1
|
Camacho OM, Ramsbottom KA, Prakash A, Sun Z, Perez Riverol Y, Bowler-Barnett E, Martin M, Fan J, Deutsch EW, Vizcaíno JA, Jones AR. Phosphorylation in the Plasmodium falciparum Proteome: A Meta-Analysis of Publicly Available Data Sets. J Proteome Res 2024; 23:5326-5341. [PMID: 39475123 PMCID: PMC11629380 DOI: 10.1021/acs.jproteome.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Malaria is a deadly disease caused by Apicomplexan parasites of the Plasmodium genus. Several species of the Plasmodium genus are known to be infectious to humans, of which P. falciparum is the most virulent. Post-translational modifications (PTMs) of proteins coordinate cell signaling and hence regulate many biological processes in P. falciparum homeostasis and host infection, of which the most highly studied is phosphorylation. Phosphosites on proteins can be identified by tandem mass spectrometry (MS) performed on enriched samples (phosphoproteomics), followed by downstream computational analyses. We have performed a large-scale meta-analysis of 11 publicly available phosphoproteomics data sets to build a comprehensive atlas of phosphosites in the P. falciparum proteome, using robust pipelines aimed at strict control of false identifications. We identified a total of 26,609 phosphorylated sites on P. falciparum proteins, split across three categories of data reliability (gold/silver/bronze). We identified significant sequence motifs, likely indicative of different groups of kinases responsible for different groups of phosphosites. Conservation analysis identified clusters of phosphoproteins that are highly conserved and others that are evolving faster within the Plasmodium genus, and implicated in different pathways. We were also able to identify over 180,000 phosphosites within Plasmodium species beyond falciparum, based on orthologue mapping. We also explored the structural context of phosphosites, identifying a strong enrichment for phosphosites on fast-evolving (low conservation) intrinsically disordered regions (IDRs) of proteins. In other species, IDRs have been shown to have an important role in modulating protein-protein interactions, particularly in signaling, and thus warranting further study for their roles in host-pathogen interactions. All data have been made available via UniProtKB, PRIDE, and PeptideAtlas, with visualization interfaces for exploring phosphosites in the context of other data on Plasmodium proteins.
Collapse
Affiliation(s)
- Oscar
J. M. Camacho
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Kerry A. Ramsbottom
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Ananth Prakash
- European
Molecular Biology Laboratory, EMBL-European
Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Yasset Perez Riverol
- European
Molecular Biology Laboratory, EMBL-European
Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Emily Bowler-Barnett
- European
Molecular Biology Laboratory, EMBL-European
Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Maria Martin
- European
Molecular Biology Laboratory, EMBL-European
Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Jun Fan
- European
Molecular Biology Laboratory, EMBL-European
Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Juan Antonio Vizcaíno
- European
Molecular Biology Laboratory, EMBL-European
Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Andrew R. Jones
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, United Kingdom
| |
Collapse
|
2
|
Koussis K, Haase S, Withers-Martinez C, Flynn HR, Kunzelmann S, Christodoulou E, Ibrahim F, Skehel M, Baker DA, Blackman MJ. Activation loop phosphorylation and cGMP saturation of PKG regulate egress of malaria parasites. PLoS Pathog 2024; 20:e1012360. [PMID: 38935780 PMCID: PMC11236177 DOI: 10.1371/journal.ppat.1012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development.
Collapse
Affiliation(s)
- Konstantinos Koussis
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
| | - Silvia Haase
- Host-Pathogen Interactions in Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Helen R. Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Fairouz Ibrahim
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
3
|
He L, Qiu Y, Pang G, Li S, Wang J, Feng Y, Chen L, Zhu L, Liu Y, Cui L, Cao Y, Zhu X. Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis. Microbiol Spectr 2023; 11:e0143423. [PMID: 37249423 PMCID: PMC10269477 DOI: 10.1128/spectrum.01434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cyclic invasion of red blood cells (RBCs) by Plasmodium merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40. Using a conditional knockdown (KD) approach, we determined that PfGAP40 was required for asexual blood-stage replication. PfGAP40 is not needed for merozoite egress from host RBCs or for the attachment of merozoites to new RBCs. PfGAP40 coprecipitates with PfGAP45 and PfGAP50. During merozoite invasion, PfGAP40 is associated strongly with stabilizing the expression levels of PfGAP45 and PfGAP50 in the schizont stage. Although PfGAP40 KD did not influence IMC integrity, it impaired the maturation of gametocytes. In addition, PfGAP40 is phosphorylated, and mutations that block phosphorylation of PfGAP40 at the C-terminal serine residues S370, S372, S376, S405, S409, S420, and S445 reduced merozoite invasion efficiency. Overall, our findings implicate PfGAP40 as an important regulator for the gliding activity of merozoites and suggest that phosphorylation is required for PfGAP40 function. IMPORTANCE Red blood cell invasion is central to the pathogenesis of the malaria parasite, and the parasite proteins involved in this process are potential therapeutic targets. Gliding motility powers merozoite invasion and is driven by a unique molecular motor termed the glideosome. The glideosome is stably anchored to the parasite inner membrane complex (IMC) through membrane-resident proteins. In the present study, we demonstrate the importance of an IMC-resident glideosome component, PfGAP40, that plays a critical role in stabilizing the expression levels of glideosome components in the schizont stage. We determined that phosphorylation of PfGAP40 at C-terminal residues is required for efficient merozoite invasion.
Collapse
Affiliation(s)
- Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Qiu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Geping Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Siqi Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingjing Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Lasonder E, More K, Singh S, Haidar M, Bertinetti D, Kennedy EJ, Herberg FW, Holder AA, Langsley G, Chitnis CE. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Front Microbiol 2021; 12:684005. [PMID: 34108954 PMCID: PMC8183823 DOI: 10.3389/fmicb.2021.684005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Edwin Lasonder
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kunal More
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | | | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Abstract
Malaria is one of the most impacting public health problems in tropical and subtropical areas of the globe, with approximately 200 million cases worldwide annually. In the absence of an effective vaccine, rapid treatment is vital for effective malaria control. However, parasite resistance to currently available drugs underscores the urgent need for identifying new antimalarial therapies with new mechanisms of action. Among potential drug targets for developing new antimalarial candidates, protein kinases are attractive. These enzymes catalyze the phosphorylation of several proteins, thereby regulating a variety of cellular processes and playing crucial roles in the development of all stages of the malaria parasite life cycle. Moreover, the large phylogenetic distance between Plasmodium species and its human host is reflected in marked differences in structure and function of malaria protein kinases between the homologs of both species, indicating that selectivity can be attained. In this review, we describe the functions of the different types of Plasmodium kinases and highlight the main recent advances in the discovery of kinase inhibitors as potential new antimalarial drug candidates.
Collapse
|
6
|
Vanaerschot M, Murithi JM, Pasaje CFA, Ghidelli-Disse S, Dwomoh L, Bird M, Spottiswoode N, Mittal N, Arendse LB, Owen ES, Wicht KJ, Siciliano G, Bösche M, Yeo T, Kumar TRS, Mok S, Carpenter EF, Giddins MJ, Sanz O, Ottilie S, Alano P, Chibale K, Llinás M, Uhlemann AC, Delves M, Tobin AB, Doerig C, Winzeler EA, Lee MCS, Niles JC, Fidock DA. Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chem Biol 2020; 27:806-816.e8. [PMID: 32359426 PMCID: PMC7369637 DOI: 10.1016/j.chembiol.2020.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Louis Dwomoh
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Megan Bird
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Natasha Spottiswoode
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauren B Arendse
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward S Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Bösche
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emma F Carpenter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Marla J Giddins
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olalla Sanz
- Diseases of the Developing World Global Health Pharma Unit, GlaxoSmithKline, 28760 Tres Cantos, Spain
| | - Sabine Ottilie
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Christian Doerig
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora VIC 3083, Australia
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
Koussis K, Withers-Martinez C, Baker DA, Blackman MJ. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020; 3:e201900626. [PMID: 32179592 PMCID: PMC7081069 DOI: 10.26508/lsa.201900626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.
Collapse
Affiliation(s)
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
8
|
Shteynberg DD, Deutsch EW, Campbell DS, Hoopmann MR, Kusebauch U, Lee D, Mendoza L, Midha MK, Sun Z, Whetton AD, Moritz RL. PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline. J Proteome Res 2019; 18:4262-4272. [PMID: 31290668 PMCID: PMC6898736 DOI: 10.1021/acs.jproteome.9b00205] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spectral matching sequence database search engines commonly used on mass spectrometry-based proteomics experiments excel at identifying peptide sequence ions, and in addition, possible sequence ions carrying post-translational modifications (PTMs), but most do not provide confidence metrics for the exact localization of those PTMs when several possible sites are available. Localization is absolutely required for downstream molecular cell biology analysis of PTM function in vitro and in vivo. Therefore, we developed PTMProphet, a free and open-source software tool integrated into the Trans-Proteomic Pipeline, which reanalyzes identified spectra from any search engine for which pepXML output is available to provide localization confidence to enable appropriate further characterization of biologic events. Localization of any type of mass modification (e.g., phosphorylation) is supported. PTMProphet applies Bayesian mixture models to compute probabilities for each site/peptide spectrum match where a PTM has been identified. These probabilities can be combined to compute a global false localization rate at any threshold to guide downstream analysis. We describe the PTMProphet tool, its underlying algorithms, and demonstrate its performance on ground-truth synthetic peptide reference data sets, one previously published small data set, one new larger data set, and also on a previously published phosphoenriched data set where the correct sites of modification are unknown. Data have been deposited to ProteomeXchange with identifier PXD013210.
Collapse
Affiliation(s)
| | | | | | | | | | - Dave Lee
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Luis Mendoza
- Institute for Systems Biology, Seattle, WA, 98008, USA
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, 98008, USA
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, M13 9PL, UK
| | | |
Collapse
|
9
|
Mapping and functional analysis of heterochromatin protein 1 phosphorylation in the malaria parasite Plasmodium falciparum. Sci Rep 2019; 9:16720. [PMID: 31723180 PMCID: PMC6853920 DOI: 10.1038/s41598-019-53325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Previous studies in model eukaryotes have demonstrated that phosphorylation of heterochromatin protein 1 (HP1) is important for dynamically regulating its various functions. However, in the malaria parasite Plasmodium falciparum both the function of HP1 phosphorylation and the identity of the protein kinases targeting HP1 are still elusive. In order to functionally analyze phosphorylation of P. falciparum HP1 (PfHP1), we first mapped PfHP1 phosphorylation sites by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of native PfHP1, which identified motifs from which potential kinases could be predicted; in particular, several phosphorylated residues were embedded in motifs rich in acidic residues, reminiscent of targets for P. falciparum casein kinase 2 (PfCK2). Secondly, we tested recombinant PfCK2 and a number of additional protein kinases for their ability to phosphorylate PfHP1 in in vitro kinase assays. These experiments validated our prediction that PfHP1 acts as a substrate for PfCK2. Furthermore, LC-MS/MS analysis showed that PfCK2 phosphorylates three clustered serine residues in an acidic motif within the central hinge region of PfHP1. To study the role of PfHP1 phosphorylation in live parasites we used CRISPR/Cas9-mediated genome editing to generate a number of conditional PfHP1 phosphomutants based on the DiCre/LoxP system. Our studies revealed that neither PfCK2-dependent phosphorylation of PfHP1, nor phosphorylation of the hinge domain in general, affect PfHP1's ability to localize to heterochromatin, and that PfHP1 phosphorylation in this region is dispensable for the proliferation of P. falciparum blood stage parasites.
Collapse
|
10
|
PTMselect: optimization of protein modifications discovery by mass spectrometry. Sci Rep 2019; 9:4181. [PMID: 30862887 PMCID: PMC6414543 DOI: 10.1038/s41598-019-40873-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/22/2019] [Indexed: 01/27/2023] Open
Abstract
Discovery of protein modification sites relies on protein digestion by proteases and mass spectrometry (MS) identification of the modified peptides. Depending on proteases used and target protein sequence, this method yields highly variable coverage of modification sites. We introduce PTMselect, a digestion-simulating software which tailors the optimal set of proteases for discovery of global or targeted modification from any single or multiple proteins.
Collapse
|
11
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
12
|
Yakubu RR, Weiss LM, Silmon de Monerri NC. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Mol Microbiol 2017; 107:1-23. [PMID: 29052917 DOI: 10.1111/mmi.13867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022]
Abstract
Parasites of the Apicomplexa phylum, such as Plasmodium spp. and Toxoplasma gondii, undergo complex life cycles involving multiple stages with distinct biology and morphologies. Post-translational modifications (PTMs), such as phosphorylation, acetylation and glycosylation, regulate numerous cellular processes, playing a role in every aspect of cell biology. PTMs can occur on proteins at any time in their lifespan and through alterations of target protein activity, localization, protein-protein interactions, among other functions, dramatically increase proteome diversity and complexity. In addition, PTMs can be induced or removed on changes in cellular environment and state. Thus, PTMs are likely to be key regulators of developmental transitions, biology and pathogenesis of apicomplexan parasites. In this review we examine the roles of PTMs in both parasite-specific and conserved eukaryotic processes, and the potential crosstalk between PTMs, that together regulate the intricate lives of these protozoa.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Natalie C Silmon de Monerri
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| |
Collapse
|
13
|
Hauser A, Penkert M, Hackenberger CPR. Chemical Approaches to Investigate Labile Peptide and Protein Phosphorylation. Acc Chem Res 2017; 50:1883-1893. [PMID: 28723107 DOI: 10.1021/acs.accounts.7b00170] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation is by far the most abundant and most studied post-translational modification (PTM). For a long time, phosphate monoesters of serine (pSer), threonine (pThr), and tyrosine (pTyr) have been considered as the only relevant forms of phosphorylation in organisms. Recently, several research groups have dedicated their efforts to the investigation of other, less characterized phosphoamino acids as naturally occurring PTMs. Such apparent peculiar phosphorylations include the phosphoramidates of histidine (pHis), arginine (pArg), and lysine (pLys), the phosphorothioate of cysteine (pCys), and the anhydrides of pyrophosphorylated serine (ppSer) and threonine (ppThr). Almost all of these phosphorylated amino acids show higher lability under physiological conditions than those of phosphate monoesters. Furthermore, they are prone to hydrolysis under acidic and sometimes basic conditions as well as at elevated temperatures, which renders their synthetic accessibility and proteomic analysis particularly challenging. In this Account, we illustrate recent chemical approaches to probe the occurrence and function of these labile phosphorylation events. Within these endeavors, the synthesis of site-selectively phosphorylated peptides, in particular in combination with chemoselective phosphorylation strategies, was crucial. With these well-defined standards in hand, the appropriate proteomic mass spectrometry-based analysis protocols for the characterization of labile phosphosites in biological samples could be developed. Another successful approach in this research field includes the design and synthesis of stable analogues of these labile PTMs, which were used for the generation of pHis- and pArg-specific antibodies for the detection and enrichment of endogenous phosphorylated samples. Finally, other selective enrichment techniques are described, which rely for instance on the unique chemical environment of a pyrophosphate or the selective interaction between a phosphoamino acid and its phosphatase. It is worth noting that many of those studies are still in their early stages, which is also reflected in the small number of identified phosphosites compared to that of phosphate monoesters. Thus, many challenges need to be mastered to fully understand the biological role of these poorly characterized and rather uncommon phosphorylations. Taken together, this overview exemplifies recent efforts in a flourishing field of functional proteomic analysis and furthermore manifests the power of modern peptide synthesis to address unmet questions in the life sciences.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| |
Collapse
|
14
|
Insights regarding fungal phosphoproteomic analysis. Fungal Genet Biol 2017; 104:38-44. [DOI: 10.1016/j.fgb.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
15
|
Penkert M, Yates LM, Schümann M, Perlman D, Fiedler D, Krause E. Unambiguous Identification of Serine and Threonine Pyrophosphorylation Using Neutral-Loss-Triggered Electron-Transfer/Higher-Energy Collision Dissociation. Anal Chem 2017; 89:3672-3680. [DOI: 10.1021/acs.analchem.6b05095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Martin Penkert
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
- Humboldt Universität zu Berlin, Department
of Chemistry, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Lisa M. Yates
- Princeton University, Department of Chemistry, Frick Chemistry Building, Washington
Road, Princeton, New Jersey 08544, United States
| | - Michael Schümann
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| | - David Perlman
- Princeton University, Department of Molecular Biology, 119 Lewis Thomas Laboratory, Washington
Road, Princeton, New Jersey 08544, United States
| | - Dorothea Fiedler
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
- Humboldt Universität zu Berlin, Department
of Chemistry, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| |
Collapse
|
16
|
Tay CL, Jones ML, Hodson N, Theron M, Choudhary JS, Rayner JC. Study of Plasmodium falciparum DHHC palmitoyl transferases identifies a role for PfDHHC9 in gametocytogenesis. Cell Microbiol 2016; 18:1596-1610. [PMID: 27060339 PMCID: PMC5091645 DOI: 10.1111/cmi.12599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
Palmitoylation is the post-translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate-Histidine-Histidine-Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl-transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont-expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite-specific organelles such as the rhoptries and inner membrane complex. Knock-out studies identified individual DHHCs that may be essential for blood-stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood-stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission-blocking target. The localization and stage-specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development.
Collapse
Affiliation(s)
- Chwen L Tay
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Matthew L Jones
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Nicola Hodson
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Michel Theron
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
17
|
Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, del-Toro N, Rurik M, Walzer MW, Kohlbacher O, Hermjakob H, Wang R, Vizcaíno JA. Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets. Nat Methods 2016; 13:651-656. [PMID: 27493588 PMCID: PMC4968634 DOI: 10.1038/nmeth.3902] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.
Collapse
Affiliation(s)
- Johannes Griss
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Austria
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Steve Lewis
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David L. Tabb
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville
| | - José A. Dianes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Noemi del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Marc Rurik
- Dept. of Computer Science, University of Tübingen, Germany
- Center for Bioinformatics, University of Tübingen, Germany
| | - Mathias W. Walzer
- Dept. of Computer Science, University of Tübingen, Germany
- Center for Bioinformatics, University of Tübingen, Germany
| | - Oliver Kohlbacher
- Dept. of Computer Science, University of Tübingen, Germany
- Center for Bioinformatics, University of Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Germany
- Max Planck Institute for Developmental Biology, Germany
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- National Center for Protein Sciences, Beijing, China
| | - Rui Wang
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
18
|
Plasmodiumfalciparum infection induces dynamic changes in the erythrocyte phospho-proteome. Blood Cells Mol Dis 2016; 58:35-44. [PMID: 27067487 DOI: 10.1016/j.bcmd.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
Abstract
The phosphorylation status of red blood cell proteins is strongly altered during the infection by the malaria parasite Plasmodium falciparum. We identify the key phosphorylation events that occur in the erythrocyte membrane and cytoskeleton during infection, by a comparative analysis of global phospho-proteome screens between infected (obtained at schizont stage) and uninfected RBCs. The meta-analysis of reported mass spectrometry studies revealed a novel compendium of 495 phosphorylation sites in 182 human proteins with regulatory roles in red cell morphology and stability, with about 25% of these sites specific to infected cells. A phosphorylation motif analysis detected 7 unique motifs that were largely mapped to kinase consensus sequences of casein kinase II and of protein kinase A/protein kinase C. This analysis highlighted prominent roles for PKA/PKC involving 78 phosphorylation sites. We then compared the phosphorylation status of PKA (PKC) specific sites in adducin, dematin, Band 3 and GLUT-1 in uninfected RBC stimulated or not by cAMP to their phosphorylation status in iRBC. We showed cAMP-induced phosphorylation of adducin S59 by immunoblotting and we were able to demonstrate parasite-induced phosphorylation for adducin S726, Band 3 and GLUT-1, corroborating the protein phosphorylation status in our erythrocyte phosphorylation site compendium.
Collapse
|
19
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:345-382. [PMID: 27975226 DOI: 10.1007/978-3-319-41448-5_17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Posttranslational modifications (PTMs) are important biochemical processes for regulating various signaling pathways and determining specific cell fate. Mass spectrometry (MS)-based proteomics has been developed extensively in the past decade and is becoming the standard approach for systematic characterization of different PTMs on a global scale. In this chapter, we will explain the biological importance of various PTMs, summarize key innovations in PTMs enrichment strategies, high-performance liquid chromatography (HPLC)-based fractionation approaches, mass spectrometry detection methods, and lastly bioinformatic tools for PTMs related data analysis. With great effort in recent years by the proteomics community, highly efficient enriching methods and comprehensive resources have been developed. This chapter will specifically focus on five major types of PTMs; phosphorylation, glycosylation, ubiquitination/sumosylation, acetylation, and methylation.
Collapse
|
21
|
Abstract
Protein post-translational modifications (PTM) are commonly used to regulate biological processes. Protein S-acylation is an enzymatically regulated reversible modification that has been shown to modulate protein localization, activity and membrane binding. Proteome-scale discovery on Plasmodium falciparum schizonts has revealed a complement of more than 400 palmitoylated proteins, including those essential for host invasion and drug resistance. The wide regulatory affect on this species is endorsed by the presence of 12 proteins containing the conserved DHHC-CRD (DHHC motif within a cysteine-rich domain) that is associated with palmitoyl-transferase activity. Genetic interrogation of these enzymes in Apicomplexa has revealed essentiality and distinct localization at cellular compartments; these features are species specific and are not observed in yeast. It is clear that palmitoylation has an elaborate role in Plasmodium biology and opens intriguing questions on the functional consequence of this group of acylation modifications and how the protein S-acyl transferases (PATs) orchestrate molecular events.
Collapse
|
22
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
23
|
Mitcheson DF, Tobin AB, Alam MM. Applying chemical genetic tools to the study of phospho-signalling pathways in malaria parasites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1650-6. [PMID: 26143498 DOI: 10.1016/j.bbapap.2015.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022]
Abstract
Until very recently there has been very little information about the phospho-signalling pathways in apicomplexan parasites including the most virulent species of human malaria parasite, Plasmodium falciparum. With the advancement of mass spectrometry-based phosphoproteomics and the development of chemical genetic approaches to target specific parasite protein kinases, the complexity of the essential role played by phosphorylation in maintaining the viability of apicomplexan parasites is now being revealed. This review will describe these recent advances and will discuss how these approaches can be used to validate parasite protein kinases as drug targets and to determine the on- and off-target action of protein kinase inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Deborah F Mitcheson
- Department of Cell Physiology and Pharmacology, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Andrew B Tobin
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Mahmood M Alam
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
24
|
Alonso-Morales A, González-López L, Cázares-Raga FE, Cortés-Martínez L, Torres-Monzón JA, Gallegos-Pérez JL, Rodríguez MH, James AA, Hernández-Hernández FDLC. Protein phosphorylation during Plasmodium berghei gametogenesis. Exp Parasitol 2015; 156:49-60. [PMID: 26008612 DOI: 10.1016/j.exppara.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies.
Collapse
Affiliation(s)
- Alberto Alonso-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Lorena González-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Febe Elena Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México
| | - Jorge Aurelio Torres-Monzón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Avenida 19 Poniente esquina 4a Norte s/n, Colonia Centro, C.P. 62100 Tapachula, Chiapas, Mexico
| | | | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad # 655, Colonia Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, México
| | - Anthony A James
- Departments of Molecular Biology and Biochemistry, and Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, México, D.F., México.
| |
Collapse
|
25
|
Lasonder E, Green JL, Grainger M, Langsley G, Holder AA. Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparum schizonts develop into extracellular invasive merozoites. Proteomics 2015; 15:2716-29. [PMID: 25886026 DOI: 10.1002/pmic.201400508] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/18/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022]
Abstract
Pathology of the most lethal form of malaria is caused by Plasmodium falciparum asexual blood stages and initiated by merozoite invasion of erythrocytes. We present a phosphoproteome analysis of extracellular merozoites revealing 1765 unique phosphorylation sites including 785 sites not previously detected in schizonts. All MS data have been deposited in the ProteomeXchange with identifier PXD001684 (http://proteomecentral.proteomexchange.org/dataset/PXD001684). The observed differential phosphorylation between extra and intraerythrocytic life-cycle stages was confirmed using both phospho-site and phospho-motif specific antibodies and is consistent with the core motif [K/R]xx[pS/pT] being highly represented in merozoite phosphoproteins. Comparative bioinformatic analyses highlighted protein sets and pathways with established roles in invasion. Within the merozoite phosphoprotein interaction network a subnetwork of 119 proteins with potential roles in cellular movement and invasion was identified and suggested that it is coregulated by a further small subnetwork of protein kinase A (PKA), two calcium-dependent protein kinases (CDPKs), a phosphatidyl inositol kinase (PI3K), and a GCN2-like elF2-kinase with a predicted role in translational arrest and associated changes in the ubquitinome. To test this notion experimentally, we examined the overall ubiquitination level in intracellular schizonts versus extracellular merozoites and found it highly upregulated in merozoites. We propose that alterations in the phosphoproteome and ubiquitinome reflect a starvation-induced translational arrest as intracellular schizonts transform into extracellular merozoites.
Collapse
Affiliation(s)
- Edwin Lasonder
- School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, UK
| | - Judith L Green
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Munira Grainger
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France.,Inserm U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Anthony A Holder
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| |
Collapse
|
26
|
Boucher LE, Bosch J. The apicomplexan glideosome and adhesins - Structures and function. J Struct Biol 2015; 190:93-114. [PMID: 25764948 PMCID: PMC4417069 DOI: 10.1016/j.jsb.2015.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 01/10/2023]
Abstract
The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models.
Collapse
Affiliation(s)
- Lauren E Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Abstract
Post-translational modifications play crucial parts in regulating protein function and thereby control several fundamental aspects of eukaryotic biology, including cell signalling, protein trafficking, epigenetic control of gene expression, cell-cell interactions, and cell proliferation and differentiation. In this Review, we discuss protein modifications that have been shown to have a key role in malaria parasite biology and pathogenesis. We focus on phosphorylation, acetylation, methylation and lipidation. We provide an overview of the biological significance of these modifications and discuss prospects and progress in antimalarial drug discovery based on the inhibition of the enzymes that mediate these modifications.
Collapse
|
28
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|