1
|
Wang Y, Wang L, Luo L, Ning F, Li J. Precision of in Vivo Pesticide Toxicology Research Can Be Promoted by Mass Spectrometry Imaging Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8113-8128. [PMID: 40159138 DOI: 10.1021/acs.jafc.5c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pesticides are crucial for agricultural production, but their excessive use has become a significant pollution source, leading to increased pesticide residues in the environment and food and posing a threat to human health. In vivo pesticide toxicology research aims to protect humans with detection technology playing a key role. Spatial information plays a crucial role in in vivo pesticide toxicity research. However, current technologies cannot simultaneously analyze the content and spatial information on pesticides in vivo. Mass spectrometry imaging (MSI) technology can address this limitation by simultaneously analyzing the content and spatial distribution of chemicals in vivo with high sensitivity and efficiency, aiding in the discovery of toxic biomarkers and mechanisms. Nevertheless, the limited application of MSI in vivo pesticide toxicology research hinders the accuracy of such research. Therefore, MSI should be promoted to enhance the accuracy of in vivo pesticide toxicology research.
Collapse
Affiliation(s)
- Yunping Wang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lintai Wang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Wang Q, Cheng W, He T, Li S, Ao J, He Y, Duan C, Li X, Zhang J. Glycerophospholipid metabolic disorders and gender difference of cantharidin-induced hepatotoxicity in rats: Lipidomics and MALDI mass spectrometry imaging analysis. Chem Biol Interact 2025; 405:111314. [PMID: 39551422 DOI: 10.1016/j.cbi.2024.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The hepatotoxicity mechanism of cantharidin (CTD), a major active component of Mylabris was explored based on liver lipidome alterations and spatial distributions in female and male rats using lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). After oral CTD exposure, the livers of female rats were screened for 104 differential lipids including lysophosphatidylethanolamine(LysoPE)(20:2/0:0) and diacylglycerol(DG)(18:2/22:4), whereas the livers of male rats were screened for 76 differential lipids including fatty acid(FA)(24:6) and DG(18:0/22:4). According to the MALDI-MSI results, female rats exhibited 12 differential lipids with alteration in the abundance and spatial distribution of phosphatylcholine(PC), phosphatidylethanolamine(PE), lysophosphatidylcholine(LysoPC), and LysoPE in the liver lesion area. On the other hand, male rats exhibited 8 differential lipids with changes in the abundance and spatial distribution of PC, PE, and FA in the liver lesion area. The lipidomics- and MALDI-MSI-detected differential lipids strongly disrupted glycerophospholipid metabolism in both female and male rats. Additionally, phosphatidate phosphatase (Lipin1), choline/ethanolamine phosphotransferase 1 (CEPT1), and phosphatidylethanolamine N-methyltransferase (PEMT) were screened to distinguish CTD hepatoxicity in female and male rats. Western blotting analysis demonstrated a significant elevation in Lipin1 expression in female and male rat livers, accompanied by a decrease in PEMT expression. Furthermore, CEPT1 expression increased significantly in female rat livers and decreased significantly in male rat livers. These findings suggested that CTD could disrupt lipid metabolism in a gender-specific manner. Moreover, the combination of lipidomics and MALDI-MSI could offer valuable insights into CTD-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Qiyi Wang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Shan Li
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yanmei He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
van der Vloet L, Hilaire PBS, Bouillod C, Isin EM, Heeren RMA, Vandenbosch M. How can MSI enhance our understanding of ASO distribution? Drug Discov Today 2025; 30:104275. [PMID: 39701373 DOI: 10.1016/j.drudis.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
In the dynamic field of drug discovery and development, a comprehensive understanding of drug absorption, distribution, metabolism, excretion, and toxicity is crucial. Mass spectrometry imaging (MSI) has become a key analytical tool in the pharmaceutical industry, allowing evaluation of drug biodistribution and molecular profiles. Antisense oligonucleotides (ASOs) are emerging drug candidates for treating neurologic diseases. This review explores the potential of MSI in investigating ASOs' spatial distribution within neurological disease models. Here, we focus on multimodal molecular imaging to gain insights into ASO distribution, simultaneously with a better understanding of the molecular pathways affected by ASOs. An improved understanding of therapeutic ASOs in tissue will potentially improve neurologic therapies, emphasizing their importance in patient care.
Collapse
Affiliation(s)
- Laura van der Vloet
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | - Christophe Bouillod
- Institut de Recherche et Développement Servier Paris-Saclay, Rue Francis Perrin, 91190 Gif-sur-Yvette, France
| | - Emre M Isin
- Institut de Recherche et Développement Servier Paris-Saclay, Rue Francis Perrin, 91190 Gif-sur-Yvette, France
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
4
|
de Almeida CM, Dos Santos NA, Lacerda V, Ma X, Fernández FM, Romão W. Applications of MALDI mass spectrometry in forensic science. Anal Bioanal Chem 2024; 416:5255-5280. [PMID: 39160439 DOI: 10.1007/s00216-024-05470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Forensic chemistry literature has grown exponentially, with many analytical techniques being used to provide valuable information to help solve criminal cases. Among them, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), particularly MALDI MS imaging (MALDI MSI), has shown much potential in forensic applications. Due to its high specificity, MALDI MSI can analyze a wide variety of compounds in complex samples without extensive sample preparation, providing chemical profiles and spatial distributions of given analyte(s). This review introduces MALDI MS(I) to forensic scientists with a focus on its basic principles and the applications of MALDI MS(I) to the analysis of fingerprints, drugs of abuse, and their metabolites in hair, medicine samples, animal tissues, and inks in documents.
Collapse
Affiliation(s)
- Camila M de Almeida
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Nayara A Dos Santos
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
- Instituto Nacional de Ciência E Tecnologia Forense (INCT Forense), Vila Velha, Brazil
| | - Valdemar Lacerda
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wanderson Romão
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil.
- Instituto Nacional de Ciência E Tecnologia Forense (INCT Forense), Vila Velha, Brazil.
- Instituto Federal Do Espírito Santo (IFES), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo, 29106-010, Brazil.
| |
Collapse
|
5
|
Wang X, Peng R, Zhao L. Multiscale metabolomics techniques: Insights into neuroscience research. Neurobiol Dis 2024; 198:106541. [PMID: 38806132 DOI: 10.1016/j.nbd.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The field of metabolomics examines the overall composition and dynamic patterns of metabolites in living organisms. The primary methods used in metabolomics include liquid chromatography (LC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) analysis. These methods enable the identification and examination of metabolite types and contents within organisms, as well as modifications to metabolic pathways and their connection to the emergence of diseases. Research in metabolomics has extensive value in basic and applied sciences. The field of metabolomics is growing quickly, with the majority of studies concentrating on biomedicine, particularly early disease diagnosis, therapeutic management of human diseases, and mechanistic knowledge of biochemical processes. Multiscale metabolomics is an approach that integrates metabolomics techniques at various scales, including the holistic, tissue, cellular, and organelle scales, to enable more thorough and in-depth studies of metabolic processes in organisms. Multiscale metabolomics can be combined with methods from systems biology and bioinformatics. In recent years, multiscale metabolomics approaches have become increasingly important in neuroscience research due to the nervous system's high metabolic demands. Multiscale metabolomics can offer novel concepts and approaches for the diagnosis, treatment, and development of medication for neurological illnesses in addition to a more thorough understanding of brain metabolism and nervous system function. In this review, we summarize the use of multiscale metabolomics techniques in neuroscience, address the promise and constraints of these techniques, and provide an overview of the metabolome and its applications in neuroscience.
Collapse
Affiliation(s)
- Xiaoya Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
6
|
Soltwisch J, Palmer A, Hong H, Majer J, Dreisewerd K, Marshall P. Large-Scale Screening of Pharmaceutical Compounds to Explore the Application Space of On-Tissue MALDI and MALDI-2 Mass Spectrometry. Anal Chem 2024; 96:10294-10301. [PMID: 38864171 DOI: 10.1021/acs.analchem.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI. Our evaluation was made under simulated imaging conditions using liver homogenate sections as substrate, onto which the compounds were spotted to mimic biological conditions to the first order. To enable an evaluable detection by both MALDI and MALDI-2 for the majority of employed compounds, we spotted 1 μL of a 10 mM solution using a spotting robot and performed our experiments with a Bruker timsTOF fleX MALDI-2 instrument in both positive and negative ion modes. Specifically, we demonstrate using a large cohort of drug-like compounds that ∼60% of the tested compounds showed a more than 10-fold increase in signal intensity and ∼16% showed a more than 100-fold increase upon use of MALDI-2 postionization. Such increases in sensitivity could help advance pharmaceutical MALDI-MSI applications toward the single-cell level.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Andrew Palmer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Hyundae Hong
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jan Majer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Peter Marshall
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
7
|
Khalil SM, Qin X, Hakenjos JM, Wang J, Hu Z, Liu X, Wang J, Maletic-Savatic M, MacKenzie KR, Matzuk MM, Li F. MALDI Imaging Mass Spectrometry Visualizes the Distribution of Antidepressant Duloxetine and Its Major Metabolites in Mouse Brain, Liver, Kidney, and Spleen Tissues. Drug Metab Dispos 2024; 52:673-680. [PMID: 38658163 PMCID: PMC11185819 DOI: 10.1124/dmd.124.001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Imaging mass spectrometry (IMS) is a powerful tool for mapping the spatial distribution of unlabeled drugs and metabolites that may find application in assessing drug delivery, explaining drug efficacy, and identifying potential toxicity. This study focuses on determining the spatial distribution of the antidepressant duloxetine, which is widely prescribed despite common adverse effects (liver injury, constant headaches) whose mechanisms are not fully understood. We used high-resolution IMS with matrix-assisted laser desorption/ionization to examine the distribution of duloxetine and its major metabolites in four mouse organs where it may contribute to efficacy or toxicity: brain, liver, kidney, and spleen. In none of these tissues is duloxetine or its metabolites homogeneously distributed, which has implications for both efficacy and toxicity. We found duloxetine to be similarly distributed in spleen red pulp and white pulp but differentially distributed in different anatomic regions of the liver, kidney, and brain, with dose-dependent patterns. Comparison with hematoxylin and eosin staining of tissue sections reveals that the ion images of endogenous lipids help delineate anatomic regions in the brain and kidney, while heme ion images assist in differentiating regions within the spleen. These endogenous metabolites may serve as a valuable resource for examining the spatial distribution of other drugs in tissues when staining images are not available. These findings may facilitate future mechanistic studies of the therapeutic and adverse effects of duloxetine. In the current work, we did not perform absolute quantification of duloxetine, which will be reported in due course. SIGNIFICANCE STATEMENT: The study utilized imaging mass spectrometry to examine the spatial distribution of duloxetine and its primary metabolites in mouse brain, liver, kidney, and spleen. These results may pave the way for future investigations into the mechanisms behind duloxetine's therapeutic and adverse effects. Furthermore, the mass spectrometry images of specific endogenous metabolites such as heme could be valuable in analyzing the spatial distribution of other drugs within tissues in scenarios where histological staining images are unavailable.
Collapse
Affiliation(s)
- Saleh M Khalil
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Zhaoyong Hu
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Xinli Liu
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Jin Wang
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Mirjana Maletic-Savatic
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| |
Collapse
|
8
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
9
|
Ozdemir A, Lin JL, Gulfen M, Chen CH. Advancing mass spectrometry-based chemical imaging: A noncontact continuous flow surface probe in mass spectrometry for enhanced signal detection and spatial resolution. Talanta 2024; 273:125858. [PMID: 38442563 DOI: 10.1016/j.talanta.2024.125858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
A new method has been developed for mass spectrometric imaging of small molecules and proteins on tissue or in thinly sliced materials. A laser desorption Venturi electrospray ionization-mass spectrometer was developed for molecular imaging. This method combines laser desorption (LD) and electrospray ionization (ESI) systems before a mass spectrometer (MS). To carry out laser desorption, samples are excited with a laser from the back side of a glass substrate. The desorbed molecules or particles are then captured by a solvent flow. In the ESI system, these desorbed particles and molecules are ionized. The spray part of the solvent system consists of two capillaries: one delivers solvent to the sample plate sides to capture desorbed molecules and particles, and the other carries the solution to the mass spectrometry side using the Venturi effect. A 2D stage facilitates sampling. The system is designed to minimize the sample size after desorption using a 355 nm diode laser, and it is optimized for molecules of various sizes, including organic molecules, amino acids, and proteins. Despite challenging atmospheric conditions for protein desorption, this specialized design enables the collection of protein spectra. The amino acids and other small molecules showed high sensitivity in the MSI measurements. This innovative MS imaging system can be directly applied to real tissue systems and other plant samples to visualize the molecular level distributions.
Collapse
Affiliation(s)
- Abdil Ozdemir
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Esentepe, Sakarya, Turkey.
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mustafa Gulfen
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Esentepe, Sakarya, Turkey
| | | |
Collapse
|
10
|
Dunnington EL, Wong BS, Fu D. Innovative Approaches for Drug Discovery: Quantifying Drug Distribution and Response with Raman Imaging. Anal Chem 2024; 96:7926-7944. [PMID: 38625100 PMCID: PMC11108735 DOI: 10.1021/acs.analchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
| | | | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Sohn AL, Kibbe RR, Dioli OE, Hector EC, Bai H, Garrard KP, Muddiman DC. A statistical approach to system suitability testing for mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9725. [PMID: 38456255 PMCID: PMC10926995 DOI: 10.1002/rcm.9725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE Mass spectrometry imaging (MSI) elevates the power of conventional mass spectrometry (MS) to multidimensional space, elucidating both chemical composition and localization. However, the field lacks any robust quality control (QC) and/or system suitability testing (SST) protocols to monitor inconsistencies during data acquisition, both of which are integral to ensure the validity of experimental results. To satisfy this demand in the community, we propose an adaptable QC/SST approach with five analyte options amendable to various ionization MSI platforms (e.g., desorption electrospray ionization, matrix-assisted laser desorption/ionization [MALDI], MALDI-2, and infrared matrix-assisted laser desorption electrospray ionization [IR-MALDESI]). METHODS A novel QC mix was sprayed across glass slides to collect QC/SST regions-of-interest (ROIs). Data were collected under optimal conditions and on a compromised instrument to construct and refine the principal component analysis (PCA) model in R. Metrics, including mass measurement accuracy and spectral accuracy, were evaluated, yielding an individual suitability score for each compound. The average of these scores is utilized to inform if troubleshooting is necessary. RESULTS The PCA-based SST model was applied to data collected when the instrument was compromised. The resultant SST scores were used to determine a statistically significant threshold, which was defined as 0.93 for IR-MALDESI-MSI analyses. This minimizes the type-I error rate, where the QC/SST would report the platform to be in working condition when cleaning is actually necessary. Further, data scored after a partial cleaning demonstrate the importance of QC and frequent full instrument cleaning. CONCLUSIONS This study is the starting point for addressing an important issue and will undergo future development to improve the efficiency of the protocol. Ultimately, this work is the first of its kind and proposes this approach as a proof of concept to develop and implement universal QC/SST protocols for a variety of MSI platforms.
Collapse
Affiliation(s)
- Alexandria L. Sohn
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Russell R. Kibbe
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Olivia E. Dioli
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Emily C. Hector
- Department of Statistics, North Carolina State University, Raleigh, NC 27695
| | - Hongxia Bai
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Kenneth P. Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
12
|
Islam MM, Rahman MF, Islam A, Afroz MS, Mamun MA, Rahman MM, Maniruzzaman M, Xu L, Sakamoto T, Takahashi Y, Sato T, Kahyo T, Setou M. Elucidating Gender-Specific Distribution of Imipramine, Chloroquine, and Their Metabolites in Mice Kidney Tissues through AP-MALDI-MSI. Int J Mol Sci 2024; 25:4840. [PMID: 38732055 PMCID: PMC11084644 DOI: 10.3390/ijms25094840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Knowledge of gender-specific drug distributions in different organs are of great importance for personalized medicine and reducing toxicity. However, such drug distributions have not been well studied. In this study, we investigated potential differences in the distribution of imipramine and chloroquine, as well as their metabolites, between male and female kidneys. Kidneys were collected from mice treated with imipramine or chloroquine and then subjected to atmospheric pressure matrix-assisted laser desorption ionization-mass spectrometry imaging (AP-MALDI-MSI). We observed differential distributions of the drugs and their metabolites between male and female kidneys. Imipramine showed prominent distributions in the cortex and medulla in male and female kidneys, respectively. Desipramine, one of the metabolites of imipramine, showed significantly higher (*** p < 0.001) distributions in the medulla of the male kidney compared to that of the female kidney. Chloroquine and its metabolites were accumulated in the pelvis of both male and female kidneys. Interestingly, they showed a characteristic distribution in the medulla of the female kidney, while almost no distributions were observed in the same areas of the male kidney. For the first time, our study revealed that the distributions of imipramine, chloroquine, and their metabolites were different in male and female kidneys.
Collapse
Affiliation(s)
- Md. Monirul Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - Md Foyzur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Mst. Sayela Afroz
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Md. Muedur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Md Maniruzzaman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| |
Collapse
|
13
|
Scoggins TR, Specker JT, Prentice BM. Multiple ion isolation and accumulation events for selective chemical noise reduction and dynamic range enhancement in MALDI imaging mass spectrometry. Analyst 2024; 149:2459-2468. [PMID: 38525787 PMCID: PMC11149414 DOI: 10.1039/d4an00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Abundant chemical noise in MALDI imaging mass spectrometry experiments can impede the detection of less abundant compounds of interest. This chemical noise commonly originates from the MALDI matrix as well as other endogenous compounds present in high concentrations and/or with high ionization efficiencies. MALDI imaging mass spectrometry of biological tissues measures numerous biomolecular compounds that exist in a wide range of concentrations in vivo. When ion trapping instruments are used, highly abundant ions can dominate the charge capacity and lead to space charge effects that hinder the dynamic range and detection of lowly abundant compounds of interest. Gas-phase fractionation has been previously utilized in mass spectrometry to isolate and enrich target analytes. Herein, we have characterized the use of multiple continuous accumulations of selected ions (Multi CASI) to reduce the abundance of chemical noise and diminish the effects of space charge in MALDI imaging mass spectrometry experiments. Multi CASI utilizes the mass-resolving capability of a quadrupole mass filter to perform multiple sequential ion isolation events prior to a single mass analysis of the combined ion population. Multi CASI was used to improve metabolite and lipid detection in the MALDI imaging mass spectrometry analysis of rat brain tissue.
Collapse
Affiliation(s)
- Troy R Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| | | | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
15
|
Chen Y, Liu Y, Li X, He Y, Li W, Peng Y, Zheng J. Recent Advances in Mass Spectrometry-Based Spatially Resolved Molecular Imaging of Drug Disposition and Metabolomics. Drug Metab Dispos 2023; 51:1273-1283. [PMID: 37295949 DOI: 10.1124/dmd.122.001069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Mass spectrometric imaging is a nontargeted, tag-free, high-throughput, and highly responsive analytical approach. The highly accurate molecular visualization detection technology enables qualitative and quantitative analyses of biologic tissues or cells scanned by mass spectrometry in situ, extracting known and unknown multiple compounds, and simultaneously assessing relative contents of targeting molecules by monitoring their molecular ions and pinpointing the spatial locations of those molecules distributed. Five mass spectrometric imaging techniques and their characteristics are introduced in the review, including matrix-assisted laser desorption ionization mass spectrometry, secondary ion mass spectrometry, desorption electrospray ionization mass spectrometry, laser ablation electrospray ionization mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry. The mass spectrometry-based techniques provide the possibility for spatial metabolomics with the capability of high throughput and precision detection. The approaches have been widely employed to spatially image not only metabolome of endogenous amino acids, peptides, proteins, neurotransmitters, and lipids but also the disposition of exogenous chemicals, such as pharmaceutical agents, environmental pollutants, toxicants, natural products, and heavy metals. The techniques also provide us with spatial distribution imaging of analytes in single cells, tissue microregions, organs, and whole animals. SIGNIFICANCE STATEMENT: The review article includes an overview of five commonly used mass spectrometers for spatial imaging and describes the advantages and disadvantages of each. Examples of the technology applications cover drug disposition, diseases, and omics. Technical aspects of relative and absolute quantification by mass spectrometric imaging and challenges for future new applications are discussed as well. The reviewed knowledge may benefit the development of new drugs and provide a better understanding of biochemical processes related to physiology and diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| |
Collapse
|
16
|
Kret P, Bodzon-Kulakowska A, Drabik A, Ner-Kluza J, Suder P, Smoluch M. Mass Spectrometry Imaging of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6343. [PMID: 37763619 PMCID: PMC10534324 DOI: 10.3390/ma16186343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The science related to biomaterials and tissue engineering accounts for a growing part of our knowledge. Surface modifications of biomaterials, their performance in vitro, and the interaction between them and surrounding tissues are gaining more and more attention. It is because we are interested in finding sophisticated materials that help us to treat or mitigate different disorders. Therefore, efficient methods for surface analysis are needed. Several methods are routinely applied to characterize the physical and chemical properties of the biomaterial surface. Mass Spectrometry Imaging (MSI) techniques are able to measure the information about molecular composition simultaneously from biomaterial and adjacent tissue. That is why it can answer the questions connected with biomaterial characteristics and their biological influence. Moreover, this kind of analysis does not demand any antibodies or dyes that may influence the studied items. It means that we can correlate surface chemistry with a biological response without any modification that could distort the image. In our review, we presented examples of biomaterials analyzed by MSI techniques to indicate the utility of SIMS, MALDI, and DESI-three major ones in the field of biomaterials applications. Examples include biomaterials used to treat vascular system diseases, bone implants with the effects of implanted material on adjacent tissues, nanofibers and membranes monitored by mass spectrometry-related techniques, analyses of drug-eluting long-acting parenteral (LAPs) implants and microspheres where MSI serves as a quality control system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.K.); (A.B.-K.); (A.D.); (J.N.-K.); (P.S.)
| |
Collapse
|
17
|
Srinivasula S, Degrange P, Perazzolo S, Bonvillain A, Tobery A, Kaplan J, Jang H, Turnier R, Davies M, Cottrell M, Ho RJY, Di Mascio M. Viral dissemination and immune activation modulate antiretroviral drug levels in lymph nodes of SIV-infected rhesus macaques. Front Immunol 2023; 14:1213455. [PMID: 37790938 PMCID: PMC10544331 DOI: 10.3389/fimmu.2023.1213455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction and methods To understand the relationship between immunovirological factors and antiretroviral (ARV) drug levels in lymph nodes (LN) in HIV therapy, we analyzed drug levels in twenty-one SIV-infected rhesus macaques subcutaneously treated with daily tenofovir (TFV) and emtricitabine (FTC) for three months. Results The intracellular active drug-metabolite (IADM) levels (TFV-dp and FTC-tp) in lymph node mononuclear cells (LNMC) were significantly lower than in peripheral blood mononuclear cells (PBMC) (P≤0.005). Between Month 1 and Month 3, IADM levels increased in both LNMC (P≤0.001) and PBMC (P≤0.01), with a steeper increase in LNMC (P≤0.01). The viral dissemination in plasma, LN, and rectal tissue at ART initiation correlated negatively with IADM levels at Month 1. Physiologically-based pharmacokinetic model simulations suggest that, following subcutaneous ARV administration, ART-induced reduction of immune activation improves the formation of active drug-metabolites through modulation of kinase activity and/or through improved parent drug accessibility to LN cellular compartments. Conclusion These observations have broad implications for drugs that need to phosphorylate to exert their pharmacological activity, especially in the settings of the pre-/post-exposure prophylaxis and efficacy of antiviral therapies targeting pathogenic viruses such as HIV or SARS-CoV-2 replicating in highly inflammatory anatomic compartments.
Collapse
Affiliation(s)
- Sharat Srinivasula
- AIDS Imaging Research Section, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Paula Degrange
- AIDS Imaging Research Section, Charles River Laboratories, Integrated Research Facility, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, MD, United States
| | - Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | - Andrew Bonvillain
- AIDS Imaging Research Section, Charles River Laboratories, Integrated Research Facility, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, MD, United States
| | - Amanda Tobery
- AIDS Imaging Research Section, Charles River Laboratories, Integrated Research Facility, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, MD, United States
| | - Jacob Kaplan
- AIDS Imaging Research Section, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Poolesville, MD, United States
| | - Hyukjin Jang
- AIDS Imaging Research Section, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Refika Turnier
- Clinical Support Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Michael Davies
- Clinical Support Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mackenzie Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, United States
| | - Rodney J. Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Michele Di Mascio
- AIDS Imaging Research Section, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Poolesville, MD, United States
| |
Collapse
|
18
|
Shi J, Bera K, Mukherjee P, Alex A, Chaney EJ, Spencer-Dene B, Majer J, Marjanovic M, Spillman DR, Hood SR, Boppart SA. Weakly Supervised Identification and Localization of Drug Fingerprints Based on Label-Free Hyperspectral CARS Microscopy. Anal Chem 2023. [PMID: 37450658 PMCID: PMC10372874 DOI: 10.1021/acs.analchem.3c00979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Understanding drug fingerprints in complex biological samples is essential for the development of a drug. Hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) microscopy, a label-free nondestructive chemical imaging technique, can profile biological samples based on their endogenous vibrational contrast. Here, we propose a deep learning-assisted HS-CARS imaging approach for the investigation of drug fingerprints and their localization at single-cell resolution. To identify and localize drug fingerprints in complex biological systems, an attention-based deep neural network, hyperspectral attention net (HAN), was developed. By formulating the task to a multiple instance learning problem, HAN highlights informative regions through the attention mechanism when being trained on whole-image labels. Using the proposed technique, we investigated the drug fingerprints of a hepatitis B virus therapy in murine liver tissues. With the increase in drug dosage, higher classification accuracy was observed, with an average area under the curve (AUC) of 0.942 for the high-dose group. Besides, highly informative tissue structures predicted by HAN demonstrated a high degree of similarity with the drug localization shown by the in situ hybridization staining results. These results demonstrate the potential of the proposed deep learning-assisted optical imaging technique for the label-free profiling, identification, and localization of drug fingerprints in biological samples, which can be extended to nonperturbative investigations of complex biological systems under various biological conditions.
Collapse
Affiliation(s)
- Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- In vitro/In vivo Translation, Research, GSK, Collegeville, Pennsylvania 19426, United States
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Jan Majer
- In vitro/In vivo Translation, Research, GSK, Stevenage SG1 2NY, U.K
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Steve R Hood
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- In vitro/In vivo Translation, Research, GSK, Stevenage SG1 2NY, U.K
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Robson C, Tan B, Stuart R, Nicholls S, Rogers BA, Sandaradura I. A systematic review of optimal pharmacokinetic/pharmacodynamic parameters for beta-lactam therapy in infective endocarditis. J Antimicrob Chemother 2023; 78:599-612. [PMID: 36691839 DOI: 10.1093/jac/dkad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Beta-lactam antibiotics are the mainstay of therapy for most bacterial causes of infective endocarditis (IE). Traditionally considered as agents with a broad therapeutic index, there is increasing recognition that standard doses may be subtherapeutic or toxic in critically ill patients. Optimizing therapy for efficacy requires a defined pharmacokinetic (PK)/pharmacodynamic (PD) target associated with clinical and microbiological cure. OBJECTIVES To elucidate the factors that influence beta-lactam PK and PD variability in IE and to examine optimal PK/PD target parameters for therapy. METHODS The review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Clinical and laboratory in vivo animal or human studies examining PK and/or PD of beta-lactam antibiotics in IE were eligible. Ovid MEDLINE, Embase and Cochrane Central Registry were searched using defined terms. The Office of Health Assessment and Translation (OHAT) tool was used for assessing risk of bias. RESULTS From 2677 abstracts, 62 articles were selected for review and synthesis, comprising: 45 animal studies investigating the broad categories of beta-lactam diffusion into vegetations, PK/PD determinants of outcome, mode of antibiotic delivery and synergistic impact of agents; and 17 human studies totalling 347 participants. Findings supported the importance of time-dependent killing for beta-lactams but heterogeneous data limited the determination of an optimal PK/PD target for IE treatment. CONCLUSION Beta-lactam PK and PD in endocarditis are variable and specific to the particular antibiotic-organism combination. Time-dependent killing is important, consistent with non-endocarditis studies, but there is little agreement on optimal drug exposure. Clinical studies examining PK/PD targets in endocarditis are required to further inform drug selection and dosing.
Collapse
Affiliation(s)
- Christopher Robson
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Bryan Tan
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
| | - Rhonda Stuart
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- South Eastern Public Health Unit, Monash Health, Clayton, VIC, Australia
| | - Stephen Nicholls
- Monash Heart, Monash Health, Clayton, VIC, Australia
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Benjamin A Rogers
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Indy Sandaradura
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia
- School of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Rebouta J, Dória ML, Campos F, Araújo F, Loureiro AI. DESI-MSI-based technique to unravel spatial distribution of COMT inhibitor Tolcapone. Int J Pharm 2023; 633:122607. [PMID: 36641138 DOI: 10.1016/j.ijpharm.2023.122607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Ascertaining compound exposure and its spatial distribution are essential steps in the drug development process. Desorption electrospray ionization mass spectrometry (DESI-MSI) is a label-free imaging technique capable of simultaneously identify and visualize the distribution of a diverse range of biomolecules. In this study, DESI-MSI was employed to investigate spatial distribution of tolcapone in rat liver and brain coronal - frontal and striatal -sections after a single oral administration of 100 mg/Kg of tolcapone, brain-penetrant compound. Tolcapone was evenly distributed in liver tissue sections whereas in the brain it showed differential distribution across brain regions analyzed, being mainly located in the olfactory bulb, basal forebrain region, striatum, and pre-frontal cortex (PFC; cingulate, prelimbic and infralimbic area). Tolcapone concentration in tissues was compared using DESI-MSI and liquid-chromatography mass spectrometry (LC-MS/MS). DESI-MSI technique showed a higher specificity on detecting tolcapone in liver sections while in the brain samples DESI-MSI did not allow a feasible quantification. Indeed, DESI-MSI is a qualitative technique that allows to observe heterogeneity on distribution but more challenging regarding accurate measurements. Overall, tolcapone was successfully localized in liver and brain tissue sections using DESI-MSI, highlighting the added value that this technique could provide in assisting tissue-specific drug distribution studies.
Collapse
Key Words
- Arachidonic acid, 5Z,8Z,11Z,14Z-eicosatetraenoic acid, AA
- COMT
- DESI-MSI
- Docosahexaenoic acid, 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid, Cervonic acid
- Epinephrine, 4-[1-hydroxy-2-(methylamino)ethyl]-1,2-benzenediol monohydrochloride
- Mass spectrometry imaging
- Metanephrine, 4-hydroxy-3-methoxy-α-[(methylamino)methyl]-benzenemethanol
- Phosphatidylethanolamine 40:6, 1,2-diacyl-sn-glycero-3-phosphoethanolamine
- Phosphatidylethanolamine O-36:3, PE(O-16:0/20:3) 1-hexadecyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine, PE(O-18:0/18:3) 1-octadecyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine
- S-adenosyl-l-methionine, 5′-[[(3S)-3-amino-3-carboxypropyl]methylsulfonio]-5′-deoxy-adenosine, dihydrochloride
- Tolcapone
- Tolcapone, (3,4-dihydroxy-5-nitrophenyl)(4-methylphenyl)-methanone
- Tolcapone-d4, (3,4-dihydroxy-5-nitrophenyl)(4-methylphenyl-2,3,5,6-d4)methanone
Collapse
Affiliation(s)
- Joana Rebouta
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal.
| | - M Luísa Dória
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Filipa Campos
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Francisca Araújo
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Ana I Loureiro
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| |
Collapse
|
21
|
Akakpo JY, Jaeschke MW, Etemadi Y, Artigues A, Toerber S, Olivos H, Shrestha B, Midey A, Jaeschke H, Ramachandran A. Desorption Electrospray Ionization Mass Spectrometry Imaging Allows Spatial Localization of Changes in Acetaminophen Metabolism in the Liver after Intervention with 4-Methylpyrazole. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2094-2107. [PMID: 36223142 PMCID: PMC9901546 DOI: 10.1021/jasms.2c00202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the US, and hepatotoxicity is initiated by a reactive metabolite which induces characteristic centrilobular necrosis. The only clinically available antidote is N-acetylcysteine, which has limited efficacy, and we have identified 4-methylpyrazole (4MP, Fomepizole) as a strong alternate therapeutic option, protecting against generation and downstream effects of the cytotoxic reactive metabolite in the clinically relevant C57BL/6J mouse model and in humans. However, despite the regionally restricted necrosis after APAP, our earlier studies on APAP metabolites in biofluids or whole tissue homogenate lack the spatial information needed to understand region-specific consequences of reactive metabolite formation after APAP overdose. Thus, to gain insight into the regional variation in APAP metabolism and study the influence of 4MP, we established a desorption electrospray ionization mass spectrometry imaging (DESI-MSI) platform for generation of ion images for APAP and its metabolites under ambient air, without chemical labeling or a prior coating of tissue which reduces chemical interference and perturbation of small molecule tissue localization. The spatial intensity and distribution of both oxidative and nonoxidative APAP metabolites were determined from mouse liver sections after a range of APAP overdoses. Importantly, exclusive differential signal intensities in metabolite abundance were noted in the tissue microenvironment, and 4MP treatment substantially influenced this topographical distribution.
Collapse
Affiliation(s)
- Jephte Yao Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew Wolfgang Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yasaman Etemadi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Antonio Artigues
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
22
|
Körber A, Keelor JD, Claes BSR, Heeren RMA, Anthony IGM. Fast Mass Microscopy: Mass Spectrometry Imaging of a Gigapixel Image in 34 Minutes. Anal Chem 2022; 94:14652-14658. [PMID: 36223179 PMCID: PMC9607864 DOI: 10.1021/acs.analchem.2c02870] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Mass spectrometry imaging (MSI) maps the spatial distributions of chemicals on surfaces. MSI requires improvements in throughput and spatial resolution, and often one is compromised for the other. In microprobe-mode MSI, improvements in spatial resolution increase the imaging time quadratically, thus limiting the use of high spatial resolution MSI for large areas or sample cohorts and time-sensitive measurements. Here, we bypass this quadratic relationship by combining a Timepix3 detector with a continuously sampling secondary ion mass spectrometry mass microscope. By reconstructing the data into large-field mass images, this new method, fast mass microscopy, enables orders of magnitude higher throughput than conventional MSI albeit yet at lower mass resolution. We acquired submicron, gigapixel images of fingerprints and rat tissue at acquisition speeds of 600,000 and 15,500 pixels s-1, respectively. For the first image, a comparable microprobe-mode measurement would take more than 2 months, whereas our approach took 33.3 min.
Collapse
Affiliation(s)
- Aljoscha Körber
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Joel D. Keelor
- Amsterdam
Scientific Instruments B.V. (ASI), Science Park 106, Amsterdam 1098 XG, The Netherlands
| | - Britt S. R. Claes
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Ian G. M. Anthony
- The
Maastricht MultiModal Molecular Imaging Institute (M4i), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
23
|
Chen Y, Xie Y, Li L, Wang Z, Yang L. Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. MASS SPECTROMETRY REVIEWS 2022:e21807. [PMID: 36146929 DOI: 10.1002/mas.21807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Safety issues caused by pharmaceuticals have frequently occurred worldwide, posing a tremendous threat to human health. As an essential part of drug development, the toxicological analysis and safety evaluation is of great significance. In addition, the risk of pharmaceuticals accumulation in the environment and the monitoring of the toxicity from natural medicines have also received ongoing concerns. Due to a lack of spatial distribution information provided by common analytical methods, analyses that provide spatial dimensions could serve as complementary safety evaluation methods for better prediction and evaluation of drug toxicity. With advances in technical solutions and software algorithms, mass spectrometry imaging (MSI) has received increasing attention as a popular analytical tool that enables the simultaneous implementation of qualitative, quantitative, and localization without complex sample pretreatment and labeling steps. In recent years, MSI has become more attractive, powerful, and sensitive and has been applied in several scientific fields that can meet the safety assessment requirements. This review aims to cover a detailed summary of the various MSI technologies utilized in the biomedical and pharmaceutical area, including technical principles, advantages, current status, and future trends. Representative applications and developments in the safety-related issues of different pharmaceuticals and natural medicines are also described to provide a reference for pharmaceutical research, improve rational clinical medicine use, and ensure public safety.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Nwabufo CK, Aigbogun OP. The Role of Mass Spectrometry Imaging in Pharmacokinetic Studies. Xenobiotica 2022; 52:811-827. [PMID: 36048000 DOI: 10.1080/00498254.2022.2119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although liquid chromatography-tandem mass spectrometry is the gold standard analytical platform for the quantification of drugs, metabolites, and biomarkers in biological samples, it cannot localize them in target tissues.The localization and quantification of drugs and/or their associated metabolites in target tissues is a more direct measure of bioavailability, biodistribution, efficacy, and regional toxicity compared to the traditional substitute studies using plasma.Therefore, combining high spatial resolution imaging functionality with the superior selectivity and sensitivity of mass spectrometry into one analytical technique will be a valuable tool for targeted localization and quantification of drugs, metabolites, and biomarkers.Mass spectrometry imaging (MSI) is a tagless analytical technique that allows for the direct localization and quantification of drugs, metabolites, and biomarkers in biological tissues, and has been used extensively in pharmaceutical research.The overall goal of this current review is to provide a detailed description of the working principle of MSI and its application in pharmacokinetic studies encompassing absorption, distribution, metabolism, excretion, and toxicity processes, followed by a discussion of the strategies for addressing the challenges associated with the functional utility of MSI in pharmacokinetic studies that support drug development.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Omozojie P Aigbogun
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
25
|
Ablat N, Ablimit M, Sun Y, Zhao X, Pu X. Application of new imaging methods in the development of Chinese medicine. Biomed Pharmacother 2022; 153:113470. [DOI: 10.1016/j.biopha.2022.113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
|
26
|
Tiquet M, La Rocca R, Kirnbauer S, Zoratto S, Van Kruining D, Quinton L, Eppe G, Martinez-Martinez P, Marchetti-Deschmann M, De Pauw E, Far J. FT-ICR Mass Spectrometry Imaging at Extreme Mass Resolving Power Using a Dynamically Harmonized ICR Cell with 1ω or 2ω Detection. Anal Chem 2022; 94:9316-9326. [PMID: 35604839 PMCID: PMC9260710 DOI: 10.1021/acs.analchem.2c00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022]
Abstract
MALDI mass spectrometry imaging (MALDI MSI) is a powerful analytical method for achieving 2D localization of compounds from thin sections of typically but not exclusively biological samples. The dynamically harmonized ICR cell (ParaCell) was recently introduced to achieve extreme spectral resolution capable of providing the isotopic fine structure of ions detected in complex samples. The latest improvement in the ICR technology also includes 2ω detection, which significantly reduces the transient time while preserving the nominal mass resolving power of the ICR cell. High-resolution MS images acquired on FT-ICR instruments equipped with 7T and 9.4T superconducting magnets and the dynamically harmonized ICR cell operating at suboptimal parameters suffered severely from the pixel-to-pixel shifting of m/z peaks due to space-charge effects. The resulting profile average mass spectra have depreciated mass measurement accuracy and mass resolving power under the instrument specifications that affect the confidence level of the identified ions. Here, we propose an analytical workflow based on the monitoring of the total ion current to restrain the pixel-to-pixel m/z shift. Adjustment of the laser parameters is proposed to maintain high spectral resolution and mass accuracy measurement within the instrument specifications during MSI analyses. The optimized method has been successfully employed in replicates to perform high-quality MALDI MS images at resolving power (FWHM) above 1,000,000 in the lipid mass range across the whole image for superconducting magnets of 7T and 9.4T using 1 and 2ω detection. Our data also compare favorably with MALDI MSI experiments performed on higher-magnetic-field superconducting magnets, including the 21T MALDI FT-ICR prototype instrument of the NHMFL group at Tallahassee, Florida.
Collapse
Affiliation(s)
- Mathieu Tiquet
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Raphaël La Rocca
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Stefan Kirnbauer
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, TU Wien
(Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Samuele Zoratto
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, TU Wien
(Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Christian
Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Daan Van Kruining
- Department
of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Loïc Quinton
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Pilar Martinez-Martinez
- Department
of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, the Netherlands
| | - Martina Marchetti-Deschmann
- Institute
of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, TU Wien
(Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
- Christian
Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, TU Wien (Vienna University of Technology), Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Edwin De Pauw
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass
Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée de la Chimie 6-Quartier Agora, 4000 Liège, Belgium
| |
Collapse
|
27
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
28
|
Gao L, Zhang Z, Wu W, Deng Y, Zhi H, Long H, Lei M, Hou J, Wu W, Guo DA. Quantitative imaging of natural products in fine brain regions using desorption electrospray ionization mass spectrometry imaging (DESI-MSI): Uncaria alkaloids as a case study. Anal Bioanal Chem 2022; 414:4999-5007. [PMID: 35639139 DOI: 10.1007/s00216-022-04130-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023]
Abstract
Uncaria species (Rubiaceae) are used as traditional Chinese medicines (TCMs) to treat central nervous system (CNS) diseases, and monoterpene indole alkaloids are the main bioactive constituents. Localization and quantification of CNS drugs in fine brain regions are important to provide insights into their pharmacodynamics, for which quantitative mass spectrometry imaging (MSI) has emerged as a powerful technique. A systematic study of the quantitative imaging of seven Uncaria alkaloids in rat brains using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was presented. The distribution of the alkaloids in thirteen brain regions was quantified successfully using the calibration curves generated by a modified on-tissue approach. The distribution trend of different Uncaria alkaloids in the rat brain was listed as monoterpene indole alkaloids > monoterpene oxindole alkaloids, R-configuration epimers > S-configuration epimers. Particularly, Uncaria alkaloids were detected directly in the pineal gland for the first time and their enrichment phenomenon in this region had an instructive significance in future pharmacodynamic studies.
Collapse
Affiliation(s)
- Lei Gao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanping Deng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijuan Zhi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Das S, Bhatia R. Liquid extraction surface analysis-mass spectrometry: An advanced and environment-friendly analytical tool in modern analysis. J Sep Sci 2022; 45:2746-2765. [PMID: 35579471 DOI: 10.1002/jssc.202100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
The Liquid Extraction Surface Analysis technique is a new high-throughput instrument for ambient mass spectrometry. The benefits of the Liquid Extraction Surface Analysis-Mass Spectrometry approach are the high throughput screening of samples and the absence of sample preparation. Liquid Extraction Surface Analysis-Mass Spectrometry also consumes less solvent for extraction, making it more environmentally friendly and there is no substrate restriction. It utilizes advanced instrumentation like the use of robotic pipettes, nanoelectrospray systems, electronspray ionization chips which makes it highly efficient. In recent years, Liquid Extraction Surface Analysis-Mass Spectrometry has seen widespread use in a variety of analytical fields including drug metabolite analysis, mapping drug distribution in tissues, protein and lipid characterization etc. In this review, we have summarized the basic working principles of the Liquid Extraction Surface Analysis-Mass Spectrometry approach in detail along with a detailed description of the recently reported applications in the analysis of proteins, lipids, drugs and foods. The investigated analytes along with detection methodologies and significant outcomes of various research reports have been presented with the help of tables. This tool has also been utilized in clinical investigations of biological fluids, fingerprint analysis and authentication of agarwood. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shibam Das
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| |
Collapse
|
30
|
Mikolasch TA, Oballa E, Vahdati-Bolouri M, Jarvis E, Cui Y, Cahn A, Terry RL, Sahota J, Thakrar R, Marshall P, Porter JC. Mass spectrometry detection of inhaled drug in distal fibrotic lung. Respir Res 2022; 23:118. [PMID: 35546672 PMCID: PMC9092847 DOI: 10.1186/s12931-022-02026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background Currently the only available therapies for fibrotic Interstitial Lung Disease are administered systemically, often causing significant side effects. Inhaled therapy could avoid these but to date there is no evidence that drug can be effectively delivered to distal, fibrosed lung. We set out to combine mass spectrometry and histopathology with rapid sample acquisition using transbronchial cryobiopsy to determine whether an inhaled drug can be delivered to fibrotic, distal lung parenchyma in participants with Interstitial Lung Disease. Methods Patients with radiologically and multidisciplinary team confirmed fibrotic Interstitial Lung Disease were eligible for this study. Transbronchial cryobiopsies and endobronchial biopsies were taken from five participants, with Interstitial Lung Disease, within 70 min of administration of a single dose of nebulised ipratropium bromide. Thin tissue cryosections were analysed by Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry imaging and correlated with histopathology. The remainder of the cryobiopsies were homogenised and analysed by Liquid Chromatography—tandem Mass Spectrometry. Results Drug was detected in proximal and distal lung samples from all participants. Fibrotic regions were identified in research samples of four of the five participants. Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry imaging showed co-location of ipratropium with fibrotic regions in samples from three participants. Conclusions In this proof of concept study, using mass spectrometry, we demonstrate for the first-time that an inhaled drug can deposit in distal fibrotic lung parenchyma in patients with Interstitial Lung Disease. This suggests that drugs to treat pulmonary fibrosis could potentially be administered by the inhaled route. Trial registration A prospective clinical study approved by London Camden and Kings Cross Research Ethics Committee and registered on clinicaltrials.gov (NCT03136120) Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02026-5.
Collapse
Affiliation(s)
- Theresia A Mikolasch
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK. .,University College London Hospitals NHS Foundation Trust, London, UK.
| | - Eunice Oballa
- Discovery Medicine, Clinical Pharmacology and Experimental Medicine, GSK Research and Development, Stevenage, UK
| | | | - Emily Jarvis
- Development Biostatistics, GSK Development, Stevenage, UK
| | - Yi Cui
- Safety and Medical Governance, Pharma Safety, GSK Development, Stevenage, UK
| | - Anthony Cahn
- Discovery Medicine, Clinical Pharmacology and Experimental Medicine, GSK Research and Development, Stevenage, UK
| | - Rebecca L Terry
- Pathology, In Vitro/In Vivo Translation, GSK Research, Stevenage, UK
| | - Jagdeep Sahota
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Ricky Thakrar
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Peter Marshall
- Bioimaging, In Vitro/In Vivo Translation, GSK Research, Stevenage, UK
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
31
|
Zhao C, Cai Z. Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism. MASS SPECTROMETRY REVIEWS 2022; 41:469-487. [PMID: 33300181 DOI: 10.1002/mas.21674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Mass spectrometry imaging (MSI) has been applied for label-free three-dimensional (3D) imaging from position array across the whole organism, which provides high-dimensional quantitative data of inorganic or organic compounds that may play an important role in the regulation of cellular signaling, including metals, metabolites, lipids, drugs, peptides, and proteins. While MSI is suitable for investigation of the spatial distribution of molecules, it has a limitation with visualization and quantification of multiple molecules. 3D-MSI, however, can be applied toward exploring metabolic pathway as well as the interactions of lipid-protein, protein-protein, and metal-protein in complex systems from subcellular to the whole organism through an untargeted methodology. In this review, we highlight the methods and applications of MS-based 3D imaging to address the complexity of molecular interaction from nano- to micrometer lateral resolution, with particular focus on: (a) common and hybrid 3D-MSI techniques; (b) quantitative MSI methodology, including the methods using a stable isotope labeling internal standard (SILIS) and SILIS-free approaches with tissue extinction coefficient or virtual calibration; (c) reconstruction of the 3D organ; (d) application of 3D-MSI for biomarker screening and environmental toxicological research. 3D-MSI quantitative analysis provides accurate spatial information and quantitative variation of biomolecules, which may be valuable for the exploration of the molecular mechanism of the disease progresses and toxicological assessment of environmental pollutants in the whole organism. Additionally, we also discuss the challenges and perspectives on the future of 3D quantitative MSI.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
32
|
Inglese P, Huang HX, Wu V, Lewis MR, Takats Z. Mass recalibration for desorption electrospray ionization mass spectrometry imaging using endogenous reference ions. BMC Bioinformatics 2022; 23:133. [PMID: 35428194 DOI: 10.1101/2021.03.29.437482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.
Collapse
Affiliation(s)
- Paolo Inglese
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK.
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
33
|
Inglese P, Huang HX, Wu V, Lewis MR, Takats Z. Mass recalibration for desorption electrospray ionization mass spectrometry imaging using endogenous reference ions. BMC Bioinformatics 2022; 23:133. [PMID: 35428194 PMCID: PMC9013061 DOI: 10.1186/s12859-022-04671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.
Collapse
Affiliation(s)
- Paolo Inglese
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK.
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
34
|
Kokesch-Himmelreich J, Treu A, Race AM, Walter K, Hölscher C, Römpp A. Do Anti-tuberculosis Drugs Reach Their Target?─High-Resolution Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Provides Information on Drug Penetration into Necrotic Granulomas. Anal Chem 2022; 94:5483-5492. [PMID: 35344339 DOI: 10.1021/acs.analchem.1c03462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model that─in contrast to regular inbred mice─strongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 μm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 μm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.
Collapse
Affiliation(s)
- Julia Kokesch-Himmelreich
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany
| | - Kerstin Walter
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Christoph Hölscher
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| |
Collapse
|
35
|
Jiang H, Zhang Y, Liu Z, Wang X, He J, Jin H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114760. [PMID: 34678417 PMCID: PMC9715987 DOI: 10.1016/j.jep.2021.114760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhigang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| |
Collapse
|
36
|
Morosi L, Matteo C, Meroni M, Ceruti T, Fuso Nerini I, Bello E, Frapolli R, D'Incalci M, Zucchetti M, Davoli E. Quantitative measurement of pioglitazone in neoplastic and normal tissues by AP-MALDI mass spectrometry imaging. Talanta 2022; 237:122918. [PMID: 34736656 DOI: 10.1016/j.talanta.2021.122918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Pioglitazone is a Peroxisome Proliferator-Activated Receptor (PPAR) agonist of the thiazolidinedione class of compounds with promising anticancer activity. An innovative quantitative mass spectrometry imaging (MSI) method and a HPLC-UV method were developed and validated to investigate its distribution in tumor and liver tissues. The MSI method is based on stable isotope normalization and resulted highly specific and sensitive (0.2 pmol/spot). The correct identification of the drug ion signal is confirmed by MS/MS analysis on tissue. The method shows an optimal lateral resolution (25 μm) relying on the ionization efficiency and fine laser diameter of the atmospheric pressure MALDI source. The HPLC-UV method is simple and straightforward involving quick protein precipitation and shows good sensitivity (50ng/sample) using a small starting volume of biological sample. Thus, it is applicable to samples obtained from both preclinical models and clinical surgical procedures. MSI and HPLC-UV assays were validated assessing linearity, intra- and inter-day precision and accuracy, limit of quantification, selectivity and recovery. These are the first methods developed and validated for the analysis of pioglitazone in tissues, and they were applied successfully to myxoid liposarcoma xenograft-bearing mice, which received clinically relevant drug doses. Pioglitazone was measured by either method in sections of tumor and liver 2, 6 and 24 h post-treatment. Drug distribution was relatively homogeneous.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Cristina Matteo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Marina Meroni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Tommaso Ceruti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Ilaria Fuso Nerini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Ezia Bello
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy.
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Mass Spectrometry Research Center for Health and Environment and Laboratory of Mass Spectrometry, Via Mario Negri 2, Milan, Italy
| |
Collapse
|
37
|
Bian Y, He MY, Ling Y, Wang XJ, Zhang F, Feng XS, Zhang Y, Xing SG, Li J, Qiu X, Li YR. Tissue distribution study of perfluorooctanoic acid in exposed zebrafish using MALDI mass spectrometry imaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118505. [PMID: 34785291 DOI: 10.1016/j.envpol.2021.118505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) as an emerging environmental contaminant, has become ubiquitous in the environment. It is of significance to study bioconcentration and tissue distribution of aquatic organisms for predicting the persistence of PFOA and its adverse effects on the environment and human body. However, the distribution of PFOA in different tissues is a complex physiological process affected by many factors. It is difficult to be accurately described by a simple kinetic model. In present study, a new strategy was introduced to research the PFOA distribution in tissues and estimate the exposure stages. Zebrafish were continuously exposed to 25 mg/L PFOA for 30 days to simulate environmental process. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) method was used to monitor the spatio-temporal distribution of PFOA in zebrafish tissues. By analyzing the law of change obtained from the high spatial resolution MSI data, two different enrichment trends in ten tissues were summarized by performing curve fitting. Analyzing the ratio of two types of curves, a new "exposure curve" was defined to evaluate the exposure stages. With this model, three levels (mild, moderate, and deep pollution stage) of PFOA pollution in zebrafish can be simply evaluated.
Collapse
Affiliation(s)
- Yu Bian
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mu-Yi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiu-Juan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shi-Ge Xing
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jie Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Qiu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu-Rui Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| |
Collapse
|
38
|
|
39
|
Shobo A, James N, Dai D, Röntgen A, Black C, Kwizera JR, Hancock MA, Huy Bui K, Multhaup G. The Amyloid-β 1-42-oligomer interacting peptide D-AIP possesses favorable biostability, pharmacokinetics, and brain region distribution. J Biol Chem 2021; 298:101483. [PMID: 34896396 PMCID: PMC8752909 DOI: 10.1016/j.jbc.2021.101483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
We have previously developed a unique 8-amino acid Aβ42 oligomer-Interacting Peptide (AIP) as a novel anti-amyloid strategy for the treatment of Alzheimer’s disease. Our lead candidate has successfully progressed from test tubes (i.e., in vitro characterization of protease-resistant D-AIP) to transgenic flies (i.e., in vivo rescue of human Aβ42-mediated toxicity via D-AIP-supplemented food). In the present study, we examined D-AIP in terms of its stability in multiple biological matrices (i.e., ex-vivo mouse plasma, whole blood, and liver S9 fractions) using MALDI mass spectrometry, pharmacokinetics using a rapid and sensitive LC-MS method, and blood brain barrier (BBB) penetrance in WT C57LB/6 mice. D-AIP was found to be relatively stable over 3 h at 37 °C in all matrices tested. Finally, label-free MALDI imaging showed that orally administered D-AIP can readily penetrate the intact BBB in both male and female WT mice. Based upon the favorable stability, pharmacokinetics, and BBB penetration outcomes for orally administered D-AIP in WT mice, we then examined the effect of D-AIP on amyloid “seeding” in vitro (i.e., freshly monomerized versus preaggregated Aβ42). Complementary biophysical assays (ThT, TEM, and MALDI-TOF MS) showed that D-AIP can directly interact with synthetic Aβ42 aggregates to disrupt primary and/or secondary seeding events. Taken together, the unique mechanistic and desired therapeutic potential of our lead D-AIP candidate warrants further investigation, that is, testing of D-AIP efficacy on the altered amyloid/tau pathology in transgenic mouse models of Alzheimer’s disease.
Collapse
Affiliation(s)
- Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nicholas James
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Daniel Dai
- Strathcona Anatomy Dentistry Building, McGill University, Montreal, QC, Canada
| | - Alexander Röntgen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Corbin Black
- Strathcona Anatomy Dentistry Building, McGill University, Montreal, QC, Canada
| | - Jean-Robert Kwizera
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Mark A Hancock
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Khanh Huy Bui
- Strathcona Anatomy Dentistry Building, McGill University, Montreal, QC, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
40
|
Innovation in drug toxicology: Application of mass spectrometry imaging technology. Toxicology 2021; 464:153000. [PMID: 34695509 DOI: 10.1016/j.tox.2021.153000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful molecular imaging technology that can obtain qualitative, quantitative, and location information by simultaneously detecting and mapping endogenous or exogenous molecules in biological tissue slices without specific chemical labeling or complex sample pretreatment. This article reviews the progress made in MSI and its application in drug toxicology research, including the tissue distribution of toxic drugs and their metabolites, the target organs (liver, kidney, lung, eye, and central nervous system) of toxic drugs, the discovery of toxicity-associated biomarkers, and explanations of the mechanisms of drug toxicity when MSI is combined with the cutting-edge omics methodologies. The unique advantages and broad prospects of this technology have been fully demonstrated to further promote its wider use in the field of pharmaceutical toxicology.
Collapse
|
41
|
He M, Wang X, Bian Y, Yang M, Deng Y, Liu T, Li Y, Chen F, Xu B, Xu M, Zhang F. Modeling the distribution of malachite green in zebrafish using matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Bioanal Chem 2021; 413:7021-7030. [PMID: 34642779 DOI: 10.1007/s00216-021-03664-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Here, a rapid and effective analysis strategy was introduced to study the distribution of veterinary drugs in aquatic products. Malachite green (MG), one of the most widely used veterinary drugs in aquaculture, was selected as the targeted compound. Zebrafish (Danio rerio) was used as a model organism. After an exposure test, the matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was applied to directly analyze the content changes of malachite green in zebrafish tissues. The reliable relationship of exposure time and content change of MG was described precisely by the extended Freundlich equation. The process of modeling was discussed in detail, and some important parameters or trend information was obtained, including the maximum content of MG in different fish tissues, time to maximum content, elimination time, equilibrium content, and so on. With a simplification of sample pretreatment, this research strategy can be used for monitoring the spatial distribution of veterinary drugs and related metabolites of laboratory-exposed fish. The obtained model can provide a perspective for rational drug use in aquaculture and precise drug residue detection in production activities.
Collapse
Affiliation(s)
- Muyi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yu Bian
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- College of Pharmacy, China Medical University, Shenyang, 110000, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yamei Deng
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- College of Pharmacy, China Medical University, Shenyang, 110000, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Bozhou Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Meixia Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
42
|
Merdas M, Lagarrigue M, Vanbellingen Q, Umbdenstock T, Da Violante G, Pineau C. On-tissue chemical derivatization reagents for matrix-assisted laser desorption/ionization mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4731. [PMID: 34080257 DOI: 10.1002/jms.4731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 05/27/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a key tool for the analysis of biological tissues. It provides spatial and quantitative information about different types of analytes within tissue sections. Despite the increasing improvements of this technique, the low detection sensitivity of some compounds remains an important challenge to overcome. Poor sensitivity is related to weak ionization efficiency, low abundance of analytes and matrix ions, or endogenous interferences. On-tissue chemical derivatization (OTCD) has proven to be an important solution to these issues and is increasingly employed in MALDI MSI studies. OTCD reagents, synthesized or commercially available, have been essentially used for the detection of small exogenous or endogenous molecules within tissues. Optimally, an OTCD reaction is performed in mild conditions, in an acceptable range of time, preserves the integrity of the tissues, and prevents the delocalization. In addition to their reactivity with a targeted chemical function, some OTCD reagents can also be used as a matrix, which simplifies the sample preparation procedure. In this review, we present an exhaustive overview of OTCD reagents and methods used in MALDI MSI studies.
Collapse
Affiliation(s)
- Mira Merdas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, F-35042, France
- Protim, Univ Rennes, Rennes, F-35042, France
- DMPK Department, Technologie Servier, Orléans, 45007, France
| | - Mélanie Lagarrigue
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, F-35042, France
- Protim, Univ Rennes, Rennes, F-35042, France
| | | | | | | | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, F-35042, France
- Protim, Univ Rennes, Rennes, F-35042, France
| |
Collapse
|
43
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
44
|
Wang Y, Hummon AB. MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J Biol Chem 2021; 297:101139. [PMID: 34461098 PMCID: PMC8463860 DOI: 10.1016/j.jbc.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
45
|
DESI-MS imaging to visualize spatial distribution of xenobiotics and endogenous lipids in the skin. Int J Pharm 2021; 607:120967. [PMID: 34352336 DOI: 10.1016/j.ijpharm.2021.120967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
The cutaneous biodistribution method (CBM) yields a high-resolution quantitative profile of drug deposition as a function of skin depth. However, it provides limited details about drug spatial distribution or penetration pathways. Mass spectrometry imaging (MSI) can complement the detailed quantitative data generated by CBM studies. The objectives of this work were to use desorption electrospray ionization (DESI)-MSI to (i) investigate the spatial cutaneous distributions of a topically applied drug and excipient and relate them to skin structures and (ii) image endogenous skin components and combine these results to gain insight into drug penetration routes. Porcine skin was used to compare two bioequivalent creams of econazole nitrate (ECZ) and a micelle formulation based on D-α-tocopheryl succinate polyethylene glycol 1000 (TPGS). DESI-MSI successfully imaged the cutaneous spatial distribution of ECZ and TPGS in 40 µm-thick horizontal sections and vertical cross-sections of the skin. Interestingly, clinically bioequivalent formulations did not appear to exhibit the same molecular distribution of ECZ in XY-horizontal sections. DESI-MSI also enabled visualization of TPGS (m/z 772.4706), mainly in the upper epidermis (≤80 µm). In conclusion, through co-localization of drugs and excipients with endogenous elements of the skin, DESI-MSI could further our understanding of the cutaneous penetration pathways of xenobiotics.
Collapse
|
46
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
47
|
|
48
|
Asslan M, Lauzon N, Beus M, Maysinger D, Rousseau S. Mass spectrometry imaging in zebrafish larvae for assessing drug safety and metabolism. Anal Bioanal Chem 2021; 413:5135-5146. [PMID: 34173039 DOI: 10.1007/s00216-021-03476-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Drug safety assessment in the early phases of drug discovery is critical to facilitate the rapid development of novel therapeutics. Recently, teleost zebrafish (Danio rerio) has emerged as a promising vertebrate model for the assessment of drug safety. Zebrafish is a convenient model because of its small size, high fecundity, embryo transparency, and ex utero development. In this study, we developed a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) method applied to zebrafish larvae to investigate safety and metabolism of sahaquine (Sq), an anticancer agent inhibiting histone deacetylase 6. This technique improves on prior studies using liquid chromatography-mass spectrometry (LC-MS) by adding analysis of the drug spatial distribution. Using this method, it was determined that Sq dissolved in fish water (1-2000 μM) did not reach the larval body and was mainly distributed throughout the yolk. High Sq concentration (800 μM) administered intravenously allowed the compound to reach the larval body but did not induce phenotypic abnormalities. Sq was metabolized into its glucuronidated form within 24 h and was excreted within 72 h. MALDI MSI was instrumental in showing that Sq-glucuronide was mainly formed in the gut and slightly in yolk syncytial layer, and provided valuable insights into xenobiotics elimination in zebrafish larvae. This study indicates that Sq has a good safety profile and merits further investigations in other disease models. In addition, the optimized MALDI MSI protocol provided here can be widely applied to study distribution and metabolic fate of other structurally related molecules.
Collapse
Affiliation(s)
- Mariana Asslan
- Research Institute of the McGill University Health Centre, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Prom. Sir-William-Osler, Montreal, H3G 1Y6, Canada
| | - Nidia Lauzon
- Research Institute of the McGill University Health Centre, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada
| | - Maja Beus
- Institute for Medical Research and Occupational Health, Ksaver road 2, 10 000, Zagreb, Croatia
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Prom. Sir-William-Osler, Montreal, H3G 1Y6, Canada
| | - Simon Rousseau
- Research Institute of the McGill University Health Centre, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. .,Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Prom. Sir-William-Osler, Montreal, H3G 1Y6, Canada.
| |
Collapse
|
49
|
Romero-Palomo F, Festag M, Lenz B, Schadt S, Brink A, Kipar A, Steinhuber B, Husser C, Koller E, Sewing S, Tessier Y, Dzygiel P, Fischer G, Winter M, Hetzel U, Mihatsch MJ, Braendli-Baiocco A. Safety, Tissue Distribution, and Metabolism of LNA-Containing Antisense Oligonucleotides in Rats. Toxicol Pathol 2021; 49:1174-1192. [PMID: 34060347 DOI: 10.1177/01926233211011615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antisense oligonucleotides (ASOs) are chemically modified nucleic acids with therapeutic potential, some of which have been approved for marketing. We performed a study in rats to investigate mechanisms of toxicity after administration of 3 tool locked nucleic acid (LNA)-containing ASOs with differing established safety profiles. Four male rats per group were dosed once, 3, or 6 times subcutaneously, with 7 days between dosing, and sacrificed 3 days after the last dose. These ASOs were either unconjugated (naked) or conjugated with N-acetylgalactosamine for hepatocyte-targeted delivery. The main readouts were in-life monitoring, clinical and anatomic pathology, exposure assessment and metabolite identification in liver and kidney by liquid chromatography coupled to tandem mass spectrometry, ASO detection in liver and kidney by immunohistochemistry, in situ hybridization, immune electron microscopy, and matrix-assisted laser desorption/ionization mass spectrometry imaging. The highly toxic compounds showed the greatest amount of metabolites and a low degree of tissue accumulation. This study reveals different patterns of cell death associated with toxicity in liver (apoptosis and necrosis) and kidney (necrosis only) and provides new ultrastructural insights on the tissue accumulation of ASOs. We observed that the immunostimulatory properties of ASOs can be either primary from sequence-dependent properties or secondary to cell necrosis.
Collapse
Affiliation(s)
- Fernando Romero-Palomo
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Matthias Festag
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Barbara Lenz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Andreas Brink
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, 30843Vetsuisse Faculty, University of Zürich, Switzerland
| | - Bernd Steinhuber
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Christophe Husser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Erich Koller
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Sabine Sewing
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Yann Tessier
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Pawel Dzygiel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Guy Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Michael Winter
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Udo Hetzel
- Electron Microscopy Unit, Institute of Veterinary Pathology, 27217Vetsuisse Faculty, University of Zürich, Switzerland
| | - Michael J Mihatsch
- 361703Institute for Pathology, University Hospital of Basel, Switzerland
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| |
Collapse
|
50
|
Robinson E, Giffen P, Hassall D, Ball D, Reid H, Coe D, Teague S, Terry R, Earl M, Marchand J, Farrer B, Havelund R, Gilmore IS, Marshall PS. Multimodal imaging of drug and excipients in rat lungs following an inhaled administration of controlled-release drug laden PLGA microparticles. Analyst 2021; 146:3378-3390. [PMID: 33876155 DOI: 10.1039/d0an02333g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Controlled-release formulations, in the form of micro- or nanoparticles, are increasingly attractive to the pharmaceutical industry for drug delivery. For respiratory illnesses, controlled-release microparticle formulations provide an opportunity to deliver a higher percentage of an inhaled medicament dose to the lung, thus potentially reducing the therapeutic dose, frequency of dosing, and minimising side-effects. We describe the use of a multimodal approach consisting of MALDI MS imaging, 3D depth profiling TOF-SIMS analysis, and histopathology to monitor the distribution of drug and excipients in sections taken from excised rat lungs following an inhaled administration of drug-laden microparticles. Following a single dose, the administered drug was detected in the lung via both MALDI MS and TOF-SIMS over a range of time points. Both imaging techniques enabled the characterisation of the distribution and retention of drug particles and identified differences in the capabilities of both imaging modalities. Histochemical staining of consecutive sections was used to provide biological context to the findings and will also be discussed in this presentation. We demonstrate how this multimodal approach could be used to help increase our understanding of the use of controlled release microparticles.
Collapse
Affiliation(s)
- Eve Robinson
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|