1
|
Singh AK, Srivastava AK, Johri P, Dwivedi M, Kaushal RS, Trivedi M, Upadhyay TK, Alabdallah NM, Ahmad I, Saeed M, Lakhanpal S. Odyssey of environmental and microbial interventions in maize crop improvement. FRONTIERS IN PLANT SCIENCE 2025; 15:1428475. [PMID: 39850212 PMCID: PMC11755104 DOI: 10.3389/fpls.2024.1428475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/01/2024] [Indexed: 01/25/2025]
Abstract
Maize (Zea mays) is India's third-largest grain crop, serving as a primary food source for at least 30% of the population and sustaining 900 million impoverished people globally. The growing human population has led to an increasing demand for maize grains. However, maize cultivation faces significant challenges due to a variety of environmental factors, including both biotic and abiotic stresses. Abiotic stresses such as salinity, extreme temperatures, and drought, along with biotic factors like bacterial, fungal, and viral infections, have drastically reduced maize production and grain quality worldwide. The interaction between these stresses is complex; for instance, abiotic stress can heighten a plant's susceptibility to pathogens, while an overabundance of pests can exacerbate the plant's response to environmental stress. Given the complexity of these interactions, comprehensive studies are crucial for understanding how the simultaneous presence of biotic and abiotic stresses affects crop productivity. Despite the importance of this issue, there is a lack of comprehensive data on how these stress combinations impact maize in key agricultural regions. This review focuses on developing abiotic stress-tolerant maize varieties, which will be essential for maintaining crop yields in the future. One promising approach involves the use of Plant Growth-Promoting Rhizobacteria (PGPR), soil bacteria that colonize the rhizosphere and interact with plant tissues. Scientists are increasingly exploring microbial strategies to enhance maize's resistance to both biotic and abiotic stresses. Throughout the cultivation process, insect pests and microorganisms pose significant threats to maize, diminishing both the quantity and quality of the grain. Among the various factors causing maize degradation, insects are the most prevalent, followed by fungal infections. The review also delves into the latest advancements in applying beneficial rhizobacteria across different agroecosystems, highlighting current trends and offering insights into future developments under both normal and stress conditions.
Collapse
Affiliation(s)
- Alok Kumar Singh
- Indian Council of Agriculture Research (ICAR) – National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Alok Kumar Srivastava
- Indian Council of Agriculture Research (ICAR) – National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - Parul Johri
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Divyangjan (AITH), Kanpur, Uttar Pradesh, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Aseel DG, Ibrahim OM, Abdelkhalek A. Biosynthesized silver nanoparticles mediated by Ammi visnaga extract enhanced systemic resistance and triggered multiple defense-related genes, including SbWRKY transcription factors, against tobacco mosaic virus infection. BMC PLANT BIOLOGY 2024; 24:756. [PMID: 39107683 PMCID: PMC11305019 DOI: 10.1186/s12870-024-05449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Tobacco mosaic virus (TMV) is a highly infectious plant virus that affects a wide variety of plants and reduces crop yields around the world. Here, we assessed the effectiveness of using Ammi visnaga aqueous seed extract to synthesize silver nanoparticles (Ag-NPs) and their potential to combat TMV. Different techniques were used to characterize Ag-NPs, such as scanning and transmission electron microscopy (SEM, TEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). RESULTS TEM demonstrated that the synthesized Ag-NPs had a spherical form with an average size of 23-30 nm and a zeta potential value of -15.9 mV, while FTIR revealed various functional groups involved in Ag-NP stability and capping. Interestingly, the Pre-treatment of tobacco plants (protective treatment) with Ag-NPs at 100-500 µg/mL significantly suppressed viral symptoms, while the Post-treatment (curative treatment) delayed their appearance. Furthermore, protective and curative treatments significantly increased chlorophyll a and b, total flavonoids, total soluble carbohydrates, and antioxidant enzymes activity (PPO, POX and CAT). Simultaneously, the application of Ag-NPs resulted in a decrease in levels of oxidative stress markers (H2O2 and MDA). The RT-qPCR results and volcano plot analysis showed that the Ag-NPs treatments trigger and regulate the transcription of ten defense-related genes (SbWRKY-1, SbWRKY-2, JERF-3, GST-1, POD, PR-1, PR-2, PR-12, PAL-1, and HQT-1). The heatmap revealed that GST-1, the primary gene involved in anthocyanidin production, was consistently the most expressed gene across all treatments throughout the study. Analysis of the gene co-expression network revealed that SbWRKY-19 was the most central gene among the studied genes, followed by PR-12 and PR-2. CONCLUSIONS Overall, the reported antiviral properties (protective and/or curative) of biosynthesized Ag-NPs against TMV lead us to recommend using Ag-NPs as a simple, stable, and eco-friendly agent in developing pest management programs against plant viral infections.
Collapse
Affiliation(s)
- Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| | - Omar M Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| |
Collapse
|
3
|
Kozieł E, Otulak-Kozieł K, Rusin P. Glutathione-the "master" antioxidant in the regulation of resistant and susceptible host-plant virus-interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1373801. [PMID: 38533404 PMCID: PMC10963531 DOI: 10.3389/fpls.2024.1373801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The interaction between plant hosts and plant viruses is a very unique and complex process, relying on dynamically modulated intercellular redox states and the generation of reactive oxygen species (ROS). Plants strive to precisely control this state during biotic stress, as optimal redox levels enable proper induction of defense mechanisms against plant viruses. One of the crucial elements of ROS regulation and redox state is the production of metabolites, such as glutathione, or the activation of glutathione-associated enzymes. Both of these elements play a role in limiting the degree of potential oxidative damage in plant cells. While the role of glutathione and specific enzymes is well understood in other types of abiotic and biotic stresses, particularly those associated with bacteria or fungi, recent advances in research have highlighted the significance of glutathione modulation and mutations in genes encoding glutathione-associated enzymes in triggering immunity or susceptibility against plant viruses. Apparently, glutathione-associated genes are involved in precisely controlling and protecting host cells from damage caused by ROS during viral infections, playing a crucial role in the host's response. In this review, we aim to outline the significant improvements made in research on plant viruses and glutathione, specifically in the context of their involvement in susceptible and resistant responses, as well as changes in the localization of glutathione. Analyses of essential glutathione-associated enzymes in susceptible and resistant responses have demonstrated that the levels of enzymatic activity or the absence of specific enzymes can impact the spread of the virus and activate host-induced defense mechanisms. This contributes to the complex network of the plant immune system. Although investigations of glutathione during the plant-virus interplay remain a challenge, the use of novel tools and approaches to explore its role will significantly contribute to our knowledge in the field.
Collapse
Affiliation(s)
- Edmund Kozieł
- *Correspondence: Edmund Kozieł, ; Katarzyna Otulak-Kozieł,
| | | | | |
Collapse
|
4
|
Gomaa AE, El Mounadi K, Parperides E, Garcia-Ruiz H. Cell Fractionation and the Identification of Host Proteins Involved in Plant-Virus Interactions. Pathogens 2024; 13:53. [PMID: 38251360 PMCID: PMC10819628 DOI: 10.3390/pathogens13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.
Collapse
Affiliation(s)
- Amany E. Gomaa
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Kaoutar El Mounadi
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA
| | - Eric Parperides
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| |
Collapse
|
5
|
Hossain MM, Sultana F, Khan S, Nayeema J, Mostafa M, Ferdus H, Tran LSP, Mostofa MG. Carrageenans as biostimulants and bio-elicitors: plant growth and defense responses. STRESS BIOLOGY 2024; 4:3. [PMID: 38169020 PMCID: PMC10761655 DOI: 10.1007/s44154-023-00143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
In the context of climate change, the need to ensure food security and safety has taken center stage. Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses. However, the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment, which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application, contributing to global warming and climate change. The naturally occurring sulfated linear polysaccharides obtained from edible red seaweeds (Rhodophyta), carrageenans, could offer climate-friendly substitutes for these inputs due to their bi-functional activities. Carrageenans and their derivatives, known as oligo-carrageenans, facilitate plant growth through a multitude of metabolic courses, including chlorophyll metabolism, carbon fixation, photosynthesis, protein synthesis, secondary metabolite generation, and detoxification of reactive oxygen species. In parallel, these compounds suppress pathogens by their direct antimicrobial activities and/or improve plant resilience against pathogens by modulating biochemical changes via salicylate (SA) and/or jasmonate (JA) and ethylene (ET) signaling pathways, resulting in increased production of secondary metabolites, defense-related proteins, and antioxidants. The present review summarizes the usage of carrageenans for increasing plant development and defense responses to pathogenic challenges under climate change. In addition, the current state of knowledge regarding molecular mechanisms and metabolic alterations in plants during carrageenan-stimulated plant growth and plant disease defense responses has been discussed. This evaluation will highlight the potential use of these new biostimulants in increasing agricultural productivity under climate change.
Collapse
Affiliation(s)
- Md Motaher Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Farjana Sultana
- College of Agricultural Sciences, International University of Business Agriculture and Technology, Dhaka, 1230, Bangladesh
| | - Sabia Khan
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Jannatun Nayeema
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahabuba Mostafa
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Humayra Ferdus
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Mohammad Golam Mostofa
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Hao K, Yang M, Cui Y, Jiao Z, Gao X, Du Z, Wang Z, An M, Xia Z, Wu Y. Transcriptomic and Functional Analyses Reveal the Different Roles of Vitamins C, E, and K in Regulating Viral Infections in Maize. Int J Mol Sci 2023; 24:ijms24098012. [PMID: 37175719 PMCID: PMC10178231 DOI: 10.3390/ijms24098012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize.
Collapse
Affiliation(s)
- Kaiqiang Hao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Miaoren Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yakun Cui
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyuan Jiao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhichao Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Otulak-Kozieł K, Kozieł E, Treder K, Király L. Glutathione Contribution in Interactions between Turnip mosaic virus and Arabidopsis thaliana Mutants Lacking Respiratory Burst Oxidase Homologs D and F. Int J Mol Sci 2023; 24:ijms24087128. [PMID: 37108292 PMCID: PMC10138990 DOI: 10.3390/ijms24087128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory burst oxidase homologs (Rbohs) play crucial and diverse roles in plant tissue-mediated production of reactive oxygen species during the development, growth, and response of plants to abiotic and biotic stress. Many studies have demonstrated the contribution of RbohD and RbohF in stress signaling in pathogen response differentially modulating the immune response, but the potential role of the Rbohs-mediated response in plant-virus interactions remains unknown. The present study analyzed, for the first time, the metabolism of glutathione in rbohD-, rbohF-, and rbohD/F-transposon-knockout mutants in response to Turnip mosaic virus (TuMV) infection. rbohD-TuMV and Col-0-TuMV interactions were characterized by susceptible reaction to TuMV, associated with significant activity of GPXLs (glutathione peroxidase-like enzymes) and induction of lipid peroxidation in comparison to mock-inoculated plants, with reduced total cellular and apoplastic glutathione content observed at 7-14 dpi and dynamic induction of apoplast GSSG (oxidized glutathione) at 1-14 dpi. Systemic virus infection resulted in the induction of AtGSTU1 and AtGSTU24, which was highly correlated with significant downregulation of GSTs (glutathione transferases) and cellular and apoplastic GGT (γ-glutamyl transferase) with GR (glutathione reductase) activities. On the contrary, resistant rbohF-TuMV reactions, and especially enhanced rbohD/F-TuMV reactions, were characterized by a highly dynamic increase in total cellular and apoplastic glutathione content, with induction of relative expression of AtGGT1, AtGSTU13, and AtGSTU19 genes. Moreover, virus limitation was highly correlated with the upregulation of GSTs, as well as cellular and apoplastic GGT with GR activities. These findings clearly indicate that glutathione can act as a key signaling factor in not only susceptible rbohD reaction but also the resistance reaction presented by rbohF and rbohD/F mutants during TuMV interaction. Furthermore, by actively reducing the pool of glutathione in the apoplast, GGT and GR enzymes acted as a cell first line in the Arabidopsis-TuMV pathosystem response, protecting the cell from oxidative stress in resistant interactions. These dynamically changed signal transductions involved symplast and apoplast in mediated response to TuMV.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute-National Research Institute, 76-009 Bonin, Poland
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), 15 Herman Ottó Str., H-1022 Budapest, Hungary
| |
Collapse
|
8
|
Johnmark O, Indieka S, Liu G, Gowda M, Suresh LM, Zhang W, Gao X. Fighting Death for Living: Recent Advances in Molecular and Genetic Mechanisms Underlying Maize Lethal Necrosis Disease Resistance. Viruses 2022; 14:2765. [PMID: 36560769 PMCID: PMC9784999 DOI: 10.3390/v14122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Maize Lethal Necrosis (MLN) disease, caused by a synergistic co-infection of maize chlorotic mottle virus (MCMV) and any member of the Potyviridae family, was first reported in EasternAfrica (EA) a decade ago. It is one of the most devastating threats to maize production in these regions since it can lead up to 100% crop loss. Conventional counter-measures have yielded some success; however, they are becoming less effective in controlling MLN. In EA, the focus has been on the screening and identification of resistant germplasm, dissecting genetic and the molecular basis of the disease resistance, as well as employing modern breeding technologies to develop novel varieties with improved resistance. CIMMYT and scientists from NARS partner organizations have made tremendous progresses in the screening and identification of the MLN-resistant germplasm. Quantitative trait loci mapping and genome-wide association studies using diverse, yet large, populations and lines were conducted. These remarkable efforts have yielded notable outcomes, such as the successful identification of elite resistant donor lines KS23-5 and KS23-6 and their use in breeding, as well as the identification of multiple MLN-tolerance promising loci clustering on Chr 3 and Chr 6. Furthermore, with marker-assisted selection and genomic selection, the above-identified germplasms and loci have been incorporated into elite maize lines in a maize breeding program, thus generating novel varieties with improved MLN resistance levels. However, the underlying molecular mechanisms for MLN resistance require further elucidation. Due to third generation sequencing technologies as well functional genomics tools such as genome-editing and DH technology, it is expected that the breeding time for MLN resistance in farmer-preferred maize varieties in EA will be efficient and shortened.
Collapse
Affiliation(s)
- Onyino Johnmark
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China and Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing Agricultural University, Nanjing 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Biochemistry and Molecular Biology Department, Egerton University, Njoro P.O. Box 536-20115, Kenya
| | - Stephen Indieka
- Biochemistry and Molecular Biology Department, Egerton University, Njoro P.O. Box 536-20115, Kenya
| | - Gaoqiong Liu
- Crops Soils and Horticulture Department, Egerton University, Njoro P.O. Box 536-20115, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - L. M. Suresh
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China and Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing Agricultural University, Nanjing 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China and Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing Agricultural University, Nanjing 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus. Int J Mol Sci 2022; 23:ijms231911531. [PMID: 36232831 PMCID: PMC9570173 DOI: 10.3390/ijms231911531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants not only through highly specific glutathione-binding abilities but also by participating in the signaling function. The tau class of GSTs has been reported to be induced as a response under stress conditions. Although several studies have focused on the role of the tau class of GSTs in plant–pathogen interactions, knowledge about their contribution to the response to virus inoculation is still inadequate. Therefore, in this study, the response of Atgstu19 and Atgstu24 knockout mutants to mechanical inoculation of Turnip mosaic virus (TuMV) was examined. The systemic infection of TuMV was more dynamically promoted in Atgstu19 mutants than in wild-type (Col-0) plants, suggesting the role of GSTU19 in TuMV resistance. However, Atgstu24 mutants displayed virus limitation and downregulation of the relative expression of TuMV capsid protein, accompanied rarely by TuMV particles only in vacuoles, and ultrastructural analyses of inoculated leaves revealed the lack of virus cytoplasmic inclusions. These findings indicated that Atgstu24 mutants displayed a resistance-like reaction to TuMV, suggesting that GSTU24 may suppress the plant resistance. In addition, these findings confirmed that GSTU1 and GSTU24 are induced and contribute to the susceptible reaction to TuMV in the Atgstu19–TuMV interaction. However, the upregulation of GSTU19 and GSTU13 highly correlated with virus limitation in the resistance-like reaction in the Atgstu24–TuMV interaction. Furthermore, the highly dynamic upregulation of GST and glutathione reductase (GR) activities resulted in significant induction (between 1 and 14 days post inoculation [dpi]) of the total glutathione pool (GSH + GSSG) in response to TuMV, which was accompanied by the distribution of active glutathione in plant cells. On the contrary, in Atgstu19, which is susceptible to TuMV interaction, upregulation of GST and GR activity only up to 7 dpi symptom development was reported, which resulted in the induction of the total glutathione pool between 1 and 3 dpi. These observations indicated that GSTU19 and GSTU24 are important factors in modulating the response to TuMV in Arabidopsis thaliana. Moreover, it was clear that glutathione is an important component of the regulatory network in resistance and susceptible response of A. thaliana to TuMV. These results help achieve a better understanding of the mechanisms regulating the Arabidopsis–TuMV pathosystem.
Collapse
|
10
|
Hou L, Du J, Ren Q, Zhu L, Zhao X, Kong X, Gu W, Wang L, Meng Q. Ubiquitin-modified proteome analysis of Eriocheir sinensis hemocytes during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2022; 125:109-119. [PMID: 35500876 DOI: 10.1016/j.fsi.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Spiroplasma eriocheiris, the pathogen of Eriocheir sinensis tremor disease (TD), has bring a huge economic loss to China aquaculture. The hemocytes of crab as the first target cells of S. eriocheiris, but the interactive relationship between the E. sinensis and this pathogen not particularly clear. The present study is the first time to analysis the role of protein ubiquitination in the process of E. sinensis hemocytes response S. eriocheiris infection. By applying label-free quantitative liquid chromatography with tandem mass spectrometry proteomics, 950 lysine ubiquitination sites and 803 ubiquitination peptides on 458 proteins were identified, of which 48 ubiquitination sites on 40 proteins were quantified as significantly changed after the S. eriocheiris infection. Bioinformatics analysis of ubiquitination different proteins suggested many biological process and pathways were participated in the interaction between S. eriocheiris and host cell, such as ubiquitin system, endocytosis, prophenoloxidase system (proPO system), cell apoptosis, glycolysis. Our study can enhance our understanding of interaction between the crab and S. eriocheiris, and also provides basis to study the role of protein ubiquitination in other crustacean innate immune system.
Collapse
Affiliation(s)
- Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Qiulin Ren
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China
| | - Li Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210046, China.
| |
Collapse
|
11
|
Proteomic Advances in Cereal and Vegetable Crops. Molecules 2021; 26:molecules26164924. [PMID: 34443513 PMCID: PMC8401599 DOI: 10.3390/molecules26164924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023] Open
Abstract
The importance of vegetables in human nutrition, such as cereals, which in many cases represent the main source of daily energy for humans, added to the impact that the incessant increase in demographic pressure has on the demand for these plant foods, entails the search for new technologies that can alleviate this pressure on markets while reducing the carbon footprint of related activities. Plant proteomics arises as a response to these problems, and through research and the application of new technologies, it attempts to enhance areas of food science that are fundamental for the optimization of processes. This review aims to present the different approaches and tools of proteomics in the investigation of new methods for the development of vegetable crops. In the last two decades, different studies in the control of the quality of crops have reported very interesting results that can help us to verify parameters as important as food safety, the authenticity of the products, or the increase in the yield by early detection of diseases. A strategic plan that encourages the incorporation of these new methods into the industry will be essential to promote the use of proteomics and all the advantages it offers in the optimization of processes and the solution of problems.
Collapse
|
12
|
Liu Y, Gong X, Zhou Q, Liu Y, Liu Z, Han J, Dong J, Gu S. Comparative proteomic analysis reveals insights into the dynamic responses of maize (Zea mays L.) to Setosphaeria turcica infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110811. [PMID: 33568308 DOI: 10.1016/j.plantsci.2020.110811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) production is severely affected by northern corn leaf blight (NCLB), which is a destructive foliar disease caused by Setosphaeria turcica. In recent years, studies on the interaction between maize and S. turcica have been focused at the transcription level, with no research yet at the protein level. Here, we applied tandem mass tag labelling and liquid chromatography-tandem mass spectrometry to investigate the proteomes of maize leaves at 24 h and 72 h post-inoculation (hpi) with S. turcica. In total, 4740 proteins encoded by 4711 genes were quantified in this study. Clustering analyses provided an understanding of the dynamic reprogramming of leaves proteomes by revealing the functions of different proteins during S. turcica infection. Screening and classification of differentially expressed proteins (DEPs) revealed that numerous defense-related proteins, including defense marker proteins and proteins related to the phenylpropanoid lignin biosynthesis, benzoxazine biosynthesis and the jasmonic acid signalling pathway, participated in the defense responses of maize to S. turcica infection. Furthermore, the earlier induction of GST family proteins contributed to the resistance to S. turcica. In addition, the protein-protein interaction network of DEPs suggests that some defense-related proteins, for example, ZmGEB1, a hub node, play key roles in defense responses against S. turcica infection. Our study findings provide insight into the complex responses triggered by S. turcica at the protein level and lay the foundation for studying the interaction process between maize and S. turcica infection.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Xiaodong Gong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Qihui Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Yajie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Zhenpan Liu
- Economic Forsetry Research Institute of Liaoning Province, China
| | - Jianmin Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shouqin Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China.
| |
Collapse
|
13
|
Genomic dissection of ROS detoxifying enzyme encoding genes for their role in antioxidative defense mechanism against Tomato leaf curl New Delhi virus infection in tomato. Genomics 2021; 113:889-899. [PMID: 33524498 DOI: 10.1016/j.ygeno.2021.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 01/23/2023]
Abstract
In the present study, genes encoding for six major classes of enzymatic antioxidants, namely superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), Peroxidase (Prx) and glutathione S-transferase (GST) are identified in tomato. Their expression was studied in tomato cultivars contrastingly tolerant to ToLCNDV during virus infection and different hormone treatments. Significant upregulation of SlGR3, SlPrx25, SlPrx75, SlPrx95, SlGST44, and SlGST96 was observed in the tolerant cultivar during disease infection. Virus-induced gene silencing of SlGR3 in the tolerant cultivar conferred disease susceptibility to the knock-down line, and higher accumulation (~80%) of viral DNA was observed in the tolerant cultivar. Further, subcellular localization of SlGR3 showed its presence in cytoplasm, and its enzymatic activity was found to be increased (~65%) during ToLCNDV infection. Knock-down lines showed ~3- and 3.5-fold reduction in GR activity, which altogether underlines that SlGR3 is vital component of the defense mechanism against ToLCNDV infection.
Collapse
|
14
|
Grapevine-Downy Mildew Rendezvous: Proteome Analysis of the First Hours of an Incompatible Interaction. PLANTS 2020; 9:plants9111498. [PMID: 33167573 PMCID: PMC7694532 DOI: 10.3390/plants9111498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022]
Abstract
Grapevine is one of the most relevant crops in the world being used for economically important products such as wine. However, relevant grapevine cultivars are heavily affected by diseases such as the downy mildew disease caused by Plasmopara viticola. Improvements on grapevine resistance are made mainly by breeding techniques where resistance traits are introgressed into cultivars with desired grape characteristics. However, there is still a lack of knowledge on how resistant or tolerant cultivars tackle the P. viticola pathogen. In this study, using a shotgun proteomics LC-MS/MS approach, we unravel the protein modulation of a highly tolerant grapevine cultivar, Vitis vinifera “Regent”, in the first hours post inoculation (hpi) with P. viticola. At 6 hpi, proteins related to defense and to response to stimuli are negatively modulated while at 12 hpi there is an accumulation of proteins belonging to both categories. The co-occurrence of indicators of effector-triggered susceptibility (ETS) and effector-triggered immunity (ETI) is detected at both time-points, showing that these defense processes present high plasticity. The results obtained in this study unravel the tolerant grapevine defense strategy towards P. viticola and may provide valuable insights on resistance associated candidates and mechanisms, which may play an important role in the definition of new strategies for breeding approaches.
Collapse
|
15
|
Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 2020; 242:126590. [PMID: 33022544 DOI: 10.1016/j.micres.2020.126590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
16
|
Liu Y, Liu J, Wang A, Wang R, Sun H, Strappe P, Zhou Z. Physiological and proteomic analyses provide insights into the rice yellowing. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Comparative phosphoproteomic analysis of BR-defective mutant reveals a key role of GhSK13 in regulating cotton fiber development. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1905-1917. [PMID: 32632733 DOI: 10.1007/s11427-020-1728-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Brassinosteroid (BR), a steroid phytohormone, whose signaling transduction pathways include a series of phosphorylation and dephosphorylation events, and GSK3s are the main negative regulator kinases. BRs have been shown to play vital roles in cotton fiber elongation. However, the underlying mechanism is still elusive. In this study, fibers of a BR-defective mutant Pagoda 1 (pag1), and its corresponding wild-type (ZM24) were selected for a comparative global phosphoproteome analysis at critical developmental time points: fast-growing stage (10 days after pollination (DPA)) and secondary cell wall synthesis stage (20 DPA). Based on the substrate characteristics of GSK3, 900 potential substrates were identified. Their GO and KEGG annotation results suggest that BR functions in fiber development by regulating GhSKs (GSK3s of Gossypium hirsutum L.) involved microtubule cytoskeleton organization, and pathways of glucose, sucrose and lipid metabolism. Further experimental results revealed that among the GhSK members identified, GhSK13 not only plays a role in BR signaling pathway, but also functions in developing fiber by respectively interacting with an AP2-like ethylene-responsive factor GhAP2L, a nuclear transcription factor Gh_DNF_YB19, and a homeodomain zipper member GhHDZ5. Overall, our phosphoproteomic research advances the understanding of fiber development controlled by BR signal pathways especially through GhSKs, and also offers numbers of target proteins for improving cotton fiber quality.
Collapse
|
18
|
Gao Z, Liu Q, Zhang Y, Chen D, Zhan X, Deng C, Cheng S, Cao L. OsCUL3a-Associated Molecular Switches Have Functions in Cell Metabolism, Cell Death, and Disease Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5471-5482. [PMID: 32320244 DOI: 10.1021/acs.jafc.9b07426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study applies parallel reaction monitoring (PRM) proteomics and CRISPR-Cas9 mutagenesis to identify relationships between cell metabolism, cell death, and disease resistance. In oscul3a (oscullin3a) mutants, OsCUL3a-associated molecular switches are responsible for disrupted cell metabolism that leads to increased total lipid content in rice grain, a late accumulation of H2O2 in leaves, enhanced Xanthomonas oryzae pv. oryzae disease resistance, and suppressed panicle and first internode growth. In oscul3a mutants, PRM-confirmed upregulated molecular switch proteins include lipoxygenases (CM-LOX1 and CM-LOX2), suggesting a novel connection between ferroptosis and rice lesion mimic formation. Rice immunity-associated proteins OsNPR1 and OsNPR3 were shown to interact with each other and have opposing regulatory effects based on the cell death phenotype of osnpr1/oscul3a and osnpr3/oscul3a double mutants. Together, these results describe a network that regulates plant growth, disease resistance, and grain quality that includes the E3 ligase OsCUL3a, cell metabolism-associated molecular switches, and immunity switches OsNPR1 and OsNPR3.
Collapse
Affiliation(s)
- Zhiqiang Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Chenwei Deng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| |
Collapse
|
19
|
iTRAQ-Based Proteomic Analysis of Watermelon Fruits in Response to Cucumber green mottle mosaic virus Infection. Int J Mol Sci 2020; 21:ijms21072541. [PMID: 32268502 PMCID: PMC7178218 DOI: 10.3390/ijms21072541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/07/2023] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is an important viral pathogen on cucurbit plants worldwide, which can cause severe fruit decay symptoms on infected watermelon (usually called “watermelon blood flesh”). However, the molecular mechanism of this disease has not been well understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique to analyze the proteomic profiles of watermelon fruits in response to CGMMV infection. A total of 595 differentially accumulated proteins (DAPs) were identified, of which 404 were upregulated and 191 were downregulated. Functional annotation analysis showed that these DAPs were mainly involved in photosynthesis, carbohydrate metabolism, secondary metabolite biosynthesis, plant–pathogen interaction, and protein synthesis and turnover. The accumulation levels of several proteins related to chlorophyll metabolism, pyruvate metabolism, TCA cycle, heat shock proteins, thioredoxins, ribosomal proteins, translation initiation factors, and elongation factors were strongly affected by CGMMV infection. Furthermore, a correlation analysis was performed between CGMMV-responsive proteome and transcriptome data of watermelon fruits obtained in our previous study, which could contribute to comprehensively elucidating the molecular mechanism of “watermelon blood flesh”. To confirm the iTRAQ-based proteome data, the corresponding transcripts of ten DAPs were validated by determining their abundance via quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). These results could provide a scientific basis for in-depth understanding of the pathogenic mechanisms underlying CGMMV-induced “watermelon blood flesh”, and lay the foundation for further functional exploration and verification of related genes and proteins.
Collapse
|
20
|
Yang X, Lu Y, Wang F, Chen Y, Tian Y, Jiang L, Peng J, Zheng H, Lin L, Yan C, Taliansky M, MacFarlane S, Wu Y, Chen J, Yan F. Involvement of the chloroplast gene ferredoxin 1 in multiple responses of Nicotiana benthamiana to Potato virus X infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2142-2156. [PMID: 31872217 PMCID: PMC7094082 DOI: 10.1093/jxb/erz565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang Wang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ying Chen
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yanzhen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
21
|
dos Santos EC, Pirovani CP, Correa SC, Micheli F, Gramacho KP. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches´ broom disease. BMC PLANT BIOLOGY 2020; 20:1. [PMID: 31898482 PMCID: PMC6941324 DOI: 10.1186/s12870-019-2170-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Witches' broom disease (WBD) of cacao (Theobroma cacao L.), caused by Moniliophthora perniciosa, is the most important limiting factor for the cacao production in Brazil. Hence, the development of cacao genotypes with durable resistance is the key challenge for control the disease. Proteomic methods are often used to study the interactions between hosts and pathogens, therefore helping classical plant breeding projects on the development of resistant genotypes. The present study compared the proteomic alterations between two cacao genotypes standard for WBD resistance and susceptibility, in response to M. perniciosa infection at 72 h and 45 days post-inoculation; respectively the very early stages of the biotrophic and necrotrophic stages of the cacao x M. perniciosa interaction. RESULTS A total of 554 proteins were identified, being 246 in the susceptible Catongo and 308 in the resistant TSH1188 genotypes. The identified proteins were involved mainly in metabolism, energy, defense and oxidative stress. The resistant genotype showed more expressed proteins with more variability associated with stress and defense, while the susceptible genotype exhibited more repressed proteins. Among these proteins, stand out pathogenesis related proteins (PRs), oxidative stress regulation related proteins, and trypsin inhibitors. Interaction networks were predicted, and a complex protein-protein interaction was observed. Some proteins showed a high number of interactions, suggesting that those proteins may function as cross-talkers between these biological functions. CONCLUSIONS We present the first study reporting the proteomic alterations of resistant and susceptible genotypes in the T. cacao x M. perniciosa pathosystem. The important altered proteins identified in the present study are related to key biologic functions in resistance, such as oxidative stress, especially in the resistant genotype TSH1188, that showed a strong mechanism of detoxification. Also, the positive regulation of defense and stress proteins were more evident in this genotype. Proteins with significant roles against fungal plant pathogens, such as chitinases, trypsin inhibitors and PR 5 were also identified, and they may be good resistance markers. Finally, important biological functions, such as stress and defense, photosynthesis, oxidative stress and carbohydrate metabolism were differentially impacted with M. perniciosa infection in each genotype.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
| | - Stephany Cristiane Correa
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Fabienne Micheli
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Karina Peres Gramacho
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Molecular Plant Pathology Laboratory, Cocoa Research Center (CEPEC), CEPLAC, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia 45600-970 Brazil
| |
Collapse
|
22
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
23
|
Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. Int J Mol Sci 2019; 21:ijms21010035. [PMID: 31861651 PMCID: PMC6981863 DOI: 10.3390/ijms21010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) has been occurring frequently worldwide and causes severe yield losses in maize (Zea mays). To better investigate the destructive effects of MCMV infection on maize plants, isobaric tagging for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed on MCMV infected maize cv. B73. A total of 972 differentially abundant proteins (DAPs), including 661 proteins with increased abundance and 311 proteins with reduced abundance, were identified in response to MCMV infection. Functional annotations of DAPs and measurement of photosynthetic activity revealed that photosynthesis was decreased, while the abundance of ribosomal proteins, proteins related to stress responses, oxidation-reduction and redox homeostasis was altered significantly during MCMV infection. Two DAPs, disulfide isomerases like protein ZmPDIL-1 and peroxiredoxin family protein ZmPrx5, were further analyzed for their roles during MCMV infection through cucumber mosaic virus-based virus-induced gene silencing (CMV-VIGS). The accumulation of MCMV was suppressed in ZmPDIL-1-silenced or ZmPrx5-silenced B73 maize, suggesting ZmPDIL-1 and ZmPrx5 might enhance host susceptibility to MCMV infection.
Collapse
|
24
|
Szajko K, Plich J, Przetakiewicz J, Sołtys-Kalina D, Marczewski W. Comparative proteomic analysis of resistant and susceptible potato cultivars during Synchytrium endobioticum infestation. PLANTA 2019; 251:4. [PMID: 31776704 DOI: 10.1007/s00425-019-03306-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/25/2019] [Indexed: 05/04/2023]
Abstract
We report the first comparative study of protein expression profiles in tuber sprouts between Katahdin-derived potato cultivars resistant and susceptible to Synchytrium endobioticum. Synchytrium endobioticum causes wart disease in potato (Solanum tuberosum L.) and is considered as the most important quarantine pathogen in almost all countries where potatoes are grown. We performed a comparative analysis of differentially expressed proteins in the tuber sprouts of potato cultivars differing in resistance to pathotype 1(D1) of S. endobioticum using two-dimensional electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches. Bulks prepared from two resistant (Calrose and Humalda) and three susceptible (Sebago, Seneca and Wauseon) potato cultivars were studied. When protein profiles were compared between mock- and S. endobioticum-inoculated sprouts, 35 and 63 protein spots, indicating qualitative or quantitative differences, were detected in the resistant and susceptible cultivars, respectively. In turn, 24 proteins associated with resistance to S. endobioticum were revealed by comparison of the resistant and susceptible bulks. These proteins were changed in a constitutive or induced manner and were grouped into four categories: stress and defence, cell structure, protein turnover, and metabolism. Among the 13 proteins classified into the stress and defence group, seven proteins were related to heat-shock proteins (HSPs)/chaperone factors. In addition, four proteins, S-adenosyl-L-homocysteine hydrolase-like, superoxide dismutase [Mn], inactive patatin-3-Kuras 1 and patatin-15, were induced in the resistant bulk; whereas two proteins, patatin-01 and nucleoredoxin 1, showed significant differences in expression between the S. endobioticum-inoculated resistant and susceptible bulks. The detection of such a large number of S. endobioticum-mediated proteins representing the HSP70, HSP60 and HSP20 families suggests their significant role in restricting wart disease in potato tubers.
Collapse
Affiliation(s)
- Katarzyna Szajko
- Plant Breeding and Acclimatization Institute-National, Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Jarosław Plich
- Plant Breeding and Acclimatization Institute-National, Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Jarosław Przetakiewicz
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute-National, Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute-National, Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland.
| |
Collapse
|
25
|
Wang S, Chen Z, Tian L, Ding Y, Zhang J, Zhou J, Liu P, Chen Y, Wu L. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2153-2168. [PMID: 30972847 PMCID: PMC6790363 DOI: 10.1111/pbi.13129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 05/25/2023]
Abstract
Southern corn rust (SCR), which is a destructive disease caused by Puccinia polysora Underw. (P. polysora), commonly occurs in warm-temperate and tropical regions. To identify candidate proteins related to SCR resistance and characterize the molecular mechanisms underlying the maize-P. polysora interaction, a comparative proteomic analysis of susceptible and resistant maize lines was performed. Statistical analyses revealed 1489 differentially abundant proteins in the resistant line, as well as 1035 differentially abundant proteins in the susceptible line. After the P. polysora infection, the abundance of one remorin protein (ZmREM1.3) increased in the resistant genotype, but decreased in the susceptible genotype. Plant-specific remorins are important for responses to microbial infections as well as plant signalling processes. In this study, transgenic maize plants overexpressing ZmREM1.3 exhibited enhanced resistance to the biotrophic P. polysora. In contrast, homozygous ZmREM1.3 UniformMu mutant plants were significantly more susceptible to P. polysora than wild-type plants. Additionally, the ZmREM1.3-overexpressing plants accumulated more salicylic acid (SA) and jasmonic acid (JA). Moreover, the expression levels of defence-related genes were higher in ZmREM1.3-overexpressing maize plants than in non-transgenic control plants in response to the P. polysora infection. Overall, our results provide evidence that ZmREM1.3 positively regulates maize defences against P. polysora likely via SA/JA-mediated defence signalling pathways. This study represents the first large-scale proteomic analysis of the molecular mechanisms underlying the maize-P. polysora interaction. This is also the first report confirming the remorin protein family affects plant resistance to SCR.
Collapse
Affiliation(s)
- Shunxi Wang
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Zan Chen
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Lei Tian
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Yezhang Ding
- Section of Cell and Developmental BiologyUniversity of California at San DiegoLa JollaCAUSA
| | - Jun Zhang
- Cereal Crop Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jinlong Zhou
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Ping Liu
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Liuji Wu
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| |
Collapse
|
26
|
Gao Z, Liu Q, Zhang Y, Fang H, Zhang Y, Sinumporn S, Abbas A, Ning Y, Wang GL, Cheng S, Cao L. A proteomic approach identifies novel proteins and metabolites for lesion mimic formation and disease resistance enhancement in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110182. [PMID: 31481196 DOI: 10.1016/j.plantsci.2019.110182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Lesion mimic mutants are ideal genetic materials to study programmed cell death and defense signaling in plants. However, the molecular basis of lesion mimic formation remains largely unknown. Here, we first used a proteomic approach to identify differentially expressed proteins during dynamic lesion mimic formation in the rice oscul3a mutant, then electron microscope observation and physiological assays were used to analyze the mutant. The oscul3a mutant had disrupted cell metabolism balance, and the identified differentially expressed proteins were mainly located in the chloroplast and cytoplasm, which caused enhanced lipid metabolism, but suppressed carbon/nitrogen metabolism with reduced growth and grain quality. The oscul3a mutant had higher salicylic acid (SA) concentration in leaves, and H2O2 was shown to accumulate late in the formation of lesions. The secondary metabolite coumarin induced reactive oxygen species (ROS) and had rice blast resistance activity. Moreover, the cell death initiated lesion mimic formation of oscul3a mutant was light-sensitive, which might be associated with metabolite biosynthesis and accumulation. This study sheds light on the metabolic transition associated with cell death and defense response, which is under tight regulation by OsCUL3a and metabolism-related proteins, and the newly identified chemicals in the secondary metabolic pathway can potentially be used to control disease in crop plants.
Collapse
Affiliation(s)
- Zhiqiang Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Sittipun Sinumporn
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Thung Kula Ronghai Roi Et Campus, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Adil Abbas
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
27
|
Yuan W, Jiang T, Du K, Chen H, Cao Y, Xie J, Li M, Carr JP, Wu B, Fan Z, Zhou T. Maize phenylalanine ammonia-lyases contribute to resistance to Sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation. MOLECULAR PLANT PATHOLOGY 2019; 20:1365-1378. [PMID: 31487111 PMCID: PMC6792131 DOI: 10.1111/mpp.12817] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sugarcane mosaic virus (SCMV) is a pathogen of worldwide importance that causes dwarf mosaic disease on maize (Zea mays). Until now, few maize genes/proteins have been shown to be involved in resistance to SCMV. In this study, we characterized the role of maize phenylalanine ammonia-lyases (ZmPALs) in accumulation of the defence signal salicylic acid (SA) and in resistance to virus infection. SCMV infection significantly increased SA accumulation and expression of SA-responsive pathogenesis-related protein genes (PRs). Interestingly, exogenous SA treatment decreased SCMV accumulation and enhanced resistance. Both reverse transcription-coupled quantitative PCR and RNA-Seq data confirmed that expression levels of at least four ZmPAL genes were significantly up-regulated upon SCMV infection. Knockdown of ZmPAL expression led to enhanced SCMV infection symptom severity and virus multiplication, and simultaneously resulted in decreased SA accumulation and PR gene expression. Intriguingly, application of exogenous SA to SCMV-infected ZmPAL-silenced maize plants decreased SCMV accumulation, showing that ZmPALs are required for SA-mediated resistance to SCMV infection. In addition, lignin measurements and metabolomic analysis showed that ZmPALs are also involved in SCMV-induced lignin accumulation and synthesis of other secondary metabolites via the phenylpropanoid pathway. In summary, our results indicate that ZmPALs are required for SA accumulation in maize and are involved in resistance to virus infection by limiting virus accumulation and moderating symptom severity.
Collapse
Affiliation(s)
- Wen Yuan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tong Jiang
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Kaitong Du
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Hui Chen
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yanyong Cao
- Cereal Crops InstituteHenan Academy of Agricultural ScienceZhengzhou450002China
| | - Jipeng Xie
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Mengfei Li
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Boming Wu
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zaifeng Fan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tao Zhou
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
28
|
Madroñero J, Corredor Rozo ZL, Escobar Pérez JA, Velandia Romero ML. Next generation sequencing and proteomics in plant virology: how is Colombia doing? ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Crop production and trade are two of the most economically important activities in Colombia, and viral diseases cause a high negative impact to agricultural sector. Therefore, the detection, diagnosis, control, and management of viral diseases are crucial. Currently, Next-Generation Sequencing (NGS) and ‘Omic’ technologies constitute a right-hand tool for the discovery of novel viruses and for studying virus-plant interactions. This knowledge allows the development of new viral diagnostic methods and the discovery of key components of infectious processes, which could be used to generate plants resistant to viral infections. Globally, crop sciences are advancing in this direction. In this review, advancements in ‘omic’ technologies and their different applications in plant virology in Colombia are discussed. In addition, bioinformatics pipelines and resources for omics data analyses are presented. Due to their decreasing prices, NGS technologies are becoming an affordable and promising means to explore many phytopathologies affecting a wide variety of Colombian crops so as to improve their trade potential.
Collapse
|
29
|
Souza PFN, Garcia-Ruiz H, Carvalho FEL. What proteomics can reveal about plant-virus interactions? Photosynthesis-related proteins on the spotlight. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2019; 31:227-248. [PMID: 31355128 PMCID: PMC6660014 DOI: 10.1007/s40626-019-00142-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant viruses are responsible for losses in worldwide production of numerous economically important food and fuel crops. As obligate cellular parasites with very small genomes, viruses rely on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for dispersal. Chloroplasts are photosynthesis and are the site of replication for several viruses. When viruses replicate in chloroplasts, photosynthesis, an essential process in plant physiology, is inhibited. The mechanisms underlying molecular and biochemical changes during compatible and incompatible plants-virus interactions, are only beginning to be elucidated, including changes in proteomic profiles induced by virus infections. In this review, we highlight the importance of proteomic studies to understand plant-virus interactions, especially emphasizing the changes in photosynthesis-related protein accumulation. We focus on: (a) chloroplast proteins that differentially accumulate during viral infection; (b) the significance with respect to chloroplast-virus interaction; and (c) alterations in plant's energetic metabolism and the subsequently the plant defense mechanisms to overcome viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
30
|
Gullner G, Komives T, Király L, Schröder P. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1836. [PMID: 30622544 PMCID: PMC6308375 DOI: 10.3389/fpls.2018.01836] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Plant glutathione S-transferases (GSTs) are ubiquitous and multifunctional enzymes encoded by large gene families. A characteristic feature of GST genes is their high inducibility by a wide range of stress conditions including biotic stress. Early studies on the role of GSTs in plant biotic stress showed that certain GST genes are specifically up-regulated by microbial infections. Later numerous transcriptome-wide investigations proved that distinct groups of GSTs are markedly induced in the early phase of bacterial, fungal and viral infections. Proteomic investigations also confirmed the accumulation of multiple GST proteins in infected plants. Furthermore, functional studies revealed that overexpression or silencing of specific GSTs can markedly modify disease symptoms and also pathogen multiplication rates. However, very limited information is available about the exact metabolic functions of disease-induced GST isoenzymes and about their endogenous substrates. The already recognized roles of GSTs are the detoxification of toxic substances by their conjugation with glutathione, the attenuation of oxidative stress and the participation in hormone transport. Some GSTs display glutathione peroxidase activity and these GSTs can detoxify toxic lipid hydroperoxides that accumulate during infections. GSTs can also possess ligandin functions and participate in the intracellular transport of auxins. Notably, the expression of multiple GSTs is massively activated by salicylic acid and some GST enzymes were demonstrated to be receptor proteins of salicylic acid. Furthermore, induction of GST genes or elevated GST activities have often been observed in plants treated with beneficial microbes (bacteria and fungi) that induce a systemic resistance response (ISR) to subsequent pathogen infections. Further research is needed to reveal the exact metabolic functions of GST isoenzymes in infected plants and to understand their contribution to disease resistance.
Collapse
Affiliation(s)
- Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamas Komives
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analyses, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
31
|
Wrzesińska B, Dai Vu L, Gevaert K, De Smet I, Obrępalska-Stęplowska A. Peanut Stunt Virus and Its Satellite RNA Trigger Changes in Phosphorylation in N. benthamiana Infected Plants at the Early Stage of the Infection. Int J Mol Sci 2018; 19:E3223. [PMID: 30340407 PMCID: PMC6214028 DOI: 10.3390/ijms19103223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022] Open
Abstract
Signaling in host plants is an integral part of a successful infection by pathogenic RNA viruses. Therefore, identifying early signaling events in host plants that play an important role in establishing the infection process will help our understanding of the disease process. In this context, phosphorylation constitutes one of the most important post-translational protein modifications, regulating many cellular signaling processes. In this study, we aimed to identify the processes affected by infection with Peanut stunt virus (PSV) and its satellite RNA (satRNA) in Nicotiana benthamiana at the early stage of pathogenesis. To achieve this, we performed proteome and phosphoproteome analyses on plants treated with PSV and its satRNA. The analysis of the number of differentially phosphorylated proteins showed strong down-regulation in phosphorylation in virus-treated plants (without satRNA). Moreover, proteome analysis revealed more down-regulated proteins in PSV and satRNA-treated plants, which indicated a complex dependence between proteins and their modifications. Apart from changes in photosynthesis and carbon metabolism, which are usually observed in virus-infected plants, alterations in proteins involved in RNA synthesis, transport, and turnover were observed. As a whole, this is the first community (phospho)proteome resource upon infection of N. benthamiana with a cucumovirus and its satRNA and this resource constitutes a valuable data set for future studies.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Institute of Plant Protection-National Research Institute, Department of Entomology, Animal Pests and Biotechnology, Władysława Węgorka 20, 60-318 Poznań, Poland.
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
| | - Aleksandra Obrępalska-Stęplowska
- Institute of Plant Protection-National Research Institute, Department of Entomology, Animal Pests and Biotechnology, Władysława Węgorka 20, 60-318 Poznań, Poland.
| |
Collapse
|
32
|
Sulfated polysaccharide from Kappaphycus alvarezii (Doty) Doty ex P.C. Silva primes defense responses against anthracnose disease of Capsicum annuum Linn. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. MOLECULAR PLANT PATHOLOGY 2018; 19:504-518. [PMID: 28056496 PMCID: PMC6638057 DOI: 10.1111/mpp.12533] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus-infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant-virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome-based antiviral resistance in economically important crops.
Collapse
Affiliation(s)
- Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
34
|
Comparative analysis of constitutive proteome between resistant and susceptible tomato genotypes regarding to late blight. Funct Integr Genomics 2017; 18:11-21. [DOI: 10.1007/s10142-017-0570-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
|
35
|
Chen H, Cao Y, Li Y, Xia Z, Xie J, Carr JP, Wu B, Fan Z, Zhou T. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. THE NEW PHYTOLOGIST 2017; 215:1156-1172. [PMID: 28627019 DOI: 10.1111/nph.14645] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/30/2017] [Indexed: 05/25/2023]
Abstract
Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yiqing Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zihao Xia
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jipeng Xie
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Boming Wu
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
36
|
Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV). J Proteomics 2017; 153:78-88. [PMID: 27235724 DOI: 10.1016/j.jprot.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Pea seed-borne mosaic virus (PSbMV) significantly reduces yields in a broad spectra of legumes. The eukaryotic translation initiation factor has been shown to confer resistance to this pathogen, thus implying that translation and proteome dynamics play a role in resistance. This study presents the results of a proteome-wide analysis of Pisum sativum L. response to PSbMV infection. LC-MS profiling of two contrasting pea cultivars, resistant (B99) and susceptible (Raman) to PSbMV infection, detected >2300 proteins, 116 of which responded to PSbMV ten and/or twenty days post-inoculation. These differentially abundant proteins are involved in number of processes that have previously been reported in the plant-pathogen response, including protein and amino acid metabolism, stress signaling, redox homeostasis, carbohydrate metabolism, and lipid metabolism. We complemented our proteome-wide analysis work with targeted analyses of free amino acids and selected small molecules, fatty acid profiling, and enzyme activity assays. Data from these additional experiments support our findings and validate the biological relevance of the observed proteome changes. We found surprising similarities in the resistant and susceptible cultivars, which implies that a seemingly unaffected plant, with no detectable levels of PSbMV, actively suppresses viral replication. BIOLOGICAL SIGNIFICANCE Plant resistance to PSbMV is connected to translation initiation factors, yet the processes involved are still poorly understood at the proteome level. To the best of our knowledge, this is the first survey of the global proteomic response to PSbMV in plants. The combination of label-free LC-MS profiling and two contrasting cultivars (resistant and susceptible) provided highly sensitive snapshots of protein abundance in response to PSbMV infection. PSbMV is a member of the largest family of plant viruses and our results are in accordance with previously characterized potyvirus-responsive proteomes. Hence, the results of this study can further extend our knowledge about these pathogens. We also show that even though no viral replication is detected in the PSbMV-resistant cultivar B99, it is still significantly affected by PSbMV inoculation.
Collapse
Affiliation(s)
- Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Kifah Abushamsiya
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
37
|
Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X. iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteomics 2017; 152:88-101. [PMID: 27989946 DOI: 10.1016/j.jprot.2016.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022]
Abstract
Geminiviruses have caused serious losses in crop production. To investigate the mechanisms underlying host defenses against geminiviruses, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach was used to explore the expression profiles of proteins in Nicotiana benthamiana (N. benthamiana) leaves in response to tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB) at an early phase. In total, 4155 proteins were identified and 272 proteins were changed differentially in response to TYLCCNV/TYLCCNB infection. Bioinformatics analysis indicated that S-adenosyl-l-methionine cycle II was the most significantly up-regulated biochemical process during TYLCCNV/TYLCCNB infection. The mRNA levels of three proteins in S-adenosyl-l-methionine cycle II were further analyzed by qPCR, each was found significantly up-regulated in TYLCCNV/TYLCCNB-infected N. benthamiana. This result suggested a strong promotion of the biosynthesis of available methyl groups during geminivirus infections. We further tested the potential role of RdDM in N. benthamiana by virus-induced gene silencing (VIGS) and found that a disruption in RdDM resulted in more severe infectious symptoms and higher accumulation of viral DNA after TYLCCNV/TYLCCNB infection. Although the precise functions of these proteins still need to be determined, our proteomic results enhance the understanding of plant antiviral mechanisms. BIOLOGICAL SIGNIFICANCE One of the major limitations to crop growth in the worldwide is the prevalence of geminiviruses. They are able to infect food and cash crops and cause serious crop failures and economic losses worldwide, especially in Africa and Asia. Tomato yellow leaf curl China virus (TYLCCNV), which causes severe viral diseases in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). However, the mechanisms underlying the TYLCCNV/TYLCCNB defense in plants are still not fully understood at the molecular level. In this study, the combined proteomic, bioinformatic and VIGS analyses revealed that TYLCCNV/TYLCCNB invasion caused complex proteomic alterations in the leaves of N. benthamiana involving the processes of stress and defense, energy production, photosynthesis, protein homeostasis, metabolism, cell structure, signal transduction, transcription, transportation, and cell growth/division. Promotion of available methyl groups via the S-adenosyl-l-methionine cycle II pathway in N. benthamiana appeared crucial for antiviral responses. These findings enhance our understanding in the proteomic aspects of host antiviral defenses against geminiviruses, and also demonstrate that the combination of proteomics with bioinformatics and VIGS analysis is an effective approach to investigate systemic plant responses to geminiviruses and to shed light on plant-virus interactions.
Collapse
Affiliation(s)
- Xueting Zhong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Ruyuan Xiao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
38
|
Ding L, Cao J, Duan Y, Li J, Yang Y, Yang G, Zhou Y. Proteomic and physiological responses of Arabidopsis thaliana exposed to salinity stress and N-acyl-homoserine lactone. PHYSIOLOGIA PLANTARUM 2016; 158:414-434. [PMID: 27265884 DOI: 10.1111/ppl.12476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
To evaluate the alleviating action of exogenous N-acyl-homoserine lactones (AHLs) on NaCl toxicity, morphological, physiological and proteomic changes were investigated in Arabidopsis thaliana seedlings. Salinity stress decreased growth parameters, increased malondialdehyde (MDA) contents and antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD) and catalase activities. Application of lower concentration of AHL had a relieving effect on Arabidopsis seedlings under salinity stress which dramatically decreased MDA content, and increased growth parameters as well as SOD and POD activities. Total proteins were extracted from the control, NaCl-, AHL- and NaCl + AHL-treated seedlings and were separated using two-dimensional gel electrophoresis. A total of 127 protein spots showed different expression compared with the control. Mass spectrometry analysis allowed the identification of 97 proteins involved in multiple pathways, i.e. defense/stress/detoxification, photosynthesis, protein metabolism, signal transduction, transcription, cell wall biogenesis, metabolisms of carbon, lipid, energy, sulfur, nucleotide and sugar. These results suggest that defense/stress response, metabolism and energy, signal transduction and regulation, protein metabolism and transcription-related proteins may be particularly subjected to regulation in salt stressed Arabidopsis seedlings, when treated with AHL and that this regulation lead to improved salt tolerance and plant growth. Overall, this study provides insight to the effect of AHL on salinity stress for the first time, and also sheds light on overview of the molecular mechanism of AHL-regulated plant growth promotion and salt resistance.
Collapse
Affiliation(s)
- Lina Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yunfei Duan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jun Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Guoxing Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
39
|
Silva RGG, Vasconcelos IM, Martins TF, Varela ALN, Souza PFN, Lobo AKM, Silva FDA, Silveira JAG, Oliveira JTA. Drought increases cowpea (Vigna unguiculata [L.] Walp.) susceptibility to cowpea severe mosaic virus (CPSMV) at early stage of infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:91-102. [PMID: 27669396 DOI: 10.1016/j.plaphy.2016.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
The physiological and biochemical responses of a drought tolerant, virus-susceptible cowpea genotype exposed to drought stress (D), infected by Cowpea severe mosaic virus (CPSMV) (V), and to these two combined stresses (DV), at 2 and 6 days post viral inoculation (DPI), were evaluated. Gas exchange parameters (net photosynthesis, transpiration rate, stomatal conductance, and internal CO2 partial pressure) were reduced in D and DV at 2 and 6 DPI compared to control plants (C). Photosynthesis was reduced by stomatal and biochemical limitations. Water use efficiency increased at 2 DPI in D, DV, and V, but at 6 DPI only in D and DV compared to C. Photochemical parameters (effective quantum efficiency of photosystem II and electron transport rate) decreased in D and DV compared to C, especially at 6 DPI. The potential quantum efficiency of photosystem II did not change, indicating reversible photoinhibition of photosystem II. In DV, catalase decreased at 2 and 6 DPI, ascorbate peroxidase increased at 2 DPI, but decreased at 6 DPI. Hydrogen peroxide increased at 2 and 6 DPI. Peroxidase increased at 6 DPI and chitinase at 2 and 6 DPI. β-1,3-glucanase decreased in DV at 6 DPI compared to V. Drought increased cowpea susceptibility to CPSMV at 2 DPI, as verified by RT-PCR. However, at 6 DPI, the cowpea plants overcome this effect. Likewise, CPSMV increased the negative effects of drought at 2 DPI, but not at 6 DPI. It was concluded that the responses to combined stresses are not additive and cannot be extrapolated from the study of individual stresses.
Collapse
Affiliation(s)
- Rodolpho G G Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Thiago F Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Anna L N Varela
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Ana K M Lobo
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Fredy D A Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE, Brazil.
| |
Collapse
|
40
|
Paiva ALS, Oliveira JTA, de Souza GA, Vasconcelos IM. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.). J Proteome Res 2016; 15:4208-4220. [PMID: 27934294 DOI: 10.1021/acs.jproteome.6b00211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.
Collapse
Affiliation(s)
| | | | - Gustavo A de Souza
- Proteomics Core Facility, Institute of Immunology (IMM), Rikshospitalet , Oslo, Norway
| | | |
Collapse
|
41
|
Cochliobolus lunatus down-regulates proteome at late stage of colonization and transiently alters StNPR1 expression in Solanum tuberosum L. Arch Microbiol 2016; 199:237-246. [DOI: 10.1007/s00203-016-1297-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
|
42
|
Chen YB, Wang D, Ge XL, Zhao BG, Wang XC, Wang BC. Comparative proteomics of leaves found at different stem positions of maize seedlings. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:116-28. [PMID: 27176136 DOI: 10.1016/j.jplph.2016.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 05/11/2023]
Abstract
To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph.
Collapse
Affiliation(s)
- Yi-Bo Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xuan-Liang Ge
- Institute of Cultivation and Tillage of Heilongjiang Academy of Agricultural Sciences, Haerbin, Heilongjiang, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Xu-Chu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.
| |
Collapse
|
43
|
Xie X, Chen W, Fu Q, Zhang P, An T, Cui A, An D. Molecular Variability and Distribution of Sugarcane Mosaic Virus in Shanxi, China. PLoS One 2016; 11:e0151549. [PMID: 26987060 PMCID: PMC4795778 DOI: 10.1371/journal.pone.0151549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sugarcane mosaic virus (SCMV) is responsible for large-scale economic losses in the global production of sugarcane, maize, sorghum, and some other graminaceous species. To understand the evolutionary mechanism of SCMV populations, this virus was studied in Shanxi, China. A total of 86 maize leaf samples (41 samples in 2012 and 45 samples in 2013) were collected from 4 regions of Shanxi. RESULTS Double-antibody sandwich (DAS)-ELISA and RT-PCR showed 59 samples (30 samples in 2012 and 29 samples in 2013) to be positive for SCMV, from which 10 new isolates of SCMV were isolated and sequenced. The complete genomes of these isolates are 9610 nt long, including the 5' and 3' non-coding regions, and encode a 3063-amino acid polyprotein. Phylogenetic analyses revealed that 24 SCMV isolates could be divided on the basis of the whole genome into 2 divergent evolutionary groups, which were associated with the host species. Among the populations, 15 potential recombination events were identified. The selection pressure on the genes of these SCMV isolates was also calculated. The results confirmed that all the genes were under negative selection. CONCLUSIONS Negative selection and recombination appear to be important evolutionary factors shaping the genetic structure of these SCMV isolates. SCMV is distributed widely in China and exists as numerous strains with distinct genetic diversity. Our findings will provide a foundation for evaluating the epidemiological characteristics of SCMV in China and will be useful in designing long-term, sustainable management strategies for SCMV.
Collapse
Affiliation(s)
- Xiansheng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen, Shanxi, China
| | - Wei Chen
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, China
| | - Qiang Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Penghui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianci An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Aimin Cui
- Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen, Shanxi, China
| | - Derong An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
44
|
Ding L, Yang R, Yang G, Cao J, Li P, Zhou Y. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. PLANTA 2016; 243:719-31. [PMID: 26669597 PMCID: PMC4757628 DOI: 10.1007/s00425-015-2441-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/03/2015] [Indexed: 05/10/2023]
Abstract
Phosphorylation and dephosphorylation events were initiated in wheat scab resistance. The putative FHB-responsive phosphoproteins are mainly involved in three functional groups and contain at least one tyrosine, serine, or threonine phosphorylation site. Fusarium head blight (FHB), caused by Fusarium graminearum, is a severe disease in wheat. Protein phosphorylation plays an important role in plant-pathogen interactions, however, a global analysis of protein phosphorylation in response to FHB infection remains to be explored. To study the effect of FHB on the phosphorylation state of wheat proteins, proteins extracted from spikes of a resistant wheat cultivar after 6 h of inoculation with F. graminearum or sterile H2O were separated by two-dimensional gel electrophoresis, and then the immunodetection of putative phosphoproteins was conducted by Western blotting using specific anti-phosphotyrosine antibody, anti-phosphothreonine antibody and anti-phosphoserine antibody. A total of 35 phosphorylated signals was detected and protein identities of 28 spots were determined. Functional categorization showed that the putative FHB-responsive phosphoproteins were mainly involved in defense/stress response, signal transduction, and metabolism. The phosphorylation status of proteins associated with signaling pathways mediated by salicylic acid, calcium ions, small GTPase, as well as with detoxification, reactive oxygen species scavenging, antimicrobial compound synthesis, and cell wall fortification was regulated in wheat spikes in response to F. graminearum infection. The present study reveals dynamics of wheat phosphoproteome in response to F. graminearum infection and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of wheat scab resistance.
Collapse
Affiliation(s)
- Lina Ding
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Ruiying Yang
- Laboratory Middle School, Juancheng, 274600, Shandong, China
| | - Guoxing Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yang Zhou
- College of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
45
|
Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Sci Rep 2015; 5:18155. [PMID: 26659305 PMCID: PMC4676064 DOI: 10.1038/srep18155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022] Open
Abstract
Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA.
Collapse
|
46
|
Liu Z, Li Y, Cao H, Ren D. Comparative phospho-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9-MPK6 cascade in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:138-50. [PMID: 26706066 DOI: 10.1016/j.plantsci.2015.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in the salt stress response in plants. However, the identities of specific proteins operating downstream of MAPKs in the salt stress response remain unclear. Our studies showed that mkk9 and mpk6 null mutant seedlings are hyposensitive to salt stress. Moreover, we showed that MPK6 was activated by salt stress, indicating that the MKK9-MPK6 cascade mediated the salt stress response in Arabidopsis. To identify phosphoproteins downstream of the MKK9-MPK6 cascade in the salt stress response pathway, we performed two-dimensional electrophoresis (2-DE) with Pro-Q phosphoprotein staining and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) to identify phosphoproteins induced by salt treatment in mkk9, mpk6, and wild-type seedlings. Phosphorylation of 4 proteins, including Rubisco activase (RCA), plastid ribosomal protein S 1 (PRPS1), plastid division protein (FtsZ2-2), and tortifolia2 (TOR2), was found to be regulated by activation of MKK9-MPK6 cascade. Further Phospho-proteomics analysis of MKK9(DD) mutant seedlings revealed that RCA phosphorylation was up-regulated as a result of MKK9 activation. The finding that the MKK9-MPK6 cascade functions in the salt stress response by regulating phosphorylation of RCA, PRPS1, FtsZ2-2, and TOR2, provides a novel insight into the MAPK-related mechanisms underlying the salt stress response in plants.
Collapse
Affiliation(s)
- Zhenbin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hanwei Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Pechanova O, Pechan T. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective. Int J Mol Sci 2015; 16:28429-48. [PMID: 26633370 PMCID: PMC4691053 DOI: 10.3390/ijms161226106] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 11/17/2022] Open
Abstract
Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.
Collapse
Affiliation(s)
- Olga Pechanova
- Mississippi State Chemical Laboratory, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
48
|
Wang F, Xu L, Song X, Li X, Yan R. Identification of differentially expressed proteins between free-living and activated third-stage larvae of Haemonchus contortus. Vet Parasitol 2015; 215:72-7. [PMID: 26790740 DOI: 10.1016/j.vetpar.2015.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 10/14/2015] [Accepted: 10/31/2015] [Indexed: 01/25/2023]
Abstract
The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this nematode is enclosed in a second cuticle. Once the L3 is ingested by the host, the outer cuticle undergoes an exsheathment process that marks the transition from the free-living stage to the parasitic stage. This study explored the changes in protein expression relative to this transition. Proteins extracted from free living L3 and exsheathed L3 (xL3) were analyzed by two dimensional differential gel electrophoresis (2D-DIGE). More than 2200 protein spots were recognized, and 124 of them was found to be differentially expressed (average ratio of xL3/L3>1.5 or xL3/L3<-1.5, p<0.05). Of these, 83 spots were up-regulated and 41 spots were down-regulated in xL3 when compared with L3. These differentially expressed spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) or MALDI-TOF-MS/MS and 40 proteins were identified. To predict the functions of these identified proteins, they were assigned for gene ontology (GO) annotation. Results showed that the proteins may be involved in biological processes of reproduction, cellular organization or biogenesis, multi-cellular organismal processes, single-organism processes, metabolic processes, signaling, biological regulation, response to stimulus, cellular processes, biological adhesion, growth, locomotion, localization, developmental processes and multi-organism processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were also performed, which was useful for exploring the process of metabolism and signal transduction pathways. This study indicated that some key alterations taking place, during the transition from L3 to xL3 may be interesting antiparasite targets, and some of the proteins involved in this process might be candidate antigens for vaccine development.
Collapse
Affiliation(s)
- Fang Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
49
|
Gong F, Yang L, Tai F, Hu X, Wang W. "Omics" of maize stress response for sustainable food production: opportunities and challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:714-32. [PMID: 25401749 DOI: 10.1089/omi.2014.0125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.
Collapse
Affiliation(s)
- Fangping Gong
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University , Zhengzhou, China
| | | | | | | | | |
Collapse
|
50
|
Dória MS, de Sousa AO, Barbosa CDJ, Costa MGC, Gesteira ADS, Souza RM, Freitas ACO, Pirovani CP. Citrus tristeza virus (CTV) Causing Proteomic and Enzymatic Changes in Sweet Orange Variety "Westin". PLoS One 2015. [PMID: 26207751 PMCID: PMC4514840 DOI: 10.1371/journal.pone.0130950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Citrus Tristeza disease, caused by CTV (Citrus tristeza virus), committs citrus plantations around the world and specifically attacks phloem tissues of the plant. The virus exists as a mixture of more or less severe variants, which may or may not cause symptoms of Tristeza. The objective of this study was to analyze the changes caused by CTV in the proteome of stems of sweet orange, as well as in the activity and gene expression of antioxidant enzymes. The CTV-infected sweet orange displayed mild symptoms, which were characterized by the presence of sparse stem pitting throughout their stems. The presence of virus was confirmed by RT-PCR. Proteomic analysis by 2DE-PAGE-MS / MS revealed the identity of 40 proteins differentially expressed between CTV- infected and -non-infected samples. Of these, 33 were up-regulated and 7 were down-regulated in CTV-infected samples. Among the proteins identified stands out a specific from the virus, the coat protein. Other proteins identified are involved with oxidative stress and for this their enzymatic activity was measured. The activity of superoxide dismutase (SOD) was higher in CTV-infected samples, as catalase (CAT) showed higher activity in uninfected samples. The activity of guaiacol peroxidase (GPX) did not vary significantly between samples. However, ascorbate peroxidase (APX) was more active in the infected samples. The relative expression of the genes encoding CAT, SOD, APX and GPX was analyzed by quantitative real time PCR (RT-qPCR). The CTV-infected samples showed greater accumulation of transcripts, except for the CAT gene. This gene showed higher expression in the uninfected samples. Taken together, it can be concluded that the CTV affects the protein profile and activity and gene expression of antioxidant enzymes in plants infected by this virus.
Collapse
Affiliation(s)
- Milena Santos Dória
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | - Aurizângela Oliveira de Sousa
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | | | - Márcio Gilberto Cardoso Costa
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | | | - Regina Martins Souza
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | - Ana Camila Oliveira Freitas
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
| | - Carlos Priminho Pirovani
- Centro of Biotechnologia and Genetica, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus/BA, 45662–000, Brasil
- * E-mail:
| |
Collapse
|