1
|
Neutralizing the pathological effects of extracellular histones with small polyanions. Nat Commun 2020; 11:6408. [PMID: 33328478 PMCID: PMC7744542 DOI: 10.1038/s41467-020-20231-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular histones in neutrophil extracellular traps (NETs) or in chromatin from injured tissues are highly pathological, particularly when liberated by DNases. We report the development of small polyanions (SPAs) (~0.9–1.4 kDa) that interact electrostatically with histones, neutralizing their pathological effects. In vitro, SPAs inhibited the cytotoxic, platelet-activating and erythrocyte-damaging effects of histones, mechanistic studies revealing that SPAs block disruption of lipid-bilayers by histones. In vivo, SPAs significantly inhibited sepsis, deep-vein thrombosis, and cardiac and tissue-flap models of ischemia-reperfusion injury (IRI), but appeared to differ in their capacity to neutralize NET-bound versus free histones. Analysis of sera from sepsis and cardiac IRI patients supported these differential findings. Further investigations revealed this effect was likely due to the ability of certain SPAs to displace histones from NETs, thus destabilising the structure. Finally, based on our work, a non-toxic SPA that inhibits both NET-bound and free histone mediated pathologies was identified for clinical development. Histones, proteins that bind DNA, are toxic for pathogens outside cells but can also cause multi-organ damage as seen in sepsis. Here the authors develop small negatively charged molecules that can be used as histone antidotes, and show that they improve the phenotype in mouse models with histone-related pathologies.
Collapse
|
2
|
Glycoproteomic measurement of site-specific polysialylation. Anal Biochem 2020; 596:113625. [DOI: 10.1016/j.ab.2020.113625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
|
3
|
Alisson-Silva F, Liu JZ, Diaz SL, Deng L, Gareau MG, Marchelletta R, Chen X, Nizet V, Varki N, Barrett KE, Varki A. Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathog 2018; 14:e1007133. [PMID: 29912959 PMCID: PMC6023241 DOI: 10.1371/journal.ppat.1007133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/28/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023] Open
Abstract
While infectious agents have typical host preferences, the noninvasive enteric bacterium Vibrio cholerae is remarkable for its ability to survive in many environments, yet cause diarrheal disease (cholera) only in humans. One key V. cholerae virulence factor is its neuraminidase (VcN), which releases host intestinal epithelial sialic acids as a nutrition source and simultaneously remodels intestinal polysialylated gangliosides into monosialoganglioside GM1. GM1 is the optimal binding target for the B subunit of a second virulence factor, the AB5 cholera toxin (Ctx). This coordinated process delivers the CtxA subunit into host epithelia, triggering fluid loss via cAMP-mediated activation of anion secretion and inhibition of electroneutral NaCl absorption. We hypothesized that human-specific and human-universal evolutionary loss of the sialic acid N-glycolylneuraminic acid (Neu5Gc) and the consequent excess of N-acetylneuraminic acid (Neu5Ac) contributes to specificity at one or more steps in pathogenesis. Indeed, VcN was less efficient in releasing Neu5Gc than Neu5Ac. We show enhanced binding of Ctx to sections of small intestine and isolated polysialogangliosides from human-like Neu5Gc-deficient Cmah-/- mice compared to wild-type, suggesting that Neu5Gc impeded generation of the GM1 target. Human epithelial cells artificially expressing Neu5Gc were also less susceptible to Ctx binding and CtxA intoxication following VcN treatment. Finally, we found increased fluid secretion into loops of Cmah-/- mouse small intestine injected with Ctx, indicating an additional direct effect on ion transport. Thus, V. cholerae evolved into a human-specific pathogen partly by adapting to the human evolutionary loss of Neu5Gc, optimizing multiple steps in cholera pathogenesis.
Collapse
Affiliation(s)
- Frederico Alisson-Silva
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Janet Z. Liu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
| | - Sandra L. Diaz
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Lingquan Deng
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Mélanie G. Gareau
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Ronald Marchelletta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis CA, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Nissi Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Kim E. Barrett
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (AV); (KEB)
| | - Ajit Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail: (AV); (KEB)
| |
Collapse
|
4
|
Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis - electrospray ionization - mass spectrometry. Sci Rep 2017. [PMID: 28623326 PMCID: PMC5473812 DOI: 10.1038/s41598-017-03838-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sialylation is a glycosylation feature that occurs in different linkages at the non-reducing end of a glycan moiety, the linkage isomers are often differentially associated with various biological processes. Due to very similar physico-chemical properties, the separation of isomeric sialylated glycopeptides remains challenging but of utmost importance in the biomedicine and biotechnology, including biomarker discovery, glyco-engineering and biopharmaceutical characterization. This study presents the implementation of a high-resolution separation platform based on capillary electrophoresis - mass spectrometry (CE-MS) allowing for the selective analysis of α2,3- and α2,6-sialylated glycopeptides. These differentially linked glycopeptides showed an identical fragmentation pattern (collision induced dissociation) but different electrophoretic mobilities, allowing for baseline separation of the different linkages without the need for an extensive sample preparation. The different migration behavior between the two moieties was found to correlate with differences in pKa values. Using a novel methodology adapted from the so-called internal standard CE approach, a relative difference of 3.4·10-2 in pKa unit was determined. This approach was applied for the analysis of tryptic glycopeptides of prostate specific antigen, which shows highly complex and heterogeneous glycosylation. The developed platform therefore appears attractive for the identification of differentially linked sialic acids that may be related to pathological conditions.
Collapse
|
5
|
Galuska SP, Galuska CE, Tharmalingam T, Zlatina K, Prem G, Husejnov FCO, Rudd PM, Vann WF, Reid C, Vionnet J, Gallagher ME, Carrington FA, Hassett SL, Carrington SD. In vitro generation of polysialylated cervical mucins by bacterial polysialyltransferases to counteract cytotoxicity of extracellular histones. FEBS J 2017; 284:1688-1699. [PMID: 28371406 DOI: 10.1111/febs.14073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/25/2023]
Abstract
Neutrophil extracellular traps (NET) are formed against pathogens. However, various diseases are directly linked to this meshwork of DNA. The cytotoxic properties of extracellular histones especially seem to be an important trigger during these diseases. Furthermore, NET accumulation on implants is discussed to result in an impaired efficiency or failure, depending on the category of implant. Interestingly, mucins have been investigated as surface coatings potentially capable of reducing neutrophil adhesion. Similarly, polysialic acid was shown to inactivate the cytotoxic properties of extracellular histones. We wanted to combine the probability to decrease the adhesion of neutrophils using mucins with the capability of sialic acid polymers to counteract histone-mediated cytotoxicity. To this end, we elongate cervical mucins using bacterial polysialyltransferases. Subsequent cell-based experiments demonstrated the activity of elongated mucins against histone-mediated cytotoxicity. Thus, polysialylated mucins may represent a novel component to coat implants or to combat diseases with exaggerated NET formation.
Collapse
Affiliation(s)
- Sebastian P Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Christina E Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | | | - Kristina Zlatina
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Gerlinde Prem
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Farzali C O Husejnov
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Pauline M Rudd
- Dublin-Oxford Glycobiology Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock Co., Dublin, Ireland
| | - Willie F Vann
- Food and Drug Administration, Silver Spring, MD, USA
| | - Colm Reid
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | | | - Mary E Gallagher
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Faye A Carrington
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | | | | |
Collapse
|
6
|
Khosravi F, Michel V, Galuska CE, Bhushan S, Christian P, Schuppe HC, Pilatz A, Galuska SP, Meinhardt A. Desialylation of Spermatozoa and Epithelial Cell Glycocalyx Is a Consequence of Bacterial Infection of the Epididymis. J Biol Chem 2016; 291:17717-26. [PMID: 27339898 DOI: 10.1074/jbc.m116.718072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/06/2022] Open
Abstract
Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis.
Collapse
Affiliation(s)
- Farhad Khosravi
- From the Institutes of Anatomy and Cell Biology and Biochemistry and
| | - Vera Michel
- From the Institutes of Anatomy and Cell Biology and
| | | | | | | | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology, and Andrology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany and
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology, and Andrology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany and
| | - Sebastian P Galuska
- Biochemistry and the Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | | |
Collapse
|
7
|
Wang D, Nie H, Ozhegov E, Wang L, Zhou A, Li Y, Sun XL. Globally profiling sialylation status of macrophages upon statin treatment. Glycobiology 2015; 25:1007-15. [PMID: 26033937 DOI: 10.1093/glycob/cwv038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
Abstract
Sialic acids (SAs) are widely expressed on immune cells and their levels and linkages named as sialylation status vary upon cellular environment changes related to both physiological and pathological processes. In this study, we performed a global profiling of the sialylation status of macrophages and their release of SAs in the cell culture medium by using flow cytometry, confocal microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS). Both flow cytometry and confocal microscopy results showed that cell surface α-2,3-linked SAs were predominant in the normal culture condition and changed slightly upon treatment with atorvastatin for 24 h, whereas α-2,6-linked SAs were negligible in the normal culture condition but significantly increased after treatment. Meanwhile, the amount of total cellular SAs increased about three times (from 369 ± 29 to 1080 ± 50 ng/mL) upon treatment as determined by the LC-MS/MS method. On the other hand, there was no significant change for secreted free SAs and conjugated SAs in the medium. These results indicated that the cell surface α-2,6 sialylation status of macrophages changes distinctly upon atorvastatin stimulation, which may reflect on the biological functions of the cells.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, People's Republic of China
| | - Evgeny Ozhegov
- Department of Biological, Geological, and Environmental Sciences (BGES), Cleveland State University, Cleveland, OH 44115, USA
| | - Lin Wang
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Aimin Zhou
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, People's Republic of China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| |
Collapse
|
8
|
Abstract
Oligo- and polysialic acids (oligo/polySia) are involved in numerous biological processes depending on the chain length, the comprised type of sialic acids, as well as the glycosidic linkages. Here, we describe the determination of the composition, the sequence, as well as the linkages between the sialic acid residues of lactonized oligo/polySia using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)(/MS) and electrospray-ionization (ESI)-MS((n)).
Collapse
Affiliation(s)
- Christina E Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | | | | |
Collapse
|
9
|
Program Overview * Conference Program * Conference Posters * Conference Abstracts. Glycobiology 2014. [DOI: 10.1093/glycob/cwu087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
10
|
Bartel J, Feuerstacke C, Galuska CE, Weinhold B, Gerardy-Schahn R, Geyer R, Münster-Kühnel A, Middendorff R, Galuska SP. Laser microdissection of paraffin embedded tissue as a tool to estimate the sialylation status of selected cell populations. Anal Chem 2014; 86:2326-31. [PMID: 24491155 DOI: 10.1021/ac403966h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vertebrates, sialic acids occur at the terminal end of glycans mediating numerous biological processes like cell differentiation or tumor metastasis. Consequently, the cellular sialylation status under healthy and pathological conditions is of high interest. Existing analytical strategies to determine sialylation patterns are mostly applied to tissue samples consisting of a mixture of different cell types. Alterations in the sialylation status in a distinct area of tissues or in a specific cell population may, therefore, be easily overlooked. Likewise, estimated variations in sialylation in tissue homogenates might be simply the result of a changed cell composition. To overcome these limitations, we employed laser microdissection to isolate defined cell types or functional subunits and cell populations of paraffin embedded specimens which represent the most abundant supply of human tissue associated with clinical records. For qualitative and quantitative estimation of the sialylation status, sialic acids were released, fluorescently labeled, and analyzed by an online high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) system. As a proof of principle, this strategy was successfully applied to characterize the sialylation of the apical region of epididymal epithelial cells. Furthermore, it was possible to detect an impaired sialylation during kidney maturation in a transgenic mouse model, which was restricted to glomeruli, whereas no differences in sialylation were observed when whole kidney homogenates were used. Thus, starting from paraffin embedded tissue samples, the outlined approach offers a sensitive method to detect and quantify sialic acids on defined cell populations, which may be useful to explore novel sialic acid dependent roles during physiological and pathological processes.
Collapse
Affiliation(s)
- Jan Bartel
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University , Friedrichstr. 24, Giessen, D-35392, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Simon P, Bäumner S, Busch O, Röhrich R, Kaese M, Richterich P, Wehrend A, Müller K, Gerardy-Schahn R, Mühlenhoff M, Geyer H, Geyer R, Middendorff R, Galuska SP. Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. J Biol Chem 2013; 288:18825-33. [PMID: 23671285 DOI: 10.1074/jbc.m113.451112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization in animals is a complex sequence of several biochemical events beginning with the insemination into the female reproductive tract and, finally, leading to embryogenesis. Studies by Kitajima and co-workers (Miyata, S., Sato, C., and Kitajima, K. (2007) Trends Glycosci. Glyc, 19, 85-98) demonstrated the presence of polysialic acid (polySia) on sea urchin sperm. Based on these results, we became interested in the potential involvement of sialic acid polymers in mammalian fertilization. Therefore, we isolated human sperm and performed analyses, including Western blotting and mild 1,2-diamino-4,5-methylenedioxybenzene-HPLC, that revealed the presence α2,8-linked polySia chains. Further analysis by a glyco-proteomics approach led to the identification of two polySia carriers. Interestingly, besides the neural cell adhesion molecule, the polysialyltransferase ST8SiaII has also been found to be a target for polysialylation. Further analysis of testis and epididymis tissue sections demonstrated that only epithelial cells of the caput were polySia-positive. During the epididymal transit, polySia carriers were partially integrated into the sperm membrane of the postacrosomal region. Because polySia is known to counteract histone as well as neutrophil extracellular trap-mediated cytotoxicity against host cells, which plays a role after insemination, we propose that polySia in semen represents a cytoprotective element to increase the number of vital sperm.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Artificial and natural sialic acid precursors influence the angiogenic capacity of human umbilical vein endothelial cells. Molecules 2013; 18:2571-86. [PMID: 23442933 PMCID: PMC6269824 DOI: 10.3390/molecules18032571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 02/02/2023] Open
Abstract
N-acetylneuraminic acid (Neu5Ac) represents the most common terminal carbohydrate residue in many mammalian glycoconjugates and is directly involved in a number of different physiological as well as pathological cellular processes. Endogenous sialic acids derive from the biosynthetic precursor molecule N-acetyl-D-mannosamine (ManNAc). Interestingly, N-acyl-analogues of D-mannosamine (ManN) can also be incorporated and converted into corresponding artificial sialic acids by eukaryotic cells. Within this study, we optimized a protocol for the chemical synthesis of various peracetylated ManN derivatives resulting in yields of approximately 100%. Correct molecular structures of the obtained products ManNAc, N-propanoyl-ManN (ManNProp) and N-butyl-ManN (ManNBut) were verified by GC-, ESI-MS- and NMR-analyses. By applying these substances to human umbilical vein endothelial cells (HUVECs), we could show that each derivative was metabolized to the corresponding N-acylneuraminic acid variant and subsequently incorporated into nascent glycoproteins. To investigate whether natural and/or artificial sialic acid precursors are able to modulate the angiogenic capacity of HUVECs, a spheroid assay was performed. By this means, an increase in total capillary length has been observed when cells incorporated N-butylneuraminic acid (Neu5But) into their glycoconjugates. In contrast, the natural precursor ManNAc inhibited the growth of capillaries. Thus, sialic acid precursors may represent useful agents to modulate blood vessel formation.
Collapse
|
13
|
Keys TG, Fuchs HLS, Galuska SP, Gerardy-Schahn R, Freiberger F. A single amino acid toggles Escherichia coli polysialyltransferases between mono- and bifunctionality. Glycobiology 2013; 23:613-8. [DOI: 10.1093/glycob/cwt003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|