1
|
Gao X, Huo H, Bao H, Wang J, Gao D. Changes of Active Substances in Ganoderma lucidum during Different Growth Periods and Analysis of Their Molecular Mechanism. Molecules 2024; 29:2591. [PMID: 38893471 PMCID: PMC11173900 DOI: 10.3390/molecules29112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Ganoderma lucidum, renowned as an essential edible and medicinal mushroom in China, remains shrouded in limited understanding concerning the intrinsic mechanisms governing the accumulation of active components and potential protein expression across its diverse developmental stages. Accordingly, this study employed a meticulous integration of metabolomics and proteomics techniques to scrutinize the dynamic alterations in metabolite accumulation and protein expression in G. lucidum throughout its growth phases. The metabolomics analysis unveiled elevated levels of triterpenoids, steroids, and polyphenolic compounds during the budding stage (BS) of mushroom growth, with prominent compounds including Diplazium and Ganoderenic acids E, H, and I, alongside key steroids such as cholesterol and 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol. Additionally, nutrients such as polysaccharides, flavonoids, and purines exhibited heightened presence during the maturation stage (FS) of ascospores. Proteomic scrutiny demonstrated the modulation of triterpenoid synthesis by the CYP450, HMGR, HMGS, and ERG protein families, all exhibiting a decline as G. lucidum progressed, except for the ARE family, which displayed an upward trajectory. Therefore, BS is recommended as the best harvesting period for G. lucidum. This investigation contributes novel insights into the holistic exploitation of G. lucidum.
Collapse
Affiliation(s)
- Xusheng Gao
- Key Laboratory of Edible Fungi Resources and Utilization, College of Traditional Chinese Medicine, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (X.G.); (H.H.)
| | - Huimin Huo
- Key Laboratory of Edible Fungi Resources and Utilization, College of Traditional Chinese Medicine, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (X.G.); (H.H.)
| | - Haiying Bao
- Key Laboratory of Edible Fungi Resources and Utilization, College of Traditional Chinese Medicine, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (X.G.); (H.H.)
| | - Jialu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| |
Collapse
|
2
|
Kalpana S, Lin WY, Wang YC, Fu Y, Lakshmi A, Wang HY. Antibiotic Resistance Diagnosis in ESKAPE Pathogens-A Review on Proteomic Perspective. Diagnostics (Basel) 2023; 13:1014. [PMID: 36980322 PMCID: PMC10047325 DOI: 10.3390/diagnostics13061014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | | | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Amrutha Lakshmi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
3
|
Sulaima JE, Lam H. Proteomics in antibiotic resistance and tolerance research: Mapping the resistome and the tolerome of bacterial pathogens. Proteomics 2022; 22:e2100409. [PMID: 35143120 DOI: 10.1002/pmic.202100409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Antibiotic resistance, the ability of a microbial pathogen to evade the effects of antibiotics thereby allowing them to grow under elevated drug concentrations, is an alarming health problem worldwide and has attracted the attention of scientists for decades. On the other hand, the clinical importance of persistence and tolerance as alternative mechanisms for pathogens to survive prolonged lethal antibiotic doses has recently become increasingly appreciated. Persisters and high-tolerance populations are thought to cause the relapse of infectious diseases, and provide opportunities for the pathogens to evolve resistance during the course of antibiotic therapy. Although proteomics and other omics methodology have long been employed to study resistance, its applications in studying persistence and tolerance are still limited. However, due to the growing interest in the topic and recent progress in method developments to study them, there have been some proteomic studies that yield fresh insights into the phenomenon of persistence and tolerance. Combined with the studies on resistance, these collectively guide us to novel molecular targets for the potential drugs for the control of these dangerous pathogens. In this review, we surveyed previous proteomic studies to investigate resistance, persistence, and tolerance mechanisms, and discussed emerging experimental strategies for studying these phenotypes with a combination of adaptive laboratory evolution and high-throughput proteomics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jordy Evan Sulaima
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
4
|
Lakshmi SA, Prasath KG, Tamilmuhilan K, Srivathsan A, Shafreen RMB, Kasthuri T, Pandian SK. Suppression of Thiol-Dependent Antioxidant System and Stress Response in Methicillin-Resistant Staphylococcus aureus by Docosanol: Explication Through Proteome Investigation. Mol Biotechnol 2022; 64:575-589. [PMID: 35018617 DOI: 10.1007/s12033-021-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, 602117, India
| | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Alagappapuram, Karaikudi, Tamil Nadu, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | | |
Collapse
|
5
|
Tu H, Xu F, Cheng Y, Pan Q, Cai X, Wang S, Ge S, Cao M, Su D, Li Y. Proteomic profiling of the endogenous peptides of MRSA and MSSA. PeerJ 2021; 9:e12508. [PMID: 34900427 PMCID: PMC8627652 DOI: 10.7717/peerj.12508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that can cause diverse skin and soft tissue infections. Methicillin-resistant Staphylococcus aureus (MRSA) can cause more severe infections than methicillin-susceptible Staphylococcus aureus (MSSA). Nevertheless, the physiological and metabolic regulation of MSSA and MRSA has not been well studied. In light of the increased interest in endogenous peptides and recognition of the important roles that they play, we studied the endogenous peptidome of MSSA and MRSA. We identified 1,065 endogenous peptides, among which 435 were differentially expressed (DE), with 292 MSSA-abundant endogenous peptides and 35 MRSA-abundant endogenous peptides. MSSA-abundant endogenous peptides have significantly enriched “VXXXK” motif of at the C-terminus. MSSA-abundant endogenous peptides are involved in penicillin-binding and immune responses, whereas MRSA-abundant endogenous peptides are associated with antibiotic resistance and increased toxicity. Our characterization of the peptidome of MSSA and MRSA provides a rich resource for future studies to explore the functional regulation of drug resistance in S. aureus and may also help elucidate the mechanisms of its pathogenicity and the development of treatments.
Collapse
Affiliation(s)
- Haixia Tu
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Xu
- Blood Transfusion Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwei Cheng
- School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qianglong Pan
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Cai
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shouxing Wang
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuting Ge
- School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Cao
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongming Su
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Li
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
7
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Abdi RD, Dunlap JR, Gillespie BE, Ensermu DB, Almeida RA, Kerro Dego O. Comparison of Staphylococcus aureus surface protein extraction methods and immunogenicity. Heliyon 2019; 5:e02528. [PMID: 31687478 PMCID: PMC6820086 DOI: 10.1016/j.heliyon.2019.e02528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the major contagious bovine mastitis pathogen and has no effective vaccine. Strain variation and limited knowledge of common immunogenic antigen/s are among major constraints for developing effective vaccines. S. aureus cell surface proteins that are exposed to the host immune system constitute good vaccine candidates. The objective of this study was to compare two novel S. aureus surface protein extraction methods with biotinylation method and evaluate immune-reactivity of extracted proteins. Surface proteins were extracted from nine genetically distinct S. aureus strains from cases of bovine mastitis. After extraction, bacterial cell integrity was examined by Gram staining and electron microscopy to determine if extraction methods caused damage to cells that may release non-surface proteins. The extracted proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and evaluated for immune-reactivity using western blot. Results showed that all three extraction methods provided multiple protein bands on SDS-PAGE. Western blot result showed several immunoreactive surface proteins, in which some proteins strongly (well-resolved, thick, dark, and intense band) reacted across the nine strains tested. The three methods are valid for the extraction of surface proteins and hexadecane, and cholic acid methods are more feasible than biotinylation since both are easier, cheaper, and have minor effects on the bacterial cell. Strongly immune-reactive surface proteins may serve as potential candidates for a vaccine to control S. aureus mastitis in dairy cows.
Collapse
Affiliation(s)
- Reta Duguma Abdi
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY11548, United States
| | - John R. Dunlap
- Joint Institute for Advanced Materials (JIAM) Microscopy Center and Advanced Microscopy and Imaging Center, The University of Tennessee, Knoxville, TN, 37996, United States
| | - Barbara E. Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Desta Beyene Ensermu
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Raul Antonio Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Corresponding author.
| |
Collapse
|
9
|
Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20194755. [PMID: 31557880 PMCID: PMC6801709 DOI: 10.3390/ijms20194755] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), a sight-threatening neurovasculopathy, is the leading cause of irreversible blindness in the developed world. DR arises as the result of prolonged hyperglycemia and is characterized by leaky retinal vasculature, retinal ischemia, retinal inflammation, angiogenesis, and neovascularization. The number of DR patients is growing with an increase in the elderly population, and therapeutic approaches are limited, therefore, new therapies to prevent retinal injury and enhance repair are a critical unmet need. Besides vascular endothelial growth factor (VEGF)-induced vascular proliferation, several other mechanisms are important in the pathogenesis of diabetic retinopathy, including vascular inflammation. Thus, combining anti-VEGF therapy with other new therapies targeting these pathophysiological pathways of DR may further optimize treatment outcomes. Technological advancements have allowed for high-throughput proteomic studies examining biofluids such as aqueous humor, vitreous humor, tear, and serum. Many DR biomarkers have been identified, especially proteins involved in retinal inflammatory processes. This review attempts to summarize the proteomic biomarkers of DR-associated retinal inflammation identified over the last several years.
Collapse
|
10
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
11
|
Igrejas G, Correia S, Silva V, Hébraud M, Caniça M, Torres C, Gomes C, Nogueira F, Poeta P. Planning a One Health Case Study to Evaluate Methicillin Resistant Staphylococcus aureus and Its Economic Burden in Portugal. Front Microbiol 2018; 9:2964. [PMID: 30581421 PMCID: PMC6292916 DOI: 10.3389/fmicb.2018.02964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important multidrug-resistant nosocomial pathogens worldwide with infections leading to high rates of morbidity and mortality, a significant burden to human and veterinary clinical practices. The ability of S. aureus colonies to form biofilms on biotic and abiotic surfaces contributes further to its high antimicrobial resistance (AMR) rates and persistence in both host and non-host environments, adding a major ecological dimension to the problem. While there is a lot of information on MRSA prevalence in humans, data about MRSA in animal populations is scarce, incomplete and dispersed. This project is an attempt to evaluate the current epidemiological status of MRSA in Portugal by making a single case study from a One Health perspective. We aim to determine the prevalence of MRSA in anthropogenic sources liable to contaminate different animal habitats. The results obtained will be compiled with existing data on antibiotic resistant staphylococci from Portugal in a user-friendly database, to generate a geographically detailed epidemiological output for surveillance of AMR in MRSA. To achieve this, we will first characterize AMR and genetic lineages of MRSA circulating in northern Portugal in hospital wastewaters, farms near hospitals, farm animals that contact with humans, and wild animals. This will indicate the extent of the AMR problem in the context of local and regional human-animal-environment interactions. MRSA strains will then be tested for their ability to form biofilms. The proteomes of the strains will be compared to better elucidate their AMR mechanisms. Proteomics data will be integrated with the genomic and transcriptomic data obtained. The vast amount of information expected from this omics approach will improve our understanding of AMR in MRSA biofilms, and help us identify new vaccine candidates and biomarkers for early diagnosis and innovative therapeutic strategies to tackle MRSA biofilm-associated infections and potentially other AMR superbugs.
Collapse
Affiliation(s)
- Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Susana Correia
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Vanessa Silva
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Michel Hébraud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR0454 MEDiS, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France.,Institut National de la Recherche Agronomique, Plate-Forme d'Exploration du Métabolisme Composante Protéomique, UR0370 QuaPA, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Catarina Gomes
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Nogueira
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
12
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
13
|
Zhou G, Shi QS, Huang XM, Xie XB. The Three Bacterial Lines of Defense against Antimicrobial Agents. Int J Mol Sci 2015; 16:21711-33. [PMID: 26370986 PMCID: PMC4613276 DOI: 10.3390/ijms160921711] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| | - Qing-Shan Shi
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| | - Xiao-Mo Huang
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| | - Xiao-Bao Xie
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
14
|
da Costa JP, Carvalhais V, Ferreira R, Amado F, Vilanova M, Cerca N, Vitorino R. Proteome signatures—how are they obtained and what do they teach us? Appl Microbiol Biotechnol 2015. [PMID: 26205520 DOI: 10.1007/s00253-015-6795-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Yu GJ, Yin YL, Yu WH, Liu W, Jin YX, Shrestha A, Yang Q, Ye XD, Sun H. Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. PLoS One 2015; 10:e0119439. [PMID: 25756518 PMCID: PMC4355618 DOI: 10.1371/journal.pone.0119439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Ganoderma lucidum is a basidiomycete white rot fungus that has been used for medicinal purposes worldwide. Although information concerning its genome and transcriptome has recently been reported, relatively little information is available for G. lucidum at the proteomic level. In this study, protein fractions from G. lucidum at three developmental stages (16-day mycelia, and fruiting bodies at 60 and 90 days) were prepared and subjected to LC-MS/MS analysis. A search against the G. lucidum genome database identified 803 proteins. Among these proteins, 61 lignocellulose degrading proteins were detected, most of which (49 proteins) were found in the 90-day fruiting bodies. Fourteen TCA-cycle related proteins, 17 peptidases, two argonaute-like proteins, and two immunomodulatory proteins were also detected. A majority (470) of the 803 proteins had GO annotations and were classified into 36 GO terms, with "binding", "catalytic activity", and "hydrolase activity" having high percentages. Additionally, 357 out of the 803 proteins were assigned to at least one COG functional category and grouped into 22 COG classifications. Based on the results from the proteomic and sequence alignment analyses, a potentially new immunomodulatory protein (GL18769) was expressed and shown to have high immunomodulatory activity. In this study, proteomic and biochemical analyses of G. lucidum were performed for the first time, revealing that proteins from this fungus can play significant bioactive roles and providing a new foundation for the further functional investigations that this fungus merits.
Collapse
Affiliation(s)
- Guo-Jun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ya-Lin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Hui Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan-Xia Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alok Shrestha
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
16
|
Carvalhais V, França A, Pier GB, Vilanova M, Cerca N, Vitorino R. Comparative proteomic and transcriptomic profile of Staphylococcus epidermidis biofilms grown in glucose-enriched medium. Talanta 2014; 132:705-12. [PMID: 25476368 DOI: 10.1016/j.talanta.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/01/2014] [Accepted: 10/08/2014] [Indexed: 01/07/2023]
Abstract
Staphylococcus epidermidis is an important nosocomial agent among carriers of indwelling medical devices, due to its strong ability to form biofilms on inert surfaces. Contrary to some advances made in the transcriptomic field, proteome characterization of S. epidermidis biofilms is less developed. To highlight the relation between transcripts and proteins of S. epidermidis biofilms, we analyzed the proteomic profile obtained by two mechanical lysis methods (sonication and bead beating), associated with two distinct detergent extraction buffers, namely SDS and CHAPS. Based on gel electrophoresis-LC-MS/MS, we identified a total of 453 proteins. While lysis with glass beads provided greater amounts of protein, CHAPS extraction buffer allowed identification of a higher number of proteins compared to SDS. Our data shows the impact of different protein isolation methods in the characterization of the S. epidermidis biofilm proteome. Furthermore, the correlation between proteomic and transcriptomic profiles was evaluated. The results confirmed that proteomic and transcriptomic data should be analyzed simultaneously in order to have a comprehensive understanding of a specific microbiological condition.
Collapse
Affiliation(s)
- Virginia Carvalhais
- CEB-Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Division of Infectious diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela França
- CEB-Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Division of Infectious diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerald B Pier
- Division of Infectious diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuel Vilanova
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 83, Porto, Portugal
| | - Nuno Cerca
- CEB-Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Vitorino
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
17
|
Gonçalves A, Poeta P, Monteiro R, Marinho C, Silva N, Guerra A, Petrucci-Fonseca F, Rodrigues J, Torres C, Vitorino R, Domingues P, Igrejas G. Comparative proteomics of an extended spectrum β-lactamase producing Escherichia coli strain from the Iberian wolf. J Proteomics 2014; 104:80-93. [PMID: 24631823 DOI: 10.1016/j.jprot.2014.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/15/2014] [Accepted: 02/25/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED The Iberian wolf (Canis lupus signatus) is an endangered species native to the Iberian Peninsula. Due to their predatory and wild nature, these wolves serve as important indicators of environmental contamination by antimicrobial-resistant bacteria. β-Lactam antibiotics like cefotaxime are the most commonly used antibacterial agents. Bacterial resistance to these antibiotics occurs predominantly through enzymatic inactivation by extended-spectrum beta-lactamases. Escherichia coli strain WA57, isolated from Iberian wolf feces, is a cefotaxime-resistant strain that produces extended-spectrum beta-lactamases. In this study, using 2D-GE combined with MS and bioinformatics, we report significant differences in the abundance of 40 protein spots (p<0.01) from the extracellular, periplasmic, cytoplasmic, and membrane sub-proteomes and the whole-cell proteome of WA57 exposed and non-exposed to cefotaxime. A total of 315 protein spots were collected for protein identification. The comparative proteomics presented gives an overview of the complex changes in expression and metabolism that occur when WA57 is stressed with cefotaxime. Abundance of chaperone, porin and export proteins is particularly affected showing that the stress response and transport functions might directly influence the antibiotic resistance of this strain. BIOLOGICAL SIGNIFICANCE This study highlights the importance of proteomics in detecting protein expression changes in bacterial strains exposed to stress such as that caused by cefotaxime. This approach might help us understand which pathways form barriers for antibiotics. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- A Gonçalves
- Institute for Biotechnology and Bioengineering, Center of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Center for Animal Science and Veterinary, Vila Real, Portugal; Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - P Poeta
- Center for Animal Science and Veterinary, Vila Real, Portugal; Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - R Monteiro
- Institute for Biotechnology and Bioengineering, Center of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Center for Animal Science and Veterinary, Vila Real, Portugal; Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - C Marinho
- Institute for Biotechnology and Bioengineering, Center of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Center for Animal Science and Veterinary, Vila Real, Portugal; Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - N Silva
- Center for Animal Science and Veterinary, Vila Real, Portugal
| | - A Guerra
- Department of Animal Biology, Centre for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - F Petrucci-Fonseca
- Department of Animal Biology, Centre for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - J Rodrigues
- Center for Animal Science and Veterinary, Vila Real, Portugal; Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - C Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - R Vitorino
- Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - P Domingues
- Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - G Igrejas
- Institute for Biotechnology and Bioengineering, Center of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
18
|
|
19
|
François P, Scherl A, Hochstrasser D, Schrenzel J. Proteomic approach to investigate pathogenicity and metabolism of methicillin-resistant Staphylococcus aureus. Methods Mol Biol 2014; 1085:231-50. [PMID: 24085700 DOI: 10.1007/978-1-62703-664-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last two decades, numerous genomes of pathogenic bacteria have been fully sequenced and annotated, while others are continuously being sequenced. To date, the sequences of more than 8,500 whole bacterial genomes are publicly available for research purposes. These efforts in high-throughput sequencing simultaneously to progresses in methods allowing to study whole transcriptome and proteome of bacteria provide the basis of comprehensive understanding of metabolism, adaptability to environment, regulation, resistance pathways, or pathogenicity mechanisms of bacterial pathogens. Staphylococcus aureus is a Gram-positive human pathogen causing a wide variety of infections ranging from benign skin infection to life-threatening diseases. Furthermore, the spreading of multidrug-resistant isolates requiring the use of last barrier drugs has resulted in a particular attention of the medical and scientific community to this pathogen. We describe here proteomic methods to prepare, identify, and analyze protein fractions, which allow studying Staphylococcus aureus on the organism level. Besides evaluation of the whole bacterial transcriptome, this approach might contribute to the development of rapid diagnostic tests and to the identification of new drug targets to improve public health.
Collapse
Affiliation(s)
- Patrice François
- Service of Infectious Diseases, Genomic Research Laboratory, Geneva, Switzerland
| | | | | | | |
Collapse
|
20
|
Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics 2014; 97:88-99. [DOI: 10.1016/j.jprot.2013.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 01/10/2023]
|
21
|
Mayne J, Starr AE, Ning Z, Chen R, Chiang CK, Figeys D. Fine Tuning of Proteomic Technologies to Improve Biological Findings: Advancements in 2011–2013. Anal Chem 2013; 86:176-95. [DOI: 10.1021/ac403551f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Zhibin Ning
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Rui Chen
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| | - Daniel Figeys
- Ottawa Institute of
Systems Biology, Department of Biochemistry, Microbiology
and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H8M5
| |
Collapse
|
22
|
Exploring extra-cellular proteins in methicillin susceptible and methicillin resistant Staphylococcus aureus by liquid chromatography-tandem mass spectrometry. World J Microbiol Biotechnol 2013; 30:1269-83. [PMID: 24214678 DOI: 10.1007/s11274-013-1550-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 01/06/2023]
Abstract
Staphylococcus aureus (S. aureus) strains cause several diseases in humans from minor skin infections to severe lethal infections. To explore the virulence determinants of this important microorganism, two clinical isolates of methicillin susceptible S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) were subjected to proteomic analysis of their extracellular products using liquid chromatography-tandem mass spectrometry. The numbers of proteins identified in MSSA and MRSA extracellular products were 168 and 261; respectively, from them 117 were shared, while 144 proteins were unique to MRSA. The shared proteins, having a higher protein score with increased number of peptide matches in MRSA over MSSA, reflect the relatively active secretory state of MRSA rather than biased analytical variances. Characteristic determinants for MRSA were identified; mostly found to play a role in the virulence. We conclude that MRSA produces distinct proteins considered as its virulence determinants and we found that the shared extracellular products are more abundant in MRSA than MSSA that supporting the high invasiveness of MRSA over MSSA in pathogenesis.
Collapse
|
23
|
Lima TB, Pinto MFS, Ribeiro SM, de Lima LA, Viana JC, Gomes Júnior N, Cândido EDS, Dias SC, Franco OL. Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 2013; 27:1291-303. [PMID: 23349550 DOI: 10.1096/fj.12-221127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotics are important therapeutic agents commonly used for the control of bacterial infectious diseases; however, resistance to antibiotics has become a global public health problem. Therefore, effective therapy in the treatment of resistant bacteria is necessary and, to achieve this, a detailed understanding of mechanisms that underlie drug resistance must be sought. To fill the multiple gaps that remain in understanding bacterial resistance, proteomic tools have been used to study bacterial physiology in response to antibiotic stress. In general, the global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents has made it possible to construct a database of proteins involved in the process of resistance to drugs with similar mechanisms of action. In the past few years, progress in using proteomic tools has provided the most realistic picture of the infective process, since these tools detect the end products of gene biosynthetic pathways, which may eventually determine a biological phenotype. In most bacterial species, alterations occur in energy and nitrogen metabolism regulation; glucan biosynthesis is up-regulated; amino acid, protein, and nucleotide synthesis is affected; and various proteins show a stress response after exposing these microorganisms to antibiotics. These issues have been useful in identifying targets for the development of novel antibiotics and also in understanding, at the molecular level, how bacteria resist antibiotics.
Collapse
Affiliation(s)
- Thais Bergamin Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gabani P, Prakash D, Singh OV. Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles 2012; 16:697-713. [PMID: 22907125 DOI: 10.1007/s00792-012-0475-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/02/2012] [Indexed: 12/14/2022]
Abstract
Excessive use of antibiotics in recent years has produced bacteria that are resistant to a wide array of antibiotics. Several genetic and non-genetic elements allow microorganisms to adapt and thrive under harsh environmental conditions such as lethal doses of antibiotics. We attempt to classify these microorganisms as antibiotic-resistant extremophiles (AREs). AREs develop strategies to gain greater resistance to antibiotics via accumulation of multiple genes or plasmids that harbor genes for multiple drug resistance (MDR). In addition to their altered expression of multiple genes, AREs also survive by producing enzymes such as penicillinase that inactivate antibiotics. It is of interest to identify the underlying molecular mechanisms by which the AREs are able to survive in the presence of wide arrays of high-dosage antibiotics. Technologically, "omics"-based approaches such as genomics have revealed a wide array of genes differentially expressed in AREs. Proteomics studies with 2DE, MALDI-TOF, and MS/MS have identified specific proteins, enzymes, and pumps that function in the adaptation mechanisms of AREs. This article discusses the molecular mechanisms by which microorganisms develop into AREs and how "omics" approaches can identify the genetic elements of these adaptation mechanisms. These objectives will assist the development of strategies and potential therapeutics to treat outbreaks of pathogenic microorganisms in the future.
Collapse
Affiliation(s)
- Prashant Gabani
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA 16701, USA
| | | | | |
Collapse
|