indicate that alterations in hormonal levels and stomatal responses are stress/stress combination-dependent, and that a tomato mutant deficient in jasmonic acid accumulation is more sensitive to high light and its combinations with salinity and/or paraquat. Taken together, our study reveals that the effects of MFSC on tomato plants are broad, that photosynthesis and proline accumulation are especially vulnerable to MFSC, and that jasmonic acid is required for tomato acclimation to MFSCs involving high light, salinity and paraquat.
Collapse
Affiliation(s)
- Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri, Columbia, MO 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri, Columbia, MO 65211, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri, Columbia, MO 65211, USA
| | - María F López-Climent
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Vicente Vives-Peris
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| |
Collapse
|
23
|
Heydari M, Cheraghi J, Omidipour R, Rostaminia M, Kooch Y, Valkó O, Carcaillet C. Tree dieback, woody plant diversity, and ecosystem driven by topography in semi-arid mountain forests: Implication for ecosystem management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117892. [PMID: 37075630 DOI: 10.1016/j.jenvman.2023.117892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Mountain landscapes are highly heterogeneous due to topography, notably positions along slope and slope shapes, which control ecosystem mechanisms. We hypothesized that tree dieback is controlled by topography, selecting productive and less diverse communities in lower slopes, and stress-resistant and more diverse communities on upper slopes. Understanding how this heterogeneity drives vegetation patterns should provide benchmarks for ecosystem management of mountain forest dominated by Quercus brantii. Woody communities were sampled along convex vs concave topography (i.e., ridge vs talweg), and with measurements of tree dieback severity, environmental variables (litter depth, soil quality, rock outcrop), stand structure (canopy cover, mistletoe infestation, tree diameter and height, diameter and height differentiations, oaks' number from sprout-clumps or seed-origin), and biodiversity. Slope position was the most significant driver that affected all variables, excepted evenness. Dieback severity was higher on slope shoulders and summits, and lower in lower slopes where trees were the most productive: taller, larger, more homogeneous, and mostly seed-origin. Catena shape affected the diversity and dieback severity, both higher in talwegs, but had no effect on environmental variables and little on stand structure. Outputs indicate that the higher diversity of woody plants is on upper slopes supporting stress-resistant community associated with more severe dieback and mistletoe infection probably because frugivore birds attracted by the shrubs' fruits. Semi-arid forest management must consider the shaped-slope ecosystem heterogeneity by preserving ridges that are more susceptible to tree dieback, and naturally support biodiversity. Restoration measures on lower fertile slopes could be carried out by oak planting or seedlings under the cover of shrubs to counter dieback effects and environmental stresses. In addition, forestry measures can be taken in lower positions for the conversion of coppice to high oak forest to potentially consider a moderate forestry.
Collapse
Affiliation(s)
- Mehdi Heydari
- Department of Forest Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Javad Cheraghi
- Department of Forest Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Reza Omidipour
- Department of Rangeland and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, 8818634141 , Shahrekord, Iran.
| | - Mahmood Rostaminia
- Department of Soil and Water, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Yahya Kooch
- Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, 46417-76489, Noor, Mazandaran, Iran.
| | - Orsolya Valkó
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, 2-4 Alkotmány Str., H-2163, Vácrátót, Hungary.
| | - Christopher Carcaillet
- Ecole Pratique des Hautes Etudes, Paris Sciences & Lettres Université (EPHE-PSL), F-75014, Paris, France; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE (UMR 5023 LEHNA), F-69622, Villeurbanne, France; Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Vennapusa AR, Nimmakayala P, Zaman-Allah MA, Ratnakumar P. Editorial: Physiological, molecular and genetic perspectives of environmental stress response in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1213762. [PMID: 37396640 PMCID: PMC10313185 DOI: 10.3389/fpls.2023.1213762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Padma Nimmakayala
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, Dunbar, WV, United States
| | | | - Pasala Ratnakumar
- Indian Council of Agricultural Research (ICAR) Indian Institute of Oilseeds Research (IIOR), Hyderabad, India
| |
Collapse
|
25
|
Sampedro-Guerrero J, Vives-Peris V, Gomez-Cadenas A, Clausell-Terol C. Efficient strategies for controlled release of nanoencapsulated phytohormones to improve plant stress tolerance. PLANT METHODS 2023; 19:47. [PMID: 37189192 PMCID: PMC10184380 DOI: 10.1186/s13007-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Climate change due to different human activities is causing adverse environmental conditions and uncontrolled extreme weather events. These harsh conditions are directly affecting the crop areas, and consequently, their yield (both in quantity and quality) is often impaired. It is essential to seek new advanced technologies to allow plants to tolerate environmental stresses and maintain their normal growth and development. Treatments performed with exogenous phytohormones stand out because they mitigate the negative effects of stress and promote the growth rate of plants. However, the technical limitations in field application, the putative side effects, and the difficulty in determining the correct dose, limit their widespread use. Nanoencapsulated systems have attracted attention because they allow a controlled delivery of active compounds and for their protection with eco-friendly shell biomaterials. Encapsulation is in continuous evolution due to the development and improvement of new techniques economically affordable and environmentally friendly, as well as new biomaterials with high affinity to carry and coat bioactive compounds. Despite their potential as an efficient alternative to phytohormone treatments, encapsulation systems remain relatively unexplored to date. This review aims to emphasize the potential of phytohormone treatments as a means of enhancing plant stress tolerance, with a specific focus on the benefits that can be gained through the improved exogenous application of these treatments using encapsulation techniques. Moreover, the main encapsulation techniques, shell materials and recent work on plants treated with encapsulated phytohormones have been compiled.
Collapse
Affiliation(s)
- Jimmy Sampedro-Guerrero
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Aurelio Gomez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| | - Carolina Clausell-Terol
- Departamento de Ingeniería Química, Instituto Universitario de Tecnología Cerámica, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
26
|
Pascual LS, López-Climent MF, Segarra-Medina C, Gómez-Cadenas A, Zandalinas SI. Exogenous spermine alleviates the negative effects of combined salinity and paraquat in tomato plants by decreasing stress-induced oxidative damage. FRONTIERS IN PLANT SCIENCE 2023; 14:1193207. [PMID: 37229124 PMCID: PMC10203479 DOI: 10.3389/fpls.2023.1193207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Plants are frequently exposed to different combinations of soil constraints including salinity and different herbicides. These abiotic conditions negatively affect photosynthesis, growth and plant development resulting in limitations in agriculture production. To respond to these conditions, plants accumulate different metabolites that restore cellular homeostasis and are key for stress acclimation processes. In this work, we analyzed the role of exogenous spermine (Spm), a polyamine involved in plant tolerance to abiotic stress, in tomato responses to the combination of salinity (S) and the herbicide paraquat (PQ). Our findings showed that application of Spm reduced leaf damage and enhanced survival, growth, photosystem II function and photosynthetic rate of tomato plants subjected to the combination of S and PQ. In addition, we revealed that exogenous Spm reduced H2O2 and malondialdehyde (MDA) accumulation in plants subjected to S+PQ, suggesting that the role of exogenous Spm in alleviating the negative effects of this stress combination could be attributed to a decrease in stress-induced oxidative damage in tomato plants. Taken together, our results identify a key role for Spm in improving plant tolerance to combined stress.
Collapse
Affiliation(s)
| | | | | | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - Sara I. Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| |
Collapse
|
27
|
New J, Barsky D, Uhde-Stone C. ROS Consumers or Producers? Interpreting Transcriptomic Data by AlphaFold Modeling Provides Insights into Class III Peroxidase Functions in Response to Biotic and Abiotic Stresses. Int J Mol Sci 2023; 24:ijms24098297. [PMID: 37176003 PMCID: PMC10179425 DOI: 10.3390/ijms24098297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Participating in both biotic and abiotic stress responses, plant-specific class III peroxidases (PERs) show promise as candidates for crop improvement. The multigenic PER family is known to take part in diverse functions, such as lignin formation and defense against pathogens. Traditionally linked to hydrogen peroxide (H2O2) consumption, PERs can also produce reactive oxygen species (ROS), essential in tissue development, pathogen defense and stress signaling. The amino acid sequences of both orthologues and paralogues of PERs are highly conserved, but discovering correlations between sequence differences and their functional diversity has proven difficult. By combining meta-analysis of transcriptomic data and sequence alignments, we discovered a correlation between three key amino acid positions and gene expression in response to biotic and abiotic stresses. Phylogenetic analysis revealed evolutionary pressure on these amino acids toward stress responsiveness. Using AlphaFold modeling, we found unique interdomain and protein-heme interactions involving those key amino acids in stress-induced PERs. Plausibly, these structural interactions may act as "gate keepers" by preventing larger substrates from accessing the heme and thereby shifting PER function from consumption to the production of ROS.
Collapse
Affiliation(s)
- James New
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Daniel Barsky
- Department of Physics, California State University, East Bay, Hayward, CA 94542, USA
| | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| |
Collapse
|
28
|
Lastochkina O, Yakupova A, Avtushenko I, Lastochkin A, Yuldashev R. Effect of Seed Priming with Endophytic Bacillus subtilis on Some Physio-Biochemical Parameters of Two Wheat Varieties Exposed to Drought after Selective Herbicide Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:1724. [PMID: 37111947 PMCID: PMC10144775 DOI: 10.3390/plants12081724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Wheat plants are frequently exposed to combined herbicide and drought stress (HDS) which induces complex responses negatively, affects productivity, and is becoming more exacerbated with current climate change. In this work, we studied the influence of seed priming with endophytic bacteria Bacillus subtilis (strains 104 and 26D) on growth and tolerance of two wheat (Triticum aestivum L.) varieties (E70-drought tolerant; SY-drought susceptible) exposed to soil drought after application of selective herbicide Sekator® Turbo in pot experiments under controlled conditions; 17-day-old plants sprayed with herbicide and after 3 days were subjected to soil drought by stopping irrigating the plants for 7 days with subsequent resumption of normal irrigation (recovery). Additionally, the growth of tested strains (104, 26D) in the presence of different concentrations of herbicide Sekator® Turbo and drought (PEG-6000) were evaluated. It was established that both strains are herbicide and drought tolerant and capable to improve seed germination and early seedlings' growth under different herbicide and drought stress degrees. The results of pot experiments showed that HDS exposure declined growth (plant length, biomass), photosynthetic pigments (chlorophyll a and b), leaf area, and increased lipid peroxidation (LPO) and proline accumulation in plants, demonstrating higher damaging effects for SY variety. Strains 104 and 26D mitigated (in different levels) such negative impacts of HDS on growth of both varieties by increasing length of roots and shoots, biomass, photosynthetic pigments (chlorophyll a and b), and leaf area, reducing stress-caused LPO (i.e., malondialdehyde), and regulating proline biosynthesis, as well as contributing to a faster recovery of growth, photosynthetic pigments, and redox-status of plants in post-stress period in comparison with non-primed plants. These ultimately manifested in forming a better grain yield of both varieties primed with 104, 26D, and exposed to HDS. Thus, both strains 104 and 26D (which are herbicide and drought tolerant) may be used as seed priming agents to improve wheat HDS tolerance and grain yield; however, strain 104 more effectively protected plants of E70, while strain 26D-plants of SY. Further research should be focused on understanding the mechanisms that determine the strain and variety-specificity of endophytic symbiosis and the role of bacteria in the modulation of physiological states of primed plants under stress conditions, including HDS.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Albina Yakupova
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Irina Avtushenko
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Artem Lastochkin
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| |
Collapse
|
29
|
Sustek-Sánchez F, Rognli OA, Rostoks N, Sõmera M, Jaškūnė K, Kovi MR, Statkevičiūtė G, Sarmiento C. Improving abiotic stress tolerance of forage grasses - prospects of using genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1127532. [PMID: 36824201 PMCID: PMC9941169 DOI: 10.3389/fpls.2023.1127532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Due to an increase in the consumption of food, feed, and fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to obtain high-yielding crops that can adapt to future climate changes. Currently, the main feed source used for ruminant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for feed are widely distributed and tend to suffer under unfavorable environmental conditions. Genome editing has been shown to be an effective tool for the development of abiotic stress-resistant plants. The highly versatile CRISPR-Cas system enables increasingly complex modifications in genomes while maintaining precision and low off-target frequency mutations. In this review, we provide an overview of forage grass species that have been subjected to genome editing. We offer a perspective view on the generation of plants resilient to abiotic stresses. Due to the broad factors contributing to these stresses the review focuses on drought, salt, heat, and cold stresses. The application of new genomic techniques (e.g., CRISPR-Cas) allows addressing several challenges caused by climate change and abiotic stresses for developing forage grass cultivars with improved adaptation to the future climatic conditions. Genome editing will contribute towards developing safe and sustainable food systems.
Collapse
Affiliation(s)
- Ferenz Sustek-Sánchez
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nils Rostoks
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristina Jaškūnė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Mallikarjuna Rao Kovi
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gražina Statkevičiūtė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|