1
|
Hawley JA, Forster SC, Giles EM. Exercise, Gut Microbiome, and Gastrointestinal Diseases: Therapeutic Impact and Molecular Mechanisms. Gastroenterology 2025:S0016-5085(25)00329-4. [PMID: 39978410 DOI: 10.1053/j.gastro.2025.01.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
The benefits of regular physical activity (PA) on disease prevention and treatment outcomes have been recognized for centuries. However, only recently has interorgan communication triggered by the release of "myokines" from contracting skeletal muscles emerged as a putative mechanism by which exercise confers protection against numerous disease states. Cross-talk between active skeletal muscles and the gut microbiota reveal how regular PA boosts host immunity, facilitates a more diverse gut microbiome and functional metabolome, and plays a positive role in energy homeostasis and metabolic regulation. In contrast, and despite the large interindividual variation in the human gut microbiome, reduced microbial diversity has been implicated in several diseases of the gastrointestinal (GI) tract, systemic immune diseases, and cancers. Although prolonged, intense, weight-bearing exercise conducted in extreme conditions can increase intestinal permeability, compromising gut-barrier function and resulting in both upper and lower GI symptoms, these are transient and benign. Accordingly, the gut microbiome has become an attractive target for modulating many of the positive effects of regular PA on GI health and disease, although the precise dose of exercise required to induce favourable changes in the microbiome and enhance host immunity is currently unknown. Future efforts should concentrate on gaining a deeper understanding of the factors involved in exercise-gut interactions through the generation of functional 'omics readouts (ie, metatranscriptomics, metaproteomics, and metabolomics) that have the potential to identify functional traits of the microbiome that are linked to host health and disease states, and validating these interactions in experimental and preclinical systems. A greater understanding of how PA interacts with the GI tract and the microbiome may enable targeted therapeutic strategies to be developed for individuals and populations at risk for a variety of GI diseases.
Collapse
Affiliation(s)
- John A Hawley
- The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, United Kingdom.
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Edward M Giles
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Kostka M, Morys J, Małecki A, Nowacka-Chmielewska M. Muscle-brain crosstalk mediated by exercise-induced myokines - insights from experimental studies. Front Physiol 2024; 15:1488375. [PMID: 39687518 PMCID: PMC11647023 DOI: 10.3389/fphys.2024.1488375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Over the past couple of decades, it has become apparent that skeletal muscles might be engaged in endocrine signaling, mostly as a result of exercise or physical activity in general. The importance of this phenomenon is currently studied in terms of the impact that exercise- or physical activity -induced signaling factors have, in the interaction of the "muscle-brain crosstalk." So far, skeletal muscle-derived myokines were demonstrated to intercede in the connection between muscles and a plethora of various organs such as adipose tissue, liver, or pancreas. However, the exact mechanism of muscle-brain communication is yet to be determined. It is speculated that, in particular, brain-derived neurotrophic factor (BDNF), irisin, cathepsin B (CTSB), interleukin 6 (IL-6), and insulin-like growth factor-1 (IGF-1) partake in this crosstalk by promoting neuronal proliferation and synaptic plasticity, also resulting in improved cognition and ameliorated behavioral alterations. Researchers suggest that myokines might act directly on the brain parenchyma via crossing the blood-brain barrier (BBB). The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and central nervous system (CNS) impairments. Although the hypothesis of skeletal muscles being critical sources of myokines seems promising, it should not be forgotten that the origin of these factors might vary, depending on the cell types engaged in their synthesis. Limited amount of research providing information on alterations in myokines expression in various organs at the same time, results in taking them only as circumstantial evidence on the way to determine the actual involvement of skeletal muscles in the overall state of homeostasis. The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and CNS impairments.
Collapse
Affiliation(s)
| | | | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
3
|
Chen W, Zheng H, Liao Q, Zeng S, Bai R, Shi J, Jiang Y, Wang T, Jia H, Liang W, Du W, Chen H. Zhuang-Gu-Fang promotes osteoblast differentiation via myoblasts and myoblast-derived exosomal miRNAs:miR-5100, miR-126a-3p, miR-450b-5p, and miR-669a-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155718. [PMID: 38795694 DOI: 10.1016/j.phymed.2024.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Senile osteoporosis (SOP) is an age-related systemic metabolic bone disorder. Previous studies have proved that Zhuang-Gu-Fang (ZGF) modulates myokines, stimulates osteogenic differentiation, and mitigates osteoporosis. OBJECTIVE To elucidate the mechanism by which ZGF promotes osteogenic differentiation via myoblast and myoblast exosomal microRNAs (miRNAs) and investigate its potential implications in senile osteoporosis. METHODS Characterization of ZGF and ZGF serum using UHPLC-MS/MS. An alkaline phosphatase (ALP) activity assay and staining techniques were employed to corroborate the impacts of ZGF on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via myoblasts. Subsequently, exosomes derived from myoblasts were isolated through ultracentrifugation. The effects of ZGF on the BMSCs' osteogenic differentiation were substantiated through ALP activity, alizarin red staining, and a quantitative real-time polymerase reaction system (qRT-PCR). Selected miRNAs were identified via high-throughput sequencing and subjected to differential expression analysis, and subsequently validated through qRT-PCR. The senescence-accelerated (SAMP6) mice were selected as the SOP models. qRT-PCR analyses were further conducted to confirm the expression levels of these selected miRNAs in the muscle and bone tissues of the SAMP6 mice, and the protein expression of osteogenesis-related transcription factors OCN and Osterix in its bone tissue was evaluated by immunofluorescence staining analysis (IF). RESULTS ZGF may enhance the osteogenic differentiation of BMSCs through myoblasts and myoblast-derived exosomes. High-throughput sequencing, differential expression analysis, and subsequent qRT-PCR validation identified four miRNAs that stood out due to their significant differential expression: miR-5100, miR-142a-3p, miR-126a-3p, miR-450b-5p and miR-669a-5p. Moreover, the mice experiment corroborated these findings, which revealed that ZGF not only up-regulated the expression of miR-5100, miR-450b-5p and miR-126a-3p in muscle and bone tissues but also concurrently down-regulated the expression of miR-669a-5p in these tissues. IF staining analysis indicated that ZGF can significantly increase the protein expression of the osteogenic transcription factors OCN and Osterix in the bone tissue of mice with SOP. CONCLUSIONS ZGF can promote osteogenic differentiation of osteoblasts, regulate bone metabolism, and thereby delay the process of SOP. Perhaps, its mechanism is to upregulate myoblast-derived exosomes miR-5100, miR-126a-3p, and miR-450b-5p or downregulate miR-669a-5p. This study reports for the first time that myoblast exosomes miR-669a-5p and miR-450b-5p are novel targets for the regulation of osteoblastic differentiation and the treatment of SOP.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China; Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning 530023, China.
| | - Hongxiang Zheng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Qiulan Liao
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Shiqi Zeng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Rui Bai
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China; Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, China
| | - Jun Shi
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning 530007, China
| | - Yunxia Jiang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning 530023, China
| | - Ting Wang
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Hongyang Jia
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Wei Liang
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Wei Du
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Haiqing Chen
- School of Graduate, Guangxi University of Chinese Medicine, Nanning 530001, China
| |
Collapse
|
4
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
5
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Myokines: Novel therapeutic targets for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1014581. [PMID: 36387916 PMCID: PMC9640471 DOI: 10.3389/fendo.2022.1014581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
With the increasing incidence of diabetic nephropathy (DN), there is an urgent need to find effective DN preventive and therapeutic modalities. It is widely believed that effective exercise is good for health. However, the beneficial role of exercise in kidney disease, especially in DN, and the underlying molecular mechanisms have rarely been reported. Muscle is not only an important motor organ but also an important endocrine organ, secreting a group of proteins called "myokines" into the blood circulation. Circulating myokines then move to various target organs to play different biological roles. In this review, we summarize the currently known myokines and the progress in research relating them to DN and discuss its potential as a therapeutic target for DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
6
|
Soendenbroe C, Andersen JL, Mackey AL. Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. Am J Physiol Cell Physiol 2021; 321:C317-C329. [PMID: 34161153 DOI: 10.1152/ajpcell.00174.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the neuromuscular junctions (NMJ) itself, affecting only that particular fiber, or through the death of a motor neuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review, we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review, we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy, young, and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
de Castro GS, Correia-Lima J, Simoes E, Orsso CE, Xiao J, Gama LR, Gomes SP, Gonçalves DC, Costa RGF, Radloff K, Lenz U, Taranko AE, Bin FC, Formiga FB, de Godoy LGL, de Souza RP, Nucci LHA, Feitoza M, de Castro CC, Tokeshi F, Alcantara PSM, Otoch JP, Ramos AF, Laviano A, Coletti D, Mazurak VC, Prado CM, Seelaender M. Myokines in treatment-naïve patients with cancer-associated cachexia. Clin Nutr 2020; 40:2443-2455. [PMID: 33190987 DOI: 10.1016/j.clnu.2020.10.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Cancer-associated cachexia is a complex metabolic syndrome characterized by weight loss and systemic inflammation. Muscle loss and fatty infiltration into muscle are associated with poor prognosis in cancer patients. Skeletal muscle secretes myokines, factors with autocrine, paracrine and/or endocrine action, which may be modified by or play a role in cachexia. This study examined myokine content in the plasma, skeletal muscle and tumor homogenates from treatment-naïve patients with gastric or colorectal stages I-IV cancer with cachexia (CC, N = 62), or not (weight stable cancer, WSC, N = 32). Myostatin, interleukin (IL) 15, follistatin-like protein 1 (FSTL-1), fatty acid binding protein 3 (FABP3), irisin and brain-derived neurotrophic factor (BDNF) protein content in samples was measured with Multiplex technology; body composition and muscle lipid infiltration were evaluated in computed tomography, and quantification of triacylglycerol (TAG) in the skeletal muscle. Cachectic patients presented lower muscle FSTL-1 expression (p = 0.047), higher FABP3 plasma content (p = 0.0301) and higher tumor tissue expression of FABP3 (p = 0.0182), IL-15 (p = 0.007) and irisin (p = 0.0110), compared to WSC. Neither muscle TAG content, nor muscle attenuation were different between weight stable and cachectic patients. Lumbar adipose tissue (AT) index, visceral AT index and subcutaneous AT index were lower in CC (p = 0.0149, p = 0.0455 and p = 0.0087, respectively), who also presented lower muscularity in the cohort (69.2% of patients; p = 0.0301), compared to WSC. The results indicate the myokine profile in skeletal muscle, plasma and tumor is impacted by cachexia. These findings show that myokines eventually affecting muscle wasting may not solely derive from the muscle itself (as the tumor also may contribute to the systemic scenario), and put forward new perspectives on cachexia treatment targeting myokines and associated receptors and pathways.
Collapse
Affiliation(s)
- Gabriela S de Castro
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil.
| | - Joanna Correia-Lima
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Estefania Simoes
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Camila E Orsso
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada
| | - Jingjie Xiao
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada; Covenant Health Palliative Institute, Edmonton, Alberta, Canada
| | - Leonardo R Gama
- Departamento de Radiologia e Oncologia & Instituto do Câncer do Estado de São Paulo, Universidade de Sao Paulo, São Paulo, Brazil
| | - Silvio P Gomes
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil; Universidade de Sao Paulo Faculdade de Medicina Veterinaria, Departamento de Cirurgia, Brazil
| | - Daniela Caetano Gonçalves
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil; Universidade Federal de Sao Paulo, Instituto de Biociencias, Santos, Brazil
| | - Raquel G F Costa
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Katrin Radloff
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Ulrike Lenz
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Anna E Taranko
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Fang Chia Bin
- Santa Casa de Misericoria de Sao Paulo, São Paulo, Brazil
| | | | | | | | - Luis H A Nucci
- Instituto do Cancer Arnaldo Vieira de Carvalho, São Paulo, Brazil
| | - Mario Feitoza
- Instituto do Cancer Arnaldo Vieira de Carvalho, São Paulo, Brazil
| | - Claudio C de Castro
- Universidade de Sao Paulo Faculdade de Medicina, Departamento de Radiologia, São Paulo, Brazil; Universidade de Sao Paulo Hospital Universitario, São Paulo, Brazil
| | - Flavio Tokeshi
- Universidade de Sao Paulo Hospital Universitario, São Paulo, Brazil
| | | | - Jose P Otoch
- Universidade de Sao Paulo Hospital Universitario, São Paulo, Brazil
| | - Alexandre F Ramos
- Departamento de Radiologia e Oncologia & Instituto do Câncer do Estado de São Paulo, Universidade de Sao Paulo, São Paulo, Brazil; Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, São Paulo, Brazil
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Dario Coletti
- Sorbonne Université, Department of Biological Adaptation and Aging, B2A, Paris, France; Department of AHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Vera C Mazurak
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada
| | - Carla M Prado
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| |
Collapse
|
8
|
Le Gall L, Ouandaogo ZG, Anakor E, Connolly O, Butler Browne G, Laine J, Duddy W, Duguez S. Optimized method for extraction of exosomes from human primary muscle cells. Skelet Muscle 2020; 10:20. [PMID: 32641118 PMCID: PMC7341622 DOI: 10.1186/s13395-020-00238-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/22/2020] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle is increasingly considered an endocrine organ secreting myokines and extracellular vesicles (exosomes and microvesicles), which can affect physiological changes with an impact on different pathological conditions, including regenerative processes, aging, and myopathies. Primary human myoblasts are an essential tool to study the muscle vesicle secretome. Since their differentiation in conditioned media does not induce any signs of cell death or cell stress, artefactual effects from those processes are unlikely. However, adult human primary myoblasts senesce in long-term tissue culture, so a major technical challenge is posed by the need to avoid artefactual effects resulting from pre-senescent changes. Since these cells should be studied within a strictly controlled pre-senescent division count (<21 divisions), and yields of myoblasts per muscle biopsy are low, it is difficult or impossible to amplify sufficiently large cell numbers (some 250 × 106 myoblasts) to obtain sufficient conditioned medium for the standard ultracentrifugation approach to exosome isolation. Thus, an optimized strategy to extract and study secretory muscle vesicles is needed. In this study, conditions are optimized for the in vitro cultivation of human myoblasts, and the quality and yield of exosomes extracted using an ultracentrifugation protocol are compared with a modified polymer-based precipitation strategy combined with extra washing steps. Both vesicle extraction methods successfully enriched exosomes, as vesicles were positive for CD63, CD82, CD81, floated at identical density (1.15-1.27 g.ml−1), and exhibited similar size and cup-shape using electron microscopy and NanoSight tracking. However, the modified polymer-based precipitation was a more efficient strategy to extract exosomes, allowing their extraction in sufficient quantities to explore their content or to isolate a specific subpopulation, while requiring >30 times fewer differentiated myoblasts than what is required for the ultracentrifugation method. In addition, exosomes could still be integrated into recipient cells such as human myotubes or iPSC-derived motor neurons. Modified polymer-based precipitation combined with extra washing steps optimizes exosome yield from a lower number of differentiated myoblasts and less conditioned medium, avoiding senescence and allowing the execution of multiple experiments without exhausting the proliferative capacity of the myoblasts.
Collapse
Affiliation(s)
- Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | | | - Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | - Owen Connolly
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | | | - Jeanne Laine
- Centre for Research in Myology, INSERM UMRS_974, Sorbonne Université, Paris, France
| | - William Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, UK.
| |
Collapse
|
9
|
Gut microbiota and regulation of myokine-adipokine function. Curr Opin Pharmacol 2020; 52:9-17. [DOI: 10.1016/j.coph.2020.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/27/2022]
|
10
|
Florin A, Lambert C, Sanchez C, Zappia J, Durieux N, Tieppo AM, Mobasheri A, Henrotin Y. The secretome of skeletal muscle cells: A systematic review. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100019. [DOI: 10.1016/j.ocarto.2019.100019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
|
11
|
Fetuin-A – Alpha2-Heremans-Schmid Glycoprotein: From Structure to a Novel Marker of Chronic Diseases Part 2. Fetuin-A – A Marker of Insulin Resistance and Related Chronic Diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/jbcr-2018-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Fetuin-A is a secretory liver glycoprotein with multiple physiological functions such as regulation of insulin resistance, tissue calcification, bone metabolism, cellular proteolytic activity, and self-proliferative signaling.
Fetuin-A is a unique molecule which binds to the insulin receptor, modulating its sensitivity, and transducing “the physiological conditions” (serum levels of the metabolites like glucose, free fatty acids, inflammatory signals) from outside into inside the cells. Plasma fetuin-A levels correlate with reduced glucose tolerance and insulin resistance. Impaired insulin sensitivity leads to the development of metabolic syndrome, an increased risk for type 2 diabetes (T2DM), dyslipidaemias and cardiovascular diseases (CVDs). Furthermore, fetuin-A inversely correlates with inflammatory and activation biomarkers, e.g. in patients with T2DM. Thus, circulatory fetuin-A levels may have plausible predictive importance as a biomarker of risk of diabetes and negative acute phase protein. Dysregulated, it plays a crucial role in the pathogenesis of some metabolic disorders and clinical inflammatory conditions like metabolic syndrome, T2DM, CVDs, polycystic ovary syndrome (PCOS), etc.
Collapse
|
12
|
Motta VF, Bargut TL, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Browning is activated in the subcutaneous white adipose tissue of mice metabolically challenged with a high-fructose diet submitted to high-intensity interval training. J Nutr Biochem 2019; 70:164-173. [PMID: 31207355 DOI: 10.1016/j.jnutbio.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/01/2018] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Fructose may induce an endocrine dysfunction in adipose tissue in rodents. Browning is identified by deposits of beige adipocytes in subcutaneous white adipose tissue (sWAT). We study the effects of the high-intensity interval training (HIIT) on the formation of beige adipocytes in the sWAT of mice fed a high-fructose diet. Sixty male mice (3 months old; C57BL/6) were fed two diets for 18 weeks (n=30 each): control diet (C) or high-fructose diet (F). At the 10th week, for an additional 8-week period, the groups were (n=15 each) nontrained (NT) or trained (HIIT): C-NT, C-HIIT, F-NT and F-HIIT. We evaluated body mass, energy expenditure and molecular analyses for browning and thermogenic markers in sWAT. The HIIT groups showed significantly lower body mass and increased energy expenditure. The consumption of fructose was linked with an increased sWAT mass. However, HIIT caused a reduction of sWAT mass compared to the NT groups. Energy intake was parallel in the groups, regardless of the diet type and HIIT. Fructose was related to higher glucose and insulin levels and hypertrophied sWAT adipocytes, but HIIT decreased both glucose and insulin levels and led to the appearance of brown fat-like adipocytes dispersed in sWAT with higher expression of browning markers. Also, fructose reduced the sWAT markers of mitochondrial biogenesis and beta-oxidation, which were enhanced by HIIT. In conclusion, HIIT might stimulate the sWAT browning in mice fed a high-fructose diet associated with beneficial changes in mitochondrial biogenesis and beta-oxidation markers, contributing to a whole-body metabolic improvement.
Collapse
Affiliation(s)
- Victor F Motta
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| | - Thereza L Bargut
- Basic Sciences Department, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Brazil.
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Wu Y, Han M, Wang Y, Gao Y, Cui X, Xu P, Ji C, Zhong T, You L, Zeng Y. A Comparative Peptidomic Characterization of Cultured Skeletal Muscle Tissues Derived From db/db Mice. Front Endocrinol (Lausanne) 2019; 10:741. [PMID: 31736878 PMCID: PMC6828820 DOI: 10.3389/fendo.2019.00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
As an important secretory organ, skeletal muscle has drawn attention as a potential target tissue for type 2 diabetic mellitus (T2DM). Recent peptidomics approaches have been applied to identify secreted peptides with potential bioactive. However, comprehensive analysis of the secreted peptides from skeletal muscle tissues of db/db mice and elucidation of their possible roles in insulin resistance remains poorly characterized. Here, we adopted a label-free discovery using liquid chromatography tandem mass spectrometry (LC-MS/MS) technology and identified 63 peptides (42 up-regulated peptides and 21 down-regulated peptides) differentially secreted from cultured skeletal muscle tissues of db/db mice. Analysis of relative molecular mass (Mr), isoelectric point (pI) and distribution of Mr vs pI of differentially secreted peptides presented the general feature. Furthermore, Gene ontology (GO) and pathway analyses for the parent proteins made a comprehensive functional assessment of these differential peptides, indicating the enrichment in glycolysis/gluconeogenesis and striated muscle contraction processes. Intercellular location analysis pointed out most precursor proteins of peptides were cytoplasmic or cytoskeletal. Additionally, cleavage site analysis revealed that Lysine (N-terminal)-Alanine (C-terminal) and Lysine (N-terminal)-Leucine (C-terminal) represents the preferred cleavage sites for identified peptides and proceeding peptides respectively. Mapped to the precursors' sequences, most identified peptides were observed cleaved from creatine kinase m-type (KCRM) and fructose-bisphosphate aldolase A (Aldo A). Based on UniProt and Pfam database for specific domain structure or motif, 44 peptides out of total were positioned in the functional motif or domain from their parent proteins. Using C2C12 myotubes as cell model in vitro, we found several candidate peptides displayed promotive or inhibitory effects on insulin and mitochondrial-related pathways by an autocrine manner. Taken together, this study will encourage us to investigate the biologic functions and the potential regulatory mechanism of these secreted peptides from skeletal muscle tissues, thus representing a promising strategy to treat insulin resistance as well as the associated metabolic disorders.
Collapse
Affiliation(s)
- Yanting Wu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Affiliated Maternity and Child Health Care Hospital of Nantong University, NanTong, China
| | - Mei Han
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Tianying Zhong
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- *Correspondence: Lianghui You
| | - Yu Zeng
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Yu Zeng
| |
Collapse
|
14
|
Delezie J, Handschin C. Endocrine Crosstalk Between Skeletal Muscle and the Brain. Front Neurol 2018; 9:698. [PMID: 30197620 PMCID: PMC6117390 DOI: 10.3389/fneur.2018.00698] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle is an essential regulator of energy homeostasis and a potent coordinator of exercise-induced adaptations in other organs including the liver, fat or the brain. Skeletal muscle-initiated crosstalk with other tissues is accomplished though the secretion of myokines, protein hormones which can exert autocrine, paracrine and long-distance endocrine effects. In addition, the enhanced release or uptake of metabolites from and into contracting muscle cells, respectively, likewise can act as a powerful mediator of tissue interactions, in particular in regard to the central nervous system. The present review will discuss the current stage of knowledge regarding how exercise and the muscle secretome improve a broad range of brain functions related to vascularization, neuroplasticity, memory, sleep and mood. Even though the molecular and cellular mechanisms underlying the communication between muscle and brain is still poorly understood, physical activity represents one of the most effective strategies to reduce the prevalence and incidence of depression, cognitive, metabolic or degenerative neuronal disorders, and thus warrants further study.
Collapse
|
15
|
The effect of two intensities resistance training on muscle growth regulatory myokines in sedentary young women. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.obmed.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Pourteymour S, Eckardt K, Holen T, Langleite T, Lee S, Jensen J, Birkeland KI, Drevon CA, Hjorth M. Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines. Mol Metab 2017; 6:352-365. [PMID: 28377874 PMCID: PMC5369209 DOI: 10.1016/j.molmet.2017.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
Objective Skeletal muscle is an important secretory organ, producing and releasing numerous myokines, which may be involved in mediating beneficial health effects of physical activity. More than 100 myokines have been identified by different proteomics approaches, but these techniques may not detect all myokines. We used mRNA sequencing as an untargeted approach to study gene expression of secreted proteins in skeletal muscle upon acute as well as long-term exercise. Methods Twenty-six middle-aged, sedentary men underwent combined endurance and strength training for 12 weeks. Skeletal muscle biopsies from m. vastus lateralis and blood samples were taken before and after an acute bicycle test, performed at baseline as well as after 12 weeks of training intervention. We identified transcripts encoding secretory proteins that were changed more than 1.5-fold in muscle after exercise. Secretory proteins were defined based on either curated UniProt annotations or predictions made by multiple bioinformatics methods. Results This approach led to the identification of 161 candidate secretory transcripts that were up-regulated after acute exercise and 99 that where increased after 12 weeks exercise training. Furthermore, 92 secretory transcripts were decreased after acute and/or long-term physical activity. From these responsive transcripts, we selected 17 candidate myokines sensitive to short- and/or long-term exercise that have not been described as myokines before. The expression of these transcripts was confirmed in primary human skeletal muscle cells during in vitro differentiation and electrical pulse stimulation (EPS). One of the candidates we identified was macrophage colony-stimulating factor-1 (CSF1), which influences macrophage homeostasis. CSF1 mRNA increased in skeletal muscle after acute and long-term exercise, which was accompanied by a rise in circulating CSF1 protein. In cultured muscle cells, EPS promoted a significant increase in the expression and secretion of CSF1. Conclusion We identified 17 new, exercise-responsive transcripts encoding secretory proteins. We further identified CSF1 as a novel myokine, which is secreted from cultured muscle cells and up-regulated in muscle and plasma after acute exercise. Numerous transcripts were identified that were regulated in human skeletal muscle after acute and/or long-term exercise. These transcripts encode potential myokines, which may play key roles in local and systemic adaptations to exercise. CSF1 was identified as a novel myokine. CSF1 was increased after acute exercise, and secreted from cultured human myotubes in response to EPS.
Collapse
Affiliation(s)
- S Pourteymour
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - K Eckardt
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - T Holen
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - T Langleite
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - J Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - K I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - C A Drevon
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - M Hjorth
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
17
|
Padrão AI, Ferreira R, Amado F, Vitorino R, Duarte JA. Uncovering the exercise-related proteome signature in skeletal muscle. Proteomics 2016; 16:816-30. [PMID: 26632760 DOI: 10.1002/pmic.201500382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023]
Abstract
Exercise training has been recommended as a nonpharmacological strategy for the prevention and attenuation of skeletal muscle atrophy in distinct pathophysiological conditions. Despite the well-established phenotypic alterations, the molecular mechanisms underlying exercise-induced skeletal muscle remodeling are poorly characterized. Proteomics based on mass spectrometry have been successfully applied for the characterization of skeletal muscle proteome, representing a pivotal approach for the wide characterization of the molecular networks that lead to skeletal muscle remodeling. Nevertheless, few studies were performed to characterize the exercise-induced proteome remodeling of skeletal muscle, with only six research papers focused on the cross-talk between exercise and pathophysiological conditions. In order to add new insights on the impact of distinct exercise programs on skeletal muscle proteome, molecular network analysis was performed with bioinformatics tools. This analysis highlighted an exercise-related proteome signature characterized by the up-regulation of the capacity for ATP generation, oxygen delivery, antioxidant capacity and regulation of mitochondrial protein synthesis. Chronic endurance training up-regulates the tricarboxylic acid cycle and oxidative phosphorylation system, whereas the release of calcium ion into cytosol and amino acid metabolism are the biological processes up-regulated by a single bout of exercise. Other issues as exercise intensity, load, mode and regimen as well as muscle type also influence the exercise-induced proteome signature. The comprehensive analysis of the molecular networks modulated by exercise training in health and disease, taking in consideration all these variables, might not only support the therapeutic effect of exercise but also highlight novel targets for the development of enhanced pharmacological strategies.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CIAFEL, Faculty of Sports, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute for Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
18
|
Hjorth M, Pourteymour S, Görgens SW, Langleite TM, Lee S, Holen T, Gulseth HL, Birkeland KI, Jensen J, Drevon CA, Norheim F. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells. Acta Physiol (Oxf) 2016; 217:45-60. [PMID: 26572800 DOI: 10.1111/apha.12631] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
AIM Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. METHODS Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. RESULTS Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. CONCLUSION Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- M. Hjorth
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. Pourteymour
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - T. M. Langleite
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - S. Lee
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - T. Holen
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - H. L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - K. I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - J. Jensen
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - C. A. Drevon
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - F. Norheim
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
19
|
Insenser M, Montes-Nieto R, Martínez-García MÁ, Escobar-Morreale HF. A nontargeted study of muscle proteome in severely obese women with androgen excess compared with severely obese men and nonhyperandrogenic women. Eur J Endocrinol 2016; 174:389-98. [PMID: 26671973 DOI: 10.1530/eje-15-0912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Androgen excess in women is frequently associated with muscle insulin resistance, especially in obese women with polycystic ovary syndrome. However, whether this is a primary event or the result of indirect mechanisms is currently debated. DESIGN This is an observational study. METHODS We obtained skeletal muscle biopsies during bariatric surgery from severely obese men (n=6) and women with (n=5) or without (n=5) androgen excess. We used two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry to identify muscle proteins showing differences in abundance between the groups of obese subjects. RESULTS Women with hyperandrogenism presented the lowest abundances of glycogen phosphorylase, pyruvate kinase, β-enolase, glycerol-3-phosphate dehydrogenase, creatine kinase M-type, and desmin, whereas the abundances of these molecules were similar in control women and men. CONCLUSION According to our nontargeted proteomic approach, women with hyperandrogenism show a specific alteration of the skeletal muscle proteome that could contribute to their insulin resistance. Because men do not show similar results, this alteration does not appear to be the direct effect on muscle of androgen excess, but rather the consequence of indirect mechanisms that merit further studies.
Collapse
Affiliation(s)
- María Insenser
- DiabetesObesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Carretera de Colmenar km 9,1, E-28034 Madrid, Spain
| | - Rafael Montes-Nieto
- DiabetesObesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Carretera de Colmenar km 9,1, E-28034 Madrid, Spain
| | - M Ángeles Martínez-García
- DiabetesObesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Carretera de Colmenar km 9,1, E-28034 Madrid, Spain
| | - Héctor F Escobar-Morreale
- DiabetesObesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Carretera de Colmenar km 9,1, E-28034 Madrid, Spain
| |
Collapse
|
20
|
Bigot A, Duddy WJ, Ouandaogo ZG, Negroni E, Mariot V, Ghimbovschi S, Harmon B, Wielgosik A, Loiseau C, Devaney J, Dumonceaux J, Butler-Browne G, Mouly V, Duguez S. Age-Associated Methylation Suppresses SPRY1, Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle. Cell Rep 2015; 13:1172-1182. [PMID: 26526994 DOI: 10.1016/j.celrep.2015.09.067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 11/26/2022] Open
Abstract
The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated methylation in humans inhibits the replenishment of the muscle stem cell pool, contributing to a decreased regenerative response in old age. We further show that aging does not affect muscle stem cell senescence in humans.
Collapse
Affiliation(s)
- Anne Bigot
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - William J Duddy
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Zamalou G Ouandaogo
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Elisa Negroni
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Virginie Mariot
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Svetlana Ghimbovschi
- Genomics, Proteomics, and Bioinformatics (GPB) Core of the Intellectual and Developmental Disabilities Research Center (IDDRC), Children's National Medical Center, Washington, DC 20010, USA
| | - Brennan Harmon
- Genomics, Proteomics, and Bioinformatics (GPB) Core of the Intellectual and Developmental Disabilities Research Center (IDDRC), Children's National Medical Center, Washington, DC 20010, USA
| | - Aurore Wielgosik
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Camille Loiseau
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France; Sorbonne Universités, UPMC University of Paris 06, INSERM, UMR-S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris 13, France
| | - Joe Devaney
- Genomics, Proteomics, and Bioinformatics (GPB) Core of the Intellectual and Developmental Disabilities Research Center (IDDRC), Children's National Medical Center, Washington, DC 20010, USA
| | - Julie Dumonceaux
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France.
| | - Stéphanie Duguez
- Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France.
| |
Collapse
|
21
|
Thorley M, Malatras A, Duddy W, Le Gall L, Mouly V, Butler Browne G, Duguez S. Changes in Communication between Muscle Stem Cells and their Environment with Aging. J Neuromuscul Dis 2015; 2:205-217. [PMID: 27858742 PMCID: PMC5240546 DOI: 10.3233/jnd-150097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with both muscle weakness and a loss of muscle mass, contributing towards overall frailty in the elderly. Aging skeletal muscle is also characterised by a decreasing efficiency in repair and regeneration, together with a decline in the number of adult stem cells. Commensurate with this are general changes in whole body endocrine signalling, in local muscle secretory environment, as well as in intrinsic properties of the stem cells themselves. The present review discusses the various mechanisms that may be implicated in these age-associated changes, focusing on aspects of cell-cell communication and long-distance signalling factors, such as levels of circulating growth hormone, IL-6, IGF1, sex hormones, and inflammatory cytokines. Changes in the local environment are also discussed, implicating IL-6, IL-4, FGF-2, as well as other myokines, and processes that lead to thickening of the extra-cellular matrix. These factors, involved primarily in communication, can also modulate the intrinsic properties of muscle stem cells, including reduced DNA accessibility and repression of specific genes by methylation. Finally we discuss the decrease in the stem cell pool, particularly the failure of elderly myoblasts to re-quiesce after activation, and the consequences of all these changes on general muscle homeostasis.
Collapse
Affiliation(s)
- Matthew Thorley
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Apostolos Malatras
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - William Duddy
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Laura Le Gall
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Gillian Butler Browne
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Stéphanie Duguez
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| |
Collapse
|
22
|
Comparative secretome analysis of rat stomach under different nutritional status. J Proteomics 2015; 116:44-58. [PMID: 25579404 DOI: 10.1016/j.jprot.2015.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/23/2014] [Accepted: 01/01/2015] [Indexed: 01/09/2023]
Abstract
UNLABELLED Obesity is a major public health threat for many industrialised countries. Bariatric surgery is the most effective treatment against obesity, suggesting that gut derived signals are crucial for energy balance regulation. Several descriptive studies have proven the presence of gastric endogenous systems that modulate energy homeostasis; however, these systems and the interactions between them are still not well known. In the present study, we show for the first time the comparative 2-DE gastric secretome analysis under different nutritional status. We have identified 38 differently secreted proteins by comparing stomach secretomes from tissue explant cultures of rats under feeding, fasting and re-feeding conditions. Among the proteins identified, glyceraldehyde-3-phosphate dehydrogenase was found to be more abundant in gastric secretome and plasma after re-feeding, and downregulated in obesity. Additionally, two calponin-1 species were decreased in feeding state, and other were modulated by nutritional and metabolic conditions. These and other secreted proteins identified in this work may be considered as potential gastrokines implicated in food intake regulation. BIOLOGICAL SIGNIFICANCE The present work has an important impact in the field of obesity, especially in the regulation of body weight maintenance by the stomach. Nowadays, the most effective treatment in the fight against obesity is bariatric surgery, which suggests that stomach derived signals might be crucial for the regulation of the energy homeostasis. However, until now, the knowledge about the gastrokines and its mechanism of action has been poorly elucidated. In the present work, we had updated a previously validated explant secretion model for proteomic studies; this analysis allowed us, for the first time, to study the gastric secretome without interferences from other organs. We had identified 38 differently secreted proteins comparing ex vivo cultured stomachs from rats under feeding, fasting and re-feeding regimes. The results in the present article provide novel targets to study the role of the stomach in body weight and appetite regulation, and suggest new potential therapeutic targets for treating obesity.
Collapse
|
23
|
Kraemer RR, Castracane VD. Novel insights regarding mechanisms for treatment of sarcopenia. Metabolism 2015; 64:160-2. [PMID: 25467382 DOI: 10.1016/j.metabol.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Robert R Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA 70402, USA.
| | - V Daniel Castracane
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, 701 W. 5th St. Odessa, TX 79763, USA
| |
Collapse
|
24
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
25
|
Weigert C, Lehmann R, Hartwig S, Lehr S. The secretome of the working human skeletal muscle--a promising opportunity to combat the metabolic disaster? Proteomics Clin Appl 2014; 8:5-18. [PMID: 24376246 DOI: 10.1002/prca.201300094] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 12/02/2013] [Indexed: 01/08/2023]
Abstract
Recent years have provided clear evidence for the skeletal muscle as an endocrine organ. Muscle contraction during physical activity has emerged as an important activator of the release of the proteins and peptides called "myokines." Diverse proteomic profiling approaches were applied to rodent and human skeletal muscle cells to characterize the complete secretome, to study the regulation of the secretome during cell differentiation or the release of myokines upon contractile activity of myotubes. Several of the exercise-regulated factors have the potency to mediate an interorgan crosstalk. The paracrine function of the secreted peptides and proteins to regulate muscle regeneration, tissue remodeling, and trainability can have direct effects on whole-body glucose disposal and oxygen consumption. The overall composition and dynamic of the myokinome are still incompletely characterized. Recent advantages in metabolomics and lipidomics will add metabolites and lipids with autocrine, paracrine, or endocrine function to the contraction-induced secretome of the skeletal muscle. The identification of these metabolites will lead to a more comprehensive view described by a new myo(metabo)kinome consisting of peptides, proteins, and metabolites.
Collapse
Affiliation(s)
- Cora Weigert
- Division of Endocrinology, Diabetology, Angiology, Nephrology, Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine, University of Tuebingen, Tuebingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | | | | |
Collapse
|
26
|
Abstract
Skeletal muscle is the largest organ in the body and contributes to innumerable aspects of organismal biology. Muscle dysfunction engenders numerous diseases, including diabetes, cachexia, and sarcopenia. At the same time, skeletal muscle is also the main engine of exercise, one of the most efficacious interventions for prevention and treatment of a wide variety of diseases. The transcriptional coactivator PGC-1α has emerged as a key driver of metabolic programming in skeletal muscle, both in health and in disease. We review here the many aspects of PGC-1α function in skeletal muscle, with a focus on recent developments.
Collapse
Affiliation(s)
- Mun Chun Chan
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Zolt Arany
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School.
| |
Collapse
|
27
|
Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care 2014; 17:124-9. [PMID: 24500438 DOI: 10.1097/mco.0000000000000031] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to review recent evidence for the role of the cytosolic fatty acid binding proteins (FABPs) as central regulators of whole-body metabolic control. RECENT FINDINGS Dysregulated FABPs have been associated with a number of diseases, including obesity and nonalcoholic fatty liver disease (FABP1, FABP2, FABP4), cardiovascular risk (FABP3) and cancer (FABP5, FABP7). As underlying mechanisms become better understood, FABPs may represent novel biomarkers for therapeutic targets. In addition, the role of FABPs as important signalling molecules has also been highlighted in recent years; for example, FABP3 may act as a myokine, matching whole-body metabolism to muscular energy demands and FABP4 functions as an adipokine in regulating macrophage and adipocyte interactions during inflammation. SUMMARY In addition to their traditional role as fatty acid trafficking proteins, increasing evidence supports the role of FABPs as important controllers of global metabolism, with their dysregulation being linked to a host of metabolic diseases.
Collapse
Affiliation(s)
- Alfred E Thumser
- aDepartment of Biochemistry and Physiology bDepartment of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | |
Collapse
|
28
|
Catoire M, Mensink M, Kalkhoven E, Schrauwen P, Kersten S. Identification of human exercise-induced myokines using secretome analysis. Physiol Genomics 2014; 46:256-67. [PMID: 24520153 DOI: 10.1152/physiolgenomics.00174.2013] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endurance exercise is associated with significant improvements in cardio-metabolic risk parameters. A role for myokines has been hypothesized, yet limited information is available about myokines induced by acute endurance exercise in humans. Therefore, the aim of the study was to identify novel exercise-induced myokines in humans. To this end, we carried out a 1 h one-legged acute endurance exercise intervention in 12 male subjects and a 12 wk exercise training intervention in 18 male subjects. Muscle biopsies were taken before and after acute exercise or exercise training and were subjected to microarray-based analysis of secreted proteins (secretome). For acute exercise, secretome analysis resulted in a list of 86 putative myokines, which was reduced to 29 by applying a fold-change cut-off of 1.5. Based on that shortlist, a selection of putative myokines was measured in the plasma by ELISA or multiplex assay. From that selection, CX3CL1 (fractalkine) and CCL2 (MCP-1) increased at both mRNA and plasma levels. From the known myokines, only IL-6 and FGF 21 changed at the mRNA level, whereas none of the known myokines changed at the plasma level. Secretome analysis of exercise training intervention resulted in a list of 69 putative myokines. Comparing putative myokines altered by acute exercise and exercise training revealed a limited overlap of only 13 genes. In conclusion, this study identified CX3CL1 and CCL2 as myokines that were induced by acute exercise at the gene expression and plasma level and that may be involved in communication between skeletal muscle and other organs.
Collapse
Affiliation(s)
- Milène Catoire
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
29
|
Li S, Li X, Wang Y, Yang J, Chen Z, Shan S. Global secretome characterization of A549 human alveolar epithelial carcinoma cells during Mycoplasma pneumoniae infection. BMC Microbiol 2014; 14:27. [PMID: 24507763 PMCID: PMC3922035 DOI: 10.1186/1471-2180-14-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (M. pneumoniae) is one of the major etiological agents for community-acquired pneumonia (CAP) in all age groups. The early host response to M. pneumoniae infection relies on the concerted release of proteins with various biological activities. However, no comprehensive analysis of the secretory proteins has been conducted to date regarding the host response upon M. pneumoniae infection. RESULTS We employed the liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based label-free quantitative proteomic technology to identify and characterize the members of the human alveolar epithelial carcinoma A549 cell secretome during M. pneumoniae infection. A total of 256 proteins were identified, with 113 being differentially expressed (>1.5-fold change), among which 9 were only expressed in control cells, 10 only in M. pneumoniae-treated cells, while 55 were up-regulated and 39 down-regulated by M. pneumoniae. The changed expression of some of the identified proteins was validated by RT-PCR and immunoblot analysis. Cellular localization analysis of the secretome data revealed 59.38% of the proteins were considered as "putative secretory proteins". Functional analysis revealed that the proteins affected upon M. pneumoniae infection were mainly related to metabolic process, stress response, and immune response. We further examined the level of one up-regulated protein, IL-33, in clinical samples. The result showed that IL-33 levels were significantly higher in the plasma and bronchoalveolar lavage fluid (BALF) of M. pneumoniae pneumonia (MPP) patients. CONCLUSIONS The present study provided systematic information about the changes in the expression of secretory proteins during M. pneumoniae infection, which is useful for the discovery of specific biomarkers and targets for pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | - Jun Yang
- Department of Pediatric Pulmonology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | | | | |
Collapse
|
30
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
31
|
Crujeiras AB, Pardo M, Arturo RR, Navas-Carretero S, Zulet MA, Martínez JA, Casanueva FF. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol 2013; 26:198-207. [PMID: 24375850 DOI: 10.1002/ajhb.22493] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The recently discovered peptide irisin has been hypothesized to be a regulator of body metabolism. The objective of this work was to evaluate whether circulating human irisin levels are modulated by body size and changes in adiposity during an energy restriction treatment and the subsequent weight regain. METHODS A group of 94 obese patients (50 men, 44 women; 49.4 ± 9.4 years; BMI 35.6 ± 4.5 kg/m(2) ) participated in a weight loss program following an 8-week hypocaloric diet (-30% energy expenditure) with a weight maintenance follow-up. The patients were evaluated at 0, 8, and 24 weeks after starting treatment. In addition, 48 normal-weight subjects (16 men, 32 women; 35.71 ± 8.8 years; BMI 22.9 ± 2.2 kg/m(2) ) participated as controls. Plasma irisin, body weight, body composition, and hormones controlling energy homeostasis were measured. RESULTS Irisin levels were higher in obese subjects (353.1 ± 18.6 ng/mL) than in those of normal-weight (198.4 ± 7.8 ng/mL; P ≤ 0.001) and were also higher in men (340.9 ± 20 ng/mL) than in women (267.6 ± 12 ng/mL; P < 0.05). Moreover, irisin plasma levels were significantly correlated with high levels of direct and indirect adiposity markers, such as weight, BMI, waist circumference, and fat mass, as measured by bioimpedance, but not with height or leptin levels. Interestingly, irisin levels paralleled body weight reduction after the dietary treatment (week 8) and again returned to the baseline levels at 24 weeks in those patients regaining the lost weight. CONCLUSIONS Irisin strongly reflects body fat mass, suggesting that the irisin circulating levels are conditioned by adiposity level.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain; Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Miyamoto L, Egawa T, Oshima R, Kurogi E, Tomida Y, Tsuchiya K, Hayashi T. AICAR stimulation metabolome widely mimics electrical contraction in isolated rat epitrochlearis muscle. Am J Physiol Cell Physiol 2013; 305:C1214-22. [PMID: 24088893 DOI: 10.1152/ajpcell.00162.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Physical exercise has potent therapeutic and preventive effects against metabolic disorders. A number of studies have suggested that 5'-AMP-activated protein kinase (AMPK) plays a pivotal role in regulating carbohydrate and lipid metabolism in contracting skeletal muscles, while several genetically manipulated animal models revealed the significance of AMPK-independent pathways. To elucidate significance of AMPK and AMPK-independent signals in contracting skeletal muscles, we conducted a metabolomic analysis that compared the metabolic effects of 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR) stimulation with the electrical contraction ex vivo in isolated rat epitrochlearis muscles, in which both α1- and α2-isoforms of AMPK and glucose uptake were equally activated. The metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry detected 184 peaks and successfully annotated 132 small molecules. AICAR stimulation exhibited high similarity to the electrical contraction in overall metabolites. Principal component analysis (PCA) demonstrated that the major principal component characterized common effects whereas the minor principal component distinguished the difference. PCA and a factor analysis suggested a substantial change in redox status as a result of AMPK activation. We also found a decrease in reduced glutathione levels in both AICAR-stimulated and contracting muscles. The muscle contraction-evoked influences related to the metabolism of amino acids, in particular, aspartate, alanine, or lysine, are supposed to be independent of AMPK activation. Our results substantiate the significance of AMPK activation in contracting skeletal muscles and provide novel evidence that AICAR stimulation closely mimics the metabolomic changes in the contracting skeletal muscles.
Collapse
Affiliation(s)
- Licht Miyamoto
- Laboratory of Pharmacology and Physiological Sciences, Frontier Laboratory for Pharmaceutical Sciences, Institute of Health Biosciences, University of Tokushima Graduate School, Sho-machi, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Baraibar MA, Gueugneau M, Duguez S, Butler-Browne G, Bechet D, Friguet B. Expression and modification proteomics during skeletal muscle ageing. Biogerontology 2013; 14:339-52. [PMID: 23624703 DOI: 10.1007/s10522-013-9426-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/17/2013] [Indexed: 12/17/2022]
Abstract
Skeletal muscle ageing is characterized by a progressive and dramatic loss of muscle mass and strength leading to decreased muscular function resulting in muscle weakness which is often referred to as sarcopenia. Following the standardisation of "omics" approaches to study the genome (genomics) and the transcriptome (transcriptomics), the study of the proteins encoded by the genome, referred to as proteomics, is a tremendous challenge. Unlike the genome, the proteome varies in response to many physiological or pathological factors. In addition, the proteome is orders of magnitude more complex than the transcriptome due to post-translational modifications, protein oxidation and limited protein degradation. Proteomic studies, including the analysis of protein abundance as well as post-translational modified proteins have been shown to provide valuable information to unravel the key molecular pathways implicated in complex biological processes, such as tissue and organ ageing. In this article, we will describe proteomic approaches for the analysis of protein abundance as well as the specific protein targets for oxidative damage upon oxidative stress and/or during skeletal muscle ageing.
Collapse
Affiliation(s)
- Martin A Baraibar
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, UPMC Paris 6 University, 4 place Jussieu, 75252, Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
34
|
Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Crujeiras AB, Seoane LM, Casanueva FF, Pardo M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013; 8:e60563. [PMID: 23593248 PMCID: PMC3623960 DOI: 10.1371/journal.pone.0060563] [Citation(s) in RCA: 461] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
Exercise provides clear beneficial effects for the prevention of numerous diseases. However, many of the molecular events responsible for the curative and protective role of exercise remain elusive. The recent discovery of FNDC5/irisin protein that is liberated by muscle tissue in response to exercise might be an important finding with regard to this unsolved mechanism. The most striking aspect of this myokine is its alleged capacity to drive brown-fat development of white fat and thermogenesis. However, the nature and secretion form of this new protein is controversial. The present study reveals that rat skeletal muscle secretes a 25 kDa form of FNDC5, while the 12 kDa/irisin theoretical peptide was not detected. More importantly, this study is the first to reveal that white adipose tissue (WAT) also secretes FNDC5; hence, it may also behave as an adipokine. Our data using rat adipose tissue explants secretomes proves that visceral adipose tissue (VAT), and especially subcutaneous adipose tissue (SAT), express and secrete FNDC5. We also show that short-term periods of endurance exercise training induced FNDC5 secretion by SAT and VAT. Moreover, we observed that WAT significantly reduced FNDC5 secretion in fasting animals. Interestingly, WAT of obese animals over-secreted this hormone, which might suggest a type of resistance. Because 72% of circulating FNDC5/irisin was previously attributed to muscle secretion, our findings suggest a muscle-adipose tissue crosstalk through a regulatory feedback mechanism.
Collapse
Affiliation(s)
- Arturo Roca-Rivada
- Grupo Obesidómica, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Cecilia Castelao
- Grupo Obesidómica, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Grupo Fisiopatología Endocrina, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Lucía L. Senin
- Grupo Fisiopatología Endocrina, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - María O. Landrove
- Grupo Obesidómica, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Javier Baltar
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Ana Belén Crujeiras
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Luisa María Seoane
- Grupo Fisiopatología Endocrina, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - María Pardo
- Grupo Obesidómica, Laboratorio de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|