1
|
Yağır MO, Şen Ş, Şen U. Examination of Various Abutment Designs Behavior Depending on Load Using Finite Element Analysis. Biomimetics (Basel) 2024; 9:498. [PMID: 39194477 DOI: 10.3390/biomimetics9080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Studies on dental implant abutments' geometric design and material selection offer significant innovations and results. These studies aim to improve the abutments' functionality and aesthetic performance, minimize microcavities' formation, and ensure implant-supported prostheses' longevity. For example, CAD-CAM fabricated custom abutments have been found to produce a better marginal fit and fewer microgaps than standard abutments. In an in vitro study, transepithelial abutments offered lower microgap values than titanium-based abutments and provided a better fit at the implant-abutment interface. It is known that studies to improve mechanical and biological performance with Polyether Ether Ketone (PEEK) material have been addressed. New materials such as PEEK and zirconia have offered significant advantages in biocompatibility and aesthetics. Along with those studies, different abutment designs are also important. Abutment geometry is optimized to improve stress distribution and minimize peri-implant bone loss. In implant and abutment connections with different angles, mechanical life performances may vary depending on static and dynamic load. These studies emphasize the importance of material research on different types of connections to improve dental implants' durability, homogeneous load distribution, and reliability. The abutment parts used in implant treatment are insufficient to distribute the load homogeneously against chewing pressure due to their materials and geometry. Non-uniform load distribution damages the abutment and the prosthetic crown, accelerating the wear process. This study aimed to create different abutment designs to improve dental implants' biomechanical performance and longevity. This study aimed to increase the mechanical durability of the implant-abutment connection by reducing stress concentrations in response to masticatory compression on the abutment in different directions and forces and to guarantee the long-term success of the implant system by providing a more homogeneous stress distribution. It aimed to apply different forces in the axial direction to these models in a simulation environment and to calculate and compare the deformation and stress load distribution. As a method, three-dimensional models of the parts used in implant treatments and forming the implant system were designed. Different abutment designs were created with these models. Taking the current material values used in implant treatments as a reference, finite element analysis (FEA) was performed by applying different axial loads to each implant system model in the ANSYS software (version 24.1). Comparative analysis graphs were prepared and interpreted for the stress values obtained after the applied load. This study evaluated the mechanical performance of different abutment models (A, B, C, D, and E) under a 100 N load using the Kruskal-Wallis test. The Kruskal-Wallis test showed significant differences between the groups (p < 0.001). The greatest difference was observed between models E and A (q' = 6.215), with a significant difference also found between models C and A (q' = 3.219, p < 0.005). Regarding stress values, the highest stress on the abutment was observed in Model B (97.4 MPa), while the lowest stress was observed in Model E (9.6 MPa). The crown exhibited the highest stress in Model B (22.7 MPa) and the lowest in Model E (17.3 MPa). The implant stress was highest in Model C (14.8 MPa) and lowest in Model B (11.3 MPa). The stress values for the cortical bone and cancellous bone were quite similar across the models, showing no significant differences. These findings indicate that the abutment design and material selection significantly impact mechanical performance. Among the implant systems created with five different abutment models, in which the existing abutment geometry was also compared, homogeneous and axial distribution of the load on the abutment was achieved, especially with viscoelastic and surface area increased abutment designs. Clinically, the inadequacy and limited mounting surface or geometry of the abutments used in today's implant treatment applications have led to different design searches. It was concluded that the designs in this study, which are considered alternatives to existing abutment models, contribute positively to the mechanical life of the abutment material, considering the von Mises stresses and directions. This study brings a new perspective to today's practices and offers an alternative to treatment practices.
Collapse
Affiliation(s)
- Mehmet Onur Yağır
- Electronics and Automation Program, Adapazarı Vocational School, Sakarya University, 54050 Sakarya, Turkey
- Dental Implant Design and Application Lab, Sakarya University, 54050 Sakarya, Turkey
| | - Şaduman Şen
- Metallurgical Materials Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Turkey
| | - Uğur Şen
- Metallurgical Materials Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Turkey
| |
Collapse
|
2
|
Szabó ÁL, Matusovits D, Slyteen H, Lakatos ÉI, Baráth Z. Biomechanical Effects of Different Load Cases with an Implant-Supported Full Bridge on Four Implants in an Edentulous Mandible: A Three-Dimensional Finite Element Analysis (3D-FEA). Dent J (Basel) 2023; 11:261. [PMID: 37999025 PMCID: PMC10670282 DOI: 10.3390/dj11110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The long-term success and predictability of implant-supported restorations largely depends on the biomechanical forces (stresses) acting on implants and the surrounding alveolar bone in the mandible. The aim of our study was to investigate the biomechanical behavior of an edentulous mandible with an implant-supported full bridge on four implants under simulated masticatory forces, in the context of different loading schemes, using a three-dimensional finite element analysis (3D-FEA). A patient-specific 3D finite element model was constructed using pre- and post-implantation computer tomography (CT) images of a patient undergoing implant treatment. Simplified masticatory forces set at 300 N were exerted vertically on the denture in four different simulated load cases (LC1-LC4). Two sets of simulations for different implants and denture materials (S1: titanium and titanium; S2: titanium and cobalt-chromium, respectively) were made. Stress outputs were taken as maximum (Pmax) and minimum principal stress (Pmin) and equivalent stress (Peqv) values. The highest peak Pmax values were observed for LC2 (where the modelled masticatory force excluded the cantilevers of the denture extending behind the terminal implants), both regarding the cortical bone (S1 Pmax: 89.57 MPa, S2 Pmax: 102.98 MPa) and trabecular bone (S1 Pmax: 3.03 MPa, S2 Pmax: 2.62 MPa). Overall, LC1-where masticatory forces covered the entire mesio-distal surface of the denture, including the cantilever-was the most advantageous. Peak Pmax values in the cortical bone and the trabecular bone were 14.97-15.87% and 87.96-94.54% higher in the case of S2, respectively. To ensure the long-term maintenance and longevity of treatment for implant-supported restorations in the mandible, efforts to establish the stresses of the surrounding bone in the physiological range, with the most even stress distribution possible, have paramount importance.
Collapse
Affiliation(s)
- Árpád László Szabó
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720 Szeged, Hungary; (Á.L.S.); (D.M.)
| | - Danica Matusovits
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720 Szeged, Hungary; (Á.L.S.); (D.M.)
| | - Haydar Slyteen
- Department of Structural Mechanics, Faculty of Civil Engineering, University of Technology and Economics, Budapest, Műegyetem rkp. 3., 1111 Budapest, Hungary; (H.S.); (É.I.L.)
| | - Éva Ilona Lakatos
- Department of Structural Mechanics, Faculty of Civil Engineering, University of Technology and Economics, Budapest, Műegyetem rkp. 3., 1111 Budapest, Hungary; (H.S.); (É.I.L.)
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6720 Szeged, Hungary; (Á.L.S.); (D.M.)
| |
Collapse
|
3
|
Elleuch S, Jrad H, Wali M, Dammak F. Mandibular bone remodeling around osseointegrated functionally graded biomaterial implant using three dimensional finite element model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3750. [PMID: 37403568 DOI: 10.1002/cnm.3750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/12/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023]
Abstract
Dental implantation surgery has been progressed as one of the most efficient prosthetic technologies, however, it still fails very often and one of the main causes is the large difference between implant mechanical properties and those in welcoming bony tissues, making it problematical in osseointegration and bone remodeling. Biomaterial and tissue engineering research shows that there is a requirement in developing implants with Functionally Graded Materials (FGM). Indeed, the great potential of FGM lies not only in the field of bone tissue engineering but also in dentistry. To improve the acceptance of dental implants inside the living bone, FGM were proposed to step up the challenge of ensuring a better match of mechanical properties between biologically and mechanically compatible biomaterials. The aim of the present work is to investigate mandibular bone remodeling induced by FGM dental implant. Three-dimensional (3D) mandibular bone structure around an osseointegrated dental implant has been created to analyze the biomechanical behavior of the bone-implant system depending on implant material composition. In order to implement the numerical algorithm into ABAQUS software, UMAT subroutines and user-defined material were employed. Finite element analysis have been conducted to determine the stress distributions in implant and bony system, and to evaluate bone remodeling induced by the use of various FGM and pure titanium dental implants over the period of 48 months.
Collapse
Affiliation(s)
- Sameh Elleuch
- Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, ENIS, Sfax, University of Sfax, Sfax, Tunisia
| | - Hanen Jrad
- Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, ENIS, Sfax, University of Sfax, Sfax, Tunisia
- École supérieure des sciences et de la technologie de Hammam Sousse, University of Sousse, Hammam Sousse, Tunisia
| | - Mondher Wali
- Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, ENIS, Sfax, University of Sfax, Sfax, Tunisia
| | - Fakhreddine Dammak
- Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, ENIS, Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Zhang C, Zeng C, Wang Z, Zeng T, Wang Y. Optimization of stress distribution of bone-implant interface (BII). BIOMATERIALS ADVANCES 2023; 147:213342. [PMID: 36841109 DOI: 10.1016/j.bioadv.2023.213342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Many studies have found that the threshold of occlusal force tolerated by titanium-based implants is significantly lower than that of natural teeth due to differences in biomechanical mechanisms. Therefore, implants are considered to be susceptible to occlusal trauma. In clinical practice, many implants have shown satisfactory biocompatibility, but the balance between biomechanics and biofunction remains a huge clinical challenge. This paper comprehensively analyzes and summarizes various stress distribution optimization methods to explore strategies for improving the resistance of the implants to adverse stress. Improving stress resistance reduces occlusal trauma and shortens the gap between implants and natural teeth in occlusal function. The study found that: 1) specific implant-abutment connection design can change the force transfer efficiency and force conduction direction of the load at the BII; 2) reasonable implant surface structure and morphological character design can promote osseointegration, maintain alveolar bone height, and reduce the maximum effective stress at the BII; and 3) the elastic modulus of implants matched to surrounding bone tissue can reduce the stress shielding, resulting in a more uniform stress distribution at the BII. This study concluded that the core BII stress distribution optimization lies in increasing the stress distribution area and reducing the local stress peak value at the BII. This improves the biomechanical adaptability of the implants, increasing their long-term survival rate.
Collapse
Affiliation(s)
- Chunyu Zhang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China.
| | - Chunyu Zeng
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Zhefu Wang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Ting Zeng
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
TiO 2/HA and Titanate/HA Double-Layer Coatings on Ti6Al4V Surface and Their Influence on In Vitro Cell Growth and Osteogenic Potential. J Funct Biomater 2022; 13:jfb13040271. [PMID: 36547531 PMCID: PMC9787412 DOI: 10.3390/jfb13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.
Collapse
|
6
|
Zhong J, Shibata Y. The structural motifs of mineralized hard tissues from nano- to mesoscale: A future perspective for material science. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:348-356. [DOI: 10.1016/j.jdsr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
|
7
|
Ehlert M, Radtke A, Bartmański M, Piszczek P. Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6925. [PMID: 36234265 PMCID: PMC9572782 DOI: 10.3390/ma15196925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are discussed. Despite excellent biocompatibility with natural bone tissue of materials based on hydroxyapatite (HA), their poor adhesion to the substrate caused the limited use in the implants' construction. In our works, we have focused on the comparison of the structure, physicochemical, and mechanical properties of coating systems produced at different conditions. For this purpose, scanning electron microscopy images, chemical composition, X-ray diffraction patterns, infrared spectroscopy, wettability, and mechanical properties are analyzed. Our investigations proved that the intermediate titanium oxide coatings presence significantly increases the adhesion between the hydroxyapatite layer and the Ti6Al4V substrate, thus solving the temporary delamination problems of the HA layer.
Collapse
Affiliation(s)
- Michalina Ehlert
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| | - Michał Bartmański
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| |
Collapse
|
8
|
Yamaguchi D, Takeuchi K, Ueno A, Yamaguchi M, Murakami H, Kimoto S. Gene Expression in Early Stages of Low-Intensity Pulsed Ultrasound Exposure on Bone Marrow Cells. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daisuke Yamaguchi
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| | - Kazuo Takeuchi
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| | - Atsuko Ueno
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| | | | - Hiroshi Murakami
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| | - Suguru Kimoto
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
9
|
Furumori T, Ueda M, Honda Y, Hashimoto Y, Tanioka T, Kusano K, Baba S. The Effect of Different Surgical Instruments for Bone Regeneration under the Surgery of Bone Defect on Rat Calvaria. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Mamoru Ueda
- Department of Biomaterials, Osaka Dental University
| | | | | | | | - Kaoru Kusano
- Department of Oral Implantology, Osaka Dental University
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University
| |
Collapse
|
10
|
Mathew A, Abraham S, Stephen S, Babu AS, Gowd SG, Vinod V, Biswas R, Nair MB, Unni AKK, Menon D. Superhydrophilic multifunctional nanotextured titanium dental implants: in vivo short and long-term response in a porcine model. Biomater Sci 2021; 10:728-743. [PMID: 34935788 DOI: 10.1039/d1bm01223a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current clinical demand in dental implantology is for a multifunctional device with optimum mechanical properties, improved biocompatibility and bioactivity, and having differential interactions with cells and pathogenic agents. This would minimise bacterial infection, biofilm formation and modulate inflammation, leading to a fast and durable osseointegration. The present study intends to establish the multifunctional behaviour of surface modified titanium dental implants that are superhydrophilic, with unique micro-nano or nanoscale topographies, developed by a facile hydrothermal technique. Here, the short and long-term performances of these textured implants are tested in a split mouth design using a porcine model, in pre- and post-loaded states. Quantitative and qualitative analyses of the bone implant interphase are performed through μ-CT and histology. Parameters that evaluate bone mineral density, bone contact volume and bone implant contact reveal enhanced bone apposition with better long-term response for the nano and micro-nano textured surfaces, compared to the commercial microtextured implant. Concurrently, the nanoscale surface features on implants reduced bacterial attachment by nearly 90% in vivo, outperforming the commercial variant. This preclinical evaluation data thus reveal the superiority of nano/micro-nano textured designs for clinical application and substantiate their improved osseointegration and reduced bacterial adhesion, thus proposing a novel dental implant with multifunctional characteristics.
Collapse
Affiliation(s)
- Anil Mathew
- Amrita School of Dentistry, Kochi, Kerala, India
| | | | - Shamilin Stephen
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | | | - Siddaramana G Gowd
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - Vivek Vinod
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - Raja Biswas
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - Manitha B Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - A K K Unni
- Central Animal Facility, Amrita Vishwa Vidyapeetham, Ponekkara P. O., Cochin 682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| |
Collapse
|
11
|
Xie J, Rittel D, Shemtov-Yona K, Shah FA, Palmquist A. A stochastic micro to macro mechanical model for the evolution of bone-implant interface stiffness. Acta Biomater 2021; 131:415-423. [PMID: 34129958 DOI: 10.1016/j.actbio.2021.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Upon placement of an implant into living bone, an interface is formed through which various biochemical, biological, physical, and mechanical interactions take place. This interface evolves over time as the mechanical properties of peri-implant bone increase. Owing to the multifactorial nature of interfacial processes, it is challenging to devise a comprehensive model for predicting the mechanical behavior of the bone-implant interface. We propose a simple spatio-temporally evolving mechanical model - from an elementary unit cell comprising randomly oriented mineralized collagen fibrils having randomly assigned stiffness all the way up to a macroscopic bone-implant interface in a gap healing scenario. Each unit cell has an assigned Young's modulus value between 1.62 GPa and 25.73 GPa corresponding to minimum (i.e., 0) and maximum (i.e., 0.4) limits of mineral volume fraction, respectively, in the overlap region of the mineralized collagen fibril. Gap closure and subsequent stiffening are modeled to reflect the two main directions of peri-implant bone formation, i.e., contact osteogenesis and distance osteogenesis. The linear elastic stochastic finite element model reveals highly nonlinear temporal evolution of bone-implant interface stiffness, strongly dictated by the specific kinetics of contact osteogenesis and distance osteogenesis. The bone-implant interface possesses a small stiffness until gap closure, which subsequently evolves into a much higher stiffness, and this transition is reminiscent of a percolation transition whose threshold corresponds to gap closure. The model presented here, albeit preliminary, can be incorporated into future calculations of the bone-implant system where the interface is well-defined mechanically. STATEMENT OF SIGNIFICANCE: A simple, physically informed model for the mechanical characteristics of the bone-implant interface is still missing. Here, we start by extending the reported mechanical characteristics of a one cubic micrometre unit cell to a 250 µm long interface made of 1 µm thick layers. The stiffness of each cell (based on mineral content) is assigned randomly to mimic bone micro-heterogeneity. The numerical study of this interface representative structure allows for the simultaneous determination of the spatio-temporal evolution of the mechanical response at local (discrete element) and global (overall model) scales. The proposed model is the first of this kind that can easily be incorporated into realistic future models of bone-implant interaction with emphasis on implant stability and different loading conditions.
Collapse
|
12
|
Gasik M, Lambert F, Bacevic M. Biomechanical Properties of Bone and Mucosa for Design and Application of Dental Implants. MATERIALS 2021; 14:ma14112845. [PMID: 34073388 PMCID: PMC8199480 DOI: 10.3390/ma14112845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Dental implants’ success comprises their proper stability and adherence to different oral tissues (integration). The implant is exposed to different mechanical stresses from swallowing, mastication and parafunctions for a normal tooth, leading to the simultaneous mechanical movement and deformation of the whole structure. The knowledge of the mechanical properties of the bone and gingival tissues in normal and pathological conditions is very important for the successful conception of dental implants and for clinical practice to access and prevent potential failures and complications originating from incorrect mechanical factors’ combinations. The challenge is that many reported biomechanical properties of these tissues are substantially scattered. This study carries out a critical analysis of known data on mechanical properties of bone and oral soft tissues, suggests more convenient computation methods incorporating invariant parameters and non-linearity with tissues anisotropy, and applies a consistent use of these properties for in silico design and the application of dental implants. Results show the advantages of this approach in analysis and visualization of stress and strain components with potential translation to dental implantology.
Collapse
Affiliation(s)
- Michael Gasik
- School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland
- Correspondence:
| | - France Lambert
- Dental Biomaterials Research Unit, University of Liege, 4000 Liège, Belgium; (F.L.); (M.B.)
| | - Miljana Bacevic
- Dental Biomaterials Research Unit, University of Liege, 4000 Liège, Belgium; (F.L.); (M.B.)
| |
Collapse
|
13
|
Marcián P, Borák L, Zikmund T, Horáčková L, Kaiser J, Joukal M, Wolff J. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems. J Mech Behav Biomed Mater 2021; 117:104393. [PMID: 33647729 DOI: 10.1016/j.jmbbm.2021.104393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Patient-specific approach is gaining a wide popularity in computational simulations of biomechanical systems. Simulations (most often based on the finite element method) are to date routinely created using data from imaging devices such as computed tomography which makes the models seemingly very complex and sophisticated. However, using a computed tomography in finite element calculations does not necessarily enhance the quality or even credibility of the models as these depend on the quality of the input images. Low-resolution (medical-)CT datasets do not always offer detailed representation of trabecular bone in FE models and thus might lead to incorrect calculation of mechanical response to external loading. The effect of image resolution on mechanical simulations of bone-implant interaction has not been thoroughly studied yet. In this study, the effect of image resolution on the modeling procedure and resulting mechanical strains in bone was analyzed on the example of cranial implant. For this purpose, several finite element models of bone interacting with fixation-screws were generated using seven computed tomography datasets of a bone specimen but with different image resolutions (ranging from micro-CT resolution of 25 μm to medical-CT resolution of 1250 μm). The comparative analysis revealed that FE models created from images of low resolution (obtained from medical computed tomography) can produce biased results. There are two main reasons: 1. Medical computed tomography images do not allow generating models with complex trabecular architecture which leads to substituting of the intertrabecular pores with a fictitious mass; 2. Image gray value distribution can be distorted resulting in incorrect mechanical properties of the bone and thus in unrealistic or even completely fictitious mechanical strains. The biased results of calculated mechanical strains can lead to incorrect conclusion, especially when bone-implant interaction is investigated. The image resolution was observed not to significantly affect stresses in the fixation screw itself; however, selection of bone material representation might result in significantly different stresses in the screw.
Collapse
Affiliation(s)
- Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Libor Borák
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
| | - Tomáš Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Ladislava Horáčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Wolff
- Department of Oral and Maxillofacial Surgery, Division for Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT, Hamburg, Germany
| |
Collapse
|
14
|
Mechanical Properties and Corrosion Resistance of Magnesium–Hydroxyapatite Composites Fabricated by Spark Plasma Sintering. METALS 2020. [DOI: 10.3390/met10101314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent studies indicate that biodegradable magnesium alloys and composites are attracting a great deal of attention in orthopedic applications. In this study, magnesium–hydroxyapatite (Mg–HAP) composites with different compositions and grain size were fabricated by a spark plasma sintering (SPS) method. Their mechanical properties and corrosion behavior in a pseudo-physiological environment were investigated by pH measurements and inductivity coupled plasma (ICP) elemental analysis after an immersion test using Hanks’ solution. The results clearly showed that the addition of HAP improved both the mechanical properties and corrosion resistance. The results also indicated that the finer grain size improved most of the properties that are needed in a material for an orthopedic implant. Furthermore, the authors reveal that there is a strong correlation between the compressive strength and the porosity. In order to achieve the same compressive strength as human bone using these fabrication conditions, it is revealed that the porosity should be lower than 1.9%.
Collapse
|
15
|
Miszuk JM, Hu J, Sun H. Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:6538-6545. [PMID: 33163910 DOI: 10.1021/acsabm.0c00946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repair of large bone defects using biomaterials-based strategies has been a significant challenge due to the complex characteristics required for tissue regeneration, especially in the craniofacial region. Tissue engineering strategies aimed at restoration of function face challenges in material selection, synthesis technique, and choice of bioactive factor release in combination with all aforementioned facets. Biomimetic nanofibrous (NF) scaffolds are attractive vehicles for tissue engineering due to their ability to promote endogenous bone regeneration by mimicking the shape and chemistry of natural bone extracellular matrix (ECM). To date, several techniques for generation of biomimetic NF scaffolds have been discovered, each possessing several advantages and drawbacks. This spotlight highlights two of the more popular techniques for biomimetic NF scaffold synthesis: electrospinning and thermally-induced phase separation (TIPS), covering development from inception in each technique as well as discussing the most recent innovations in each fabrication method.
Collapse
Affiliation(s)
- Jacob M Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.,Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Effect of Different Implant Designs on Strain and Stress Distribution under Non-Axial Loading: A Three-Dimensional Finite Element Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134738. [PMID: 32630294 PMCID: PMC7370002 DOI: 10.3390/ijerph17134738] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/20/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
Implant design evolved alongside the development of implant therapy. The purpose of this finite element analysis (FEA) study was to analyze the influence of different implant designs on the stress and strain distribution to the implants and surrounding bone. Three implant designs with the same length and diameter were used. The three-dimensional geometry of the bone was simulated with a cortical bone of three different thicknesses and two medullar bone densities: low density (150 Hounsfield units) and high density (850 Hounsfield units). A 30° oblique load of 150 N was applied to the implant restoration. Displacement and stress (von Mises) results were obtained for bone and dental implants. The strain and stress distributions to the bone were higher for the tissue-level implant for all types of bone. The maximum principal strain and stress decreased with an increase in cortical bone thickness for both cancellous bone densities. The distribution of the load was concentrated at the coronal portion of the bone and implants. All implants showed a good distribution of forces for non-axial loads, with higher forces concentrated at the crestal region of the bone–implant interface. Decrease in medullar bone density negatively affects the strain and stress produced by the implants.
Collapse
|
17
|
Zhao B, Li X, Xu H, Jiang Y, Wang D, Liu R. Influence of Simvastatin-Strontium-Hydroxyapatite Coated Implant Formed by Micro-Arc Oxidation and Immersion Method on Osteointegration in Osteoporotic Rabbits. Int J Nanomedicine 2020; 15:1797-1807. [PMID: 32214812 PMCID: PMC7083628 DOI: 10.2147/ijn.s244815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Enhancing osteointegration of implants in osteoporosis patients is a necessity since implantations frequently fail in these patients. The aim of this work is to study how simvastatin-strontium-hydroxyapatite coated implants perform in rabbits with osteoporosis. Materials and Methods Crystalline HA and Sr-HA oxide film were prepared through micro-arc oxidation. Surface characterization including morphology, roughness, element composition, phase composition, hydrophilicity were then evaluated. Simvastatin loaded on porous films through immersion, and the effects of coatings on osteointegration in osteoporotic rabbits were investigated. All samples were obtained after 4, 8 and 12 weeks of healing. Some of them were subjected to biomechanical tests and others were subjected to histological and histomorphometric analysis. Results Coatings exhibited a microporous network structure with appropriate roughness and high hydrophilicity. Compared to control HA and machined surface implants, simvastatin-Sr-HA coated implants exhibited marked improvements in osteointegration, which is characterized by a quicker mineralization deposition rate, good bone formation mode (large amount of contact osteogenesis and a small amount of distance osteogenesis) and increased bone-to-implant contact and pull-out strength. Conclusion These biological parameters demonstrate the excellent osteoconductivity of simvastatin-Sr-HA coatings in the osteoporotic state. Overall, this suggests that simvastatin-Sr-HA coatings would be applicable in poor-quality bones of patients experiencing osteoporosis.
Collapse
Affiliation(s)
- Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, People's Republic of China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266001, People's Republic of China
| | - Xin Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, People's Republic of China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266001, People's Republic of China
| | - Hao Xu
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, People's Republic of China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266001, People's Republic of China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, People's Republic of China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266001, People's Republic of China
| | - Dashan Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, People's Republic of China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266001, People's Republic of China
| | - Ran Liu
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266001, People's Republic of China.,School of Stomatology, Qingdao University, Qingdao, Shandong 266001, People's Republic of China
| |
Collapse
|
18
|
Effects of material and coefficient of friction on taper joint dental implants. J Prosthodont Res 2020; 64:359-367. [PMID: 32063535 DOI: 10.1016/j.jpor.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE The aim of this study was: (1) to compare the coefficients of friction between commercially pure titanium (cpTi), titanium (Ti) alloy, and yttria-stabilized zirconia (YSZ) and: (2) to investigate the dynamic behavior of an implant system before, during, and after loading, by transient dynamic three-dimensional finite element analysis (FEA). METHODS Coefficients of friction were measured by a ball-on-disk frictional wear testing device. The preload in the screw shaft was calculated from geometric parameters. Two abutment model designs were created, namely a Ti alloy abutment model with a porcelain-fused-to-metal super structure and a YSZ abutment model with a porcelain-fused-to-zirconia super structure. Transient dynamic three-dimensional FEA was performed on ANSYS Workbench Ver. 15.0. RESULTS The coefficients of friction of YSZ/cpTi, YSZ/Ti alloy, Ti alloy/cpTi, and Ti alloy/Ti alloy were 0.4417, 0.3455, 0.3952, and 0.3489, respectively. The preload generated in the abutment screw of the FEA model was set to be 158 N. Significantly differences were not found in the maximum von Mises equivalent stress between the Ti alloy and YSZ abutment models before, during, and after loading. CONCLUSION The findings indicate differences in the coefficients of friction of cpTi, Ti alloy, and YSZ before, during, and after loading. Fractures caused by stress did not depend on the use of different materials (Ti alloy and YSZ) at the abutment.
Collapse
|
19
|
The Potential of a Nanostructured Titanium Oxide Layer with Self-Assembled Monolayers for Biomedical Applications: Surface Properties and Biomechanical Behaviors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the surface properties and biomechanical behaviors of a nanostructured titanium oxide (TiO) layer with different self-assembled monolayers (SAMs) of phosphonate on the surface of microscope slides. The surface properties of SAMs were analyzed using scanning electron microscopy, X-ray photoemission spectroscopy, and contact angle goniometry. Biomechanical behaviors were evaluated using nanoindentation with a diamond Berkovich indenter. Analytical results indicated that the homogenous nanostructured TiO surface was formed on the substrate surface after the plasma oxidation treatment. As the TiO surface was immersed with 11-phosphonoundecanoic acid solution (PUA-SAM/TiO), the formation of a uniform SAM can be observed on the sample surface. Moreover, the binding energy of O 1s demonstrated the presence of the bisphosphonate monolayer on the SAMs-coated samples. It was also found that the PUA-SAM/TiO sample not only possessed a higher wettability performance, but also exhibited low surface contact stiffness. A SAM surface with a high wettability and low contact stiffness could potentially promote biocompatibility and prevent the formation of a stress shielding effect. Therefore, the self-assembled technology is a promising approach that can be applied to the surface modification of biomedical implants for facilitating bone healing and osseointegration.
Collapse
|
20
|
Delgado-Ruiz RA, Calvo-Guirado JL, Romanos GE. Effects of occlusal forces on the peri-implant-bone interface stability. Periodontol 2000 2019; 81:179-193. [PMID: 31407438 DOI: 10.1111/prd.12291] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The occlusal forces and their influence on the initiation of peri-implant bone loss or their relationship with peri-implantitis have created discussion during the past 30 years given the discrepancies observed in clinical, animal, and finite element analysis studies. Beyond these contradictions, in the case of an osseointegrated implant, the occlusal forces can influence the implant-bone interface and the cells responsible for the bone remodeling in different ways that may result in the maintenance or loss of the osseointegration. This comprehensive review focuses on the information available about the forces transmitted through the implant-crown system to the implant-bone interface and the mechano-transduction phenomena responsible for the bone cells' behavior and their interactions. Knowledge of the basic molecular biology of the peri-implant bone would help clinicians to understand the complex phenomenon of occlusal forces and their effects on the implant-bone interface, and would allow better control of the negative effects of mechanical stresses, leading to therapy with fewer risks and complications.
Collapse
Affiliation(s)
- Rafael Arcesio Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jose Luis Calvo-Guirado
- International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Catolica San Antonio De Murcia (UCAM), Murcia, Spain
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA.,Department of Oral Surgery and Implant Dentistry, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Kawamura M, Masaki C, Shibata Y, Kondo Y, Mukaibo T, Miyazaki T, Hosokawa R. Pentosidine correlates with nanomechanical properties of human jaw bone. J Mech Behav Biomed Mater 2019; 98:20-25. [PMID: 31176091 DOI: 10.1016/j.jmbbm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
Initial intimate apposition between implant fixtures and host bone at the surgical site is a critical factor for osseointegration of dental implants. The advanced glycation end products accumulated in the jaw bone could lead to potential failure of a dental implant during the initial integration stage, because of the inferior bone mechanical property associated with the abnormal collagen cross-linking at the material level. Here, we demonstrate the lowered creep deformation resistance and reduced dimensional recovery of jaw bone in line with high levels of pentosidine accumulation in the bone matrix which likely correlate with the pentosidine level in blood plasma. Peripheral blood samples and cortical bone samples at the surgical site were obtained from patients scheduled for dental implants in the mandible. The pentosidine levels in blood plasma were assessed. Subsequently, the relative pentosidine levels and the mechanical properties of the jaw bone were quantified by Raman microspectroscopy and nanoindentation, respectively. The nanoindentation tests revealed less creep deformation resistance and reduced time-dependent dimensional recovery of bone samples with the increase in the relative pentosidine level in the bone matrix. Higher tan δ values at the various frequencies during the dynamic indentation tests also suggested that viscoelasticity is associated with the relative intensity of pentosidine in the jaw bone matrix. We found a positive correlation between the pentosidine levels in blood plasma and the bone matrix, which in turn reduced the mechanical property of the jaw bone at the material level. Increased creep and reduced dimensional recovery of the jaw bone may diminish the mechanical interlocking of dental implants during the initial integration stage. Given the likely correlation between the plasma pentosidine level and the mechanical properties of bone, measurement of the plasma pentosidine level could serve as a new index to assess jaw bone matrix quality in advance of implant surgery.
Collapse
Affiliation(s)
- Michihiko Kawamura
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Takashi Miyazaki
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
22
|
Manea A, Bran S, Baciut M, Armencea G, Pop D, Berce P, Vodnar DC, Hedesiu M, Dinu C, Petrutiu A, Tomina D, Baciut G. Sterilization protocol for porous dental implants made by Selective Laser Melting. CLUJUL MEDICAL (1957) 2018; 91:452-457. [PMID: 30564023 PMCID: PMC6296721 DOI: 10.15386/cjmed-987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Although dental implants are widely and successfully used, failure rates because of bacterial colonization are still high. Adequate fabrication and sterilization techniques as well as proper management of infectious complications represent a constant field of interest and research. In this study, we focused our attention on implants with controlled porosity produced by Selective Laser Melting (SLM). The difficulty to sterilize porous implantable devices is well known and finding an adequate sterilization protocol represents a challenge worldwide. Before testing the biological and mechanical properties of porous implants, a preliminary study in order to determine a correct sterilization protocol must be conducted.Our aim was to establish a valid sterilization protocol for porous titanium alloy dental implants, as such protocols are not officially available yet. METHODS Twenty dental implants were fabricated from a titanium alloy by SLM. Ten of them were made using a 150W laser beam (porosity of 1% - group A) and the rest using a 75W laser beam (porosity of 23% - Group B), all of them with a non-defined internal structure. The implants were initially sterilized (5 from group A and 5 from group B, using dry heat - 180°C for 2 hours; the rest using steam sterilization - 121 °C for15 min) and then spent 18 hours in culture media with developing bacteria (Bacillus cereus (ATCC 11778), Staphylococcus aureus (ATCC 49444), Enterococcus faecalis (ATCC 29212), Listeria monocytogenes (ATCC 19114), three Gram negative bacteria: Escherichia coli (ATCC 25922), Salmonella typhimurium (ATCC 14028) and Pseudomonas aeruginosa (ATCC 27853). The first ten implants (5 from group A and 5 from group B) were then sterilized with dry heat and the others with steam. After sterilization, they were all placed in sterile culture media in order to observe if any bacterial growth were present. RESULTS The culture media was observed 18 hours after the sterilized implants were placed inside. No bacterial growth was observed. CONCLUSIONS Our tests reached their aims of defining a protocol to sterilize porous implants. Future tests regarding biological and mechanical aspects of these implants may now follow.
Collapse
Affiliation(s)
- Avram Manea
- Department I - Maxillo-Facial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department III - Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department III - Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department I - Maxillo-Facial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dumitru Pop
- Department of Mechanical Systems Engineering, Technical University of Cluj-Napoca, Romania
| | - Petru Berce
- Department of Engineering Fabrication, Technical University of Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department I - Maxillo-Facial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department I - Maxillo-Facial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Petrutiu
- Department III - Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Darius Tomina
- Department III - Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department I - Maxillo-Facial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Wang J, Meng F, Song W, Jin J, Ma Q, Fei D, Fang L, Chen L, Wang Q, Zhang Y. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. Int J Nanomedicine 2018; 13:4029-4043. [PMID: 30022825 PMCID: PMC6045901 DOI: 10.2147/ijn.s163956] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction Fabricating nanostructured surface topography represents the mainstream approach to induce osteogenesis for the next-generation bone implant. In the past, the bone implant was designed to minimize host repulsive reactions in order to acquire biocompatibility. However, increasing reports indicate that the absence of an appropriate immune response cannot acquire adequate osseointegration after implantation in vivo. Materials and methods We prepared different topographies on the surface of titanium (Ti) specimens by grinding, etching and anodizing, and they were marked as polished specimen (P), specimen with nanotubes (NTs) in small diameters (NT-30) and specimen with NTs in large diameters (NT-100). We evaluated the ability of different topographies of the specimen to induce osteogenic differentiation of mice bone marrow mesenchymal stem cells (BMSCs) in vitro and to induce osseointegration in vivo. Furthermore, we investigated the effect of different topographies on the polarization and secretion of macrophages, and the effect of macrophage polarization on topography-induced osteogenic differentiation of mice BMSCs. Finally, we verified the effect of macrophage polarization on topography-induced osseointegration in vivo by using Cre*RBP-Jfl/fl mice in which classically activated macrophage was restrained. Results The osteogenic differentiation of mice BMSCs induced by specimen with different topographies was NT-100>NT-30>P, while the osseointegration induced by specimen with different topographies in vivo was NT-30>NT-100>P. In addition, specimen of NT-30 could induce more macrophages to M2 polarization, while specimen of P and NT-100 could induce more macrophages to M1 polarization. When co-culture mice BMSCs and macrophages on specimen with different topographies, the osteogenic differentiation of mice BMSCs was NT-30>NT-100≥P. The osseointegration induced by NT-100 in Cre*RBP-Jfl/fl mice was much better than that of wild type mice. Conclusion It is suggested that the intrinsic immunomodulatory effects of nanomaterials are not only crucial to evaluate the in vivo biocompatibility but also required to determine the final osseointegration. To clarify the immune response and osseointegration may be beneficial for the designation and optimization of the bone implant.
Collapse
Affiliation(s)
- Jinjin Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shannxi Province, China, .,Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Fanhui Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shannxi Province, China,
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shannxi Province, China,
| | - Jingyi Jin
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Qianli Ma
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Dongdong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shannxi Province, China,
| | - Liang Fang
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shannxi Province, China,
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shannxi Province, China,
| |
Collapse
|
24
|
Marcián P, Wolff J, Horáčková L, Kaiser J, Zikmund T, Borák L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med 2018; 96:157-165. [PMID: 29587150 DOI: 10.1016/j.compbiomed.2018.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 11/29/2022]
Abstract
Osseointegration is paramount for the longevity of dental implants and is significantly influenced by biomechanical stimuli. The aim of the present study was to assess the micro-strain and displacement induced by loaded dental implants at different stages of osseointegration using finite element analysis (FEA). Computational models of two mandible segments with different trabecular densities were constructed using microCT data. Three different implant loading directions and two osseointegration stages were considered in the stress-strain analysis of the bone-implant assembly. The bony segments were analyzed using two approaches. The first approach was based on Mechanostat strain intervals and the second approach was based on tensile/compression yield strains. The results of this study revealed that bone surrounding dental implants is critically strained in cases when only a partial osseointegration is present and when an implant is loaded by buccolingual forces. In such cases, implants also encounter high stresses. Displacements of partially-osseointegrated implant are significantly larger than those of fully-osseointegrated implants. It can be concluded that the partial osseointegration is a potential risk in terms of implant longevity.
Collapse
Affiliation(s)
- Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
| | - Jan Wolff
- Department of Oral and Maxillofacial Surgery/Oral Pathology and 3D Innovation Lab, VU University Medical Center, Amsterdam, The Netherlands
| | - Ladislava Horáčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- X-ray Micro CT and Nano CT Research Group, CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomáš Zikmund
- X-ray Micro CT and Nano CT Research Group, CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Libor Borák
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
25
|
Sugiura T, Yamamoto K, Horita S, Murakami K, Kirita T. Micromotion analysis of different implant configuration, bone density, and crestal cortical bone thickness in immediately loaded mandibular full-arch implant restorations: A nonlinear finite element study. Clin Implant Dent Relat Res 2017; 20:43-49. [DOI: 10.1111/cid.12573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Tsutomu Sugiura
- Department of Oral and Maxillofacial Surgery; Nara Medical University; Kashihara Nara Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery; Nara Medical University; Kashihara Nara Japan
| | - Satoshi Horita
- Department of Oral and Maxillofacial Surgery; Nara Medical University; Kashihara Nara Japan
| | - Kazuhiro Murakami
- Department of Oral and Maxillofacial Surgery; Nara Medical University; Kashihara Nara Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery; Nara Medical University; Kashihara Nara Japan
| |
Collapse
|
26
|
Immediate mechanical stability of threaded and porous implant systems. Clin Biomech (Bristol, Avon) 2017; 48:110-117. [PMID: 28806591 DOI: 10.1016/j.clinbiomech.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Primary stability of a dental implant system is an essential factor to maintain its long-term success. Thus, the objective of this study was to examine whether primary stability is different between threaded and porous dental implant systems placed in artificial bone blocks and human cadaveric mandibular bone. MATERIALS AND METHODS Forty-two threaded and 42 highly porous dental implants were placed in artificial polyurethane bone foams with 7 different thicknesses (3.5 to 12mm). In addition, 11 threaded and 11 porous implants were installed in 8 edentulous mandibles of human cadavers. Implant stability quotient values, insertion torque, static and dynamic stiffness, and viscoelastic tan δ of each implant system were measured. Mean gray values were obtained at the implantation sites in the human mandible. FINDINGS The porous implant group had substantially lower implant stability quotient values and insertion torque values than the threaded implant group that were equal or >5.5mm in thickness of the artificial bone block (p<0.026) with the exception of 8.5mm thickness, while static and dynamic stiffness values were not different between the two implant groups greater than 5.5mm in thickness (p>0.132). Static and dynamic stiffness values of the porous group were significantly greater than the thread group in the human mandibular bone (p<0.015). INTERPRETATION The porous layer supports axial loading better than lateral and shear loading of the dental implant system. This result indicates that trabecular shaped architecture of the porous layer may provide sufficient anchorage compromising reduction of the axial primary stability of the porous implant system to be comparable with the threaded implant system.
Collapse
|
27
|
Asserghine A, Filotás D, Nagy L, Nagy G. Scanning electrochemical microscopy investigation of the rate of formation of a passivating TiO 2 layer on a Ti G4 dental implant. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Gasik M. Understanding biomaterial-tissue interface quality: combined in vitro evaluation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:550-562. [PMID: 28970865 PMCID: PMC5613488 DOI: 10.1080/14686996.2017.1348872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
One of the greatest challenges in the development of new medical products and devices remains in providing maximal patient safety, efficacy and suitability for the purpose. A 'good quality' of the tissue-implant interface is one of the most critical factors for the success of the implant integration. In this paper this challenge is being discussed from the point of view of basic stimuli combination to experimental testing. The focus is in particular on bacterial effects on tissue-implant interaction (for different materials). The demonstration of the experimental evaluation of the tissue-implant interface is for dental abutment with mucosal contact. This shows that testing of the interface quality could be the most relevant in controlled conditions, which mimic as possible the clinical applications, but consider variables being under the control of the evaluator.
Collapse
Affiliation(s)
- Michael Gasik
- School of Chemical Engineering, Aalto University Foundation, Finland
| |
Collapse
|
29
|
Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1201-1215. [DOI: 10.1016/j.msec.2016.10.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 11/22/2022]
|
30
|
Tang H, Li Y, Ma J, Zhang X, Li B, Liu S, Dai F, Zhang X. Improvement of biological and mechanical properties of titanium surface by anodic oxidation. Biomed Mater Eng 2016; 27:485-494. [PMID: 27885996 DOI: 10.3233/bme-161602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A homogeneous and uniform array of nanotubes with a diameter of about 70 nm was produced on titanium (Ti) surface by anodic oxidation. The wall thickness of the nanotubes was around 20 nm, and the depth was about 200 nm. The biological properties of the anodized Ti surface were investigated by simulated body fluid (SBF) soaking test and in vitro cell culture test. The mechanical properties were evaluated by instrumented nanoindentation test and friction-wear test. The results showed that the anodized Ti surface can induce the formation of bone-like apatite after immersion in SBF for four weeks, enhance cell adhesion, proliferation and gene expression, it also showed decreased friction coefficient, similar stiffness and Young's modulus to those of the cortical bone. Based on these results, it can be concluded that anodic oxidation endowed the Ti surface with improved biological and mechanical properties, which was attributed to the formation of nanostructured surface.
Collapse
Affiliation(s)
- Hao Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ying Li
- Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jianwei Ma
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xianlin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shimin Liu
- Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134, China
| | - Fangfei Dai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiangqian Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
31
|
Kaku M. Prosthodontics: A multidisciplinary field in dentistry. J Prosthodont Res 2016; 60:143-4. [DOI: 10.1016/j.jpor.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
|
32
|
Takahashi T, Watanabe T, Nakada H, Tanimoto Y, Kimoto S, Mijares DQ, Zhang Y, Kawai Y. Effect of a dietary supplement on peri-implant bone strength in a rat model of osteoporosis. J Prosthodont Res 2016; 60:131-7. [PMID: 26787534 DOI: 10.1016/j.jpor.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/26/2015] [Accepted: 12/24/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Osteoporosis contributes to impaired bone regeneration and remodeling through an imbalance of osteoblastic and osteoclastic activity, and can delay peri-implant bone formation after dental implant surgery, resulting in a prolonged treatment period. It poses several difficulties for individuals with large edentulous areas, and decreases their quality of life. Consequently, prompt postoperative placement of the final prosthesis is very important clinically. Peri-implant bone formation may be enhanced by systemic approaches, such as the use of osteoporosis supplements, to promote bone metabolism. We aimed to confirm whether intake of synthetic bone mineral (SBM), a supplement developed for osteoporosis, could effectively accelerate peri-implant bone formation in a rat model of osteoporosis. METHODS Thirty-six 7-week-old ovariectomized female Wistar rats were randomly assigned to receive a standardized diet with or without SBM (Diet with SBM group and Diet without SBM group, respectively; n=18 for both). The rats underwent implant surgery at 9 weeks of age under general anesthesia. The main outcome measures, bone mineral density (BMD) and pull-out strength of the implant from the femur, were compared at 2 and 4 weeks after implantation using the Mann-Whitney U test. RESULTS Pull-out strength and BMD in the Diet with SBM group were significantly greater than those in the Diet without SBM group at 2 and 4 weeks after implantation. CONCLUSIONS This study demonstrated that SBM could be effective in accelerating peri-implant bone formation in osteoporosis.
Collapse
Affiliation(s)
- Takahiro Takahashi
- Nihon University Graduate School of Dentistry at Matsudo, Removable Prosthodontics, Matsudo, Japan
| | - Takehiro Watanabe
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan.
| | - Hiroshi Nakada
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan
| | - Yasuhiro Tanimoto
- Department of Dental Biomaterials, Nihon University of Dentistry at Matsudo, Japan
| | - Suguru Kimoto
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan
| | - Dindo Q Mijares
- Department of Biomaterials & Biomimetics, New York University College of Dentistry, USA
| | - Yu Zhang
- Department of Biomaterials & Biomimetics, New York University College of Dentistry, USA
| | - Yasuhiko Kawai
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan
| |
Collapse
|
33
|
Ray TJ, McGraw WS, Sun Z, Jeon M, Johnson T, Cheffins K, Daegling DJ, Kim DG. Mandibular bone mineral density variation in three West African Cercopithecoid monkey species: Associations with diet and feeding behavior. Arch Oral Biol 2015; 60:1714-20. [DOI: 10.1016/j.archoralbio.2015.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 11/29/2022]
|
34
|
Hosokawa R. Minimally invasive interventions for replacing missing teeth with implants: current status and future perspective. J Prosthodont Res 2015; 59:79-80. [PMID: 25858693 DOI: 10.1016/j.jpor.2015.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryuji Hosokawa
- Department of Oral Rehabilitation and Reconstruction, Faculty of Dentistry, Kyushu Dental University, Kitakyushu 803-8580, Japan.
| |
Collapse
|