1
|
Sharma N, Vittal H, Dubey AK, Sharma RM, Singh SK, Sharma N, Singh N, Khandelwal A, Gupta DK, Mishra GP, Meena MC, Pandey R, Singh NK. Physiological and molecular insights into alternate bearing in mango using next-generation sequencing approaches. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1585-1606. [PMID: 39319672 DOI: 10.1093/jxb/erae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
The productivity of the mango crop in India is hindered by many factors, one of the most important factors is our limited understanding of the genomic complexities behind the regular versus alternate bearing habit of fruit. In this study, we quantified carbohydrate fractions, protein content, and macro- and micronutrient storage pools together with their transportation and contributions to a regular bearing variety, Totapuri, and to an alternate-bearer, Bombay Green during the 'off' year. RNA-sequencing was used to assess gene expression dynamics between buds and flowers of these varieties. Differential pathway analysis showed the greatest number of differentially expressed genes in metabolic processes, followed by oxidoreductase, hormone, oxidative stress, starvation, alternate bearing, flowering, meristem, and cellular component pathways. Bioinformatics analysis showed that, among 15 highly differentially expressed genes between varieties representing alternate bearing, hormone, and carbohydrate metabolism pathways, 12 were up-regulated in Totapuri and 3 in Bombay Green, and this was confirmed by qRT-PCR. In addition, 202 single-nucleotide polymorphisms were identified in 32 genes related to alternate bearing. Our results confirmed the strong ability of reproductive buds to import sugars, proteins, and starch in the regular-bearer variety, thereby enhancing flowering and fruiting during 'off' years. Thus, our study shows a potential role for the mineral nutrient and biochemical constituents of buds and leaves in determining the regular versus alternate bearing fruiting habit in mango.
Collapse
Affiliation(s)
- Nimisha Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Hatkari Vittal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil K Dubey
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, UP, 226 002, India
| | - Radha M Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjay K Singh
- ICAR-Krishi Anusandhan Bhawan (KAB-II), New Delhi, 110012, India
| | - Neha Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Nisha Singh
- Gujarat Biotechnology University (GBU), Gandhinagar, Gujarat, 382355, India
| | - Ashish Khandelwal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Deepak K Gupta
- Department of Infectious Diseases Section, Im Neuenheimer Feld 26769120, Heidelberg, Germany
| | - Gyan P Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Rakesh Pandey
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
2
|
Bautista-Valle MV, Camacho-Vazquez C, Elizalde-Contreras JM, Monribot-Villanueva JL, Limón AMV, Bojórquez-Velázquez E, Zamora-Briseño JA, Jorrin-Novo JV, Ruiz-May E. Comparing and integrating TMT-SPS-MS3 and label-free quantitative approaches for proteomics scrutiny in recalcitrant Mango (Mangifera indica L.) peel tissue during postharvest period. Proteomics 2024; 24:e2300239. [PMID: 37681534 DOI: 10.1002/pmic.202300239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Despite substantial advances in the use of proteomic technologies, their widespread application in fruit tissues of non-model and recalcitrant species remains limited. This hampers the understanding of critical molecular events during the postharvest period of fleshy tropical fruits. Therefore, we evaluated label-free quantitation (LFQ) and TMT-SPS-MS3 (TMT) approaches to analyse changes in the protein profile of mango peels during postharvest period. We compared two extraction methods (phenol and chloroform/methanol) and two peptide fractionation schemes (SCX and HPRP). We accurately identified 3065 proteins, of which, 1492 were differentially accumulated over at 6 days after harvesting (DAH). Both LFQ and TMT approaches share 210 differential proteins including cell wall proteins associated with fruit softening, as well as aroma and flavour-related proteins, which were increased during postharvest period. The phenolic protein extraction and the high-pH reverse-phase peptide fractionation was the most effective pipeline for relative quantification. Nevertheless, the information provided by the other tested strategies was significantly complementary. Besides, LFQ spectra allowed us to track down intact N-glycopeptides corroborating N-glycosylations on the surface of a desiccation-related protein. This work represents the largest proteomic comparison of mango peels during postharvest period made so far, shedding light on the molecular foundation of edible fruit during ripening.
Collapse
Affiliation(s)
- Mirna V Bautista-Valle
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Carolina Camacho-Vazquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Abraham M Vidal Limón
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| | - Jesús V Jorrin-Novo
- Department of Biochemistry and Molecular Biology, ETSIAM, University of Cordoba, Cordoba, Spain
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Xalapa, Veracruz, México
| |
Collapse
|
3
|
Liu H, Chong P, Yan S, Liu Z, Bao X, Tan B. Transcriptome and Proteome Association Analysis to Screen Candidate Genes Related to Salt Tolerance in Reaumuria soongorica Leaves under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3542. [PMID: 37896006 PMCID: PMC10609793 DOI: 10.3390/plants12203542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
This work aims at studying the molecular mechanisms underlying the response of Reaumuria soongorica to salt stress. We used RNA sequencing (RNA-Seq) and Tandem Mass Tag (TMT) techniques to identify differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in R. soongorica leaves treated with 0, 200, and 500 mM NaCl for 72 h. The results indicated that compared with the 0 mM NaCl treatment group, 2391 and 6400 DEGs were identified in the 200 and 500 mM NaCl treatment groups, respectively, while 47 and 177 DEPs were also identified. Transcriptome and proteome association analysis was further performed on R. soongorica leaves in the 0/500 mM NaCl treatment group, and 32 genes with consistent mRNA and protein expression trends were identified. SYP71, CS, PCC13-62, PASN, ZIFL1, CHS2, and other differential genes are involved in photosynthesis, vesicle transport, auxin transport, and other functions of plants, and might play a key role in the salt tolerance of R. soongorica. In this study, transcriptome and proteome association techniques were used to screen candidate genes associated with salt tolerance in R. soongorica, which provides an important theoretical basis for understanding the molecular mechanism of salt tolerance in R. soongorica and breeding high-quality germplasm resources.
Collapse
Affiliation(s)
- Hanghang Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Peifang Chong
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Shipeng Yan
- School of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Zehua Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Xinguang Bao
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Bingbing Tan
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| |
Collapse
|
4
|
Song M, Wang H, Fan Z, Huang H, Ma H. Advances in sequencing and key character analysis of mango ( Mangifera indica L.). HORTICULTURE RESEARCH 2023; 10:uhac259. [PMID: 37601702 PMCID: PMC10433700 DOI: 10.1093/hr/uhac259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/19/2022] [Indexed: 08/22/2023]
Abstract
Mango (Mangifera indica L.) is an important fruit crop in tropical and subtropical countries associated with many agronomic and horticultural problems, such as susceptibility to pathogens, including powdery mildew and anthracnose, poor yield and quality, and short shelf life. Conventional breeding techniques exhibit significant limitations in improving mango quality due to the characteristics of long ripening, self-incompatibility, and high genetic heterozygosity. In recent years, much emphasis has been placed on identification of key genes controlling a certain trait through genomic association analysis and directly breeding new varieties through transgene or genotype selection of offspring. This paper reviews the latest research progress on the genome and transcriptome sequencing of mango fruit. The rapid development of genome sequencing and bioinformatics provides effective strategies for identifying, labeling, cloning, and manipulating many genes related to economically important traits. Preliminary verification of the functions of mango genes has been conducted, including genes related to flowering regulation, fruit development, and polyphenol biosynthesis. Importantly, modern biotechnology can refine existing mango varieties to meet the market demand with high economic benefits.
Collapse
Affiliation(s)
- Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haomiao Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Datir S, Regan S. Advances in Physiological, Transcriptomic, Proteomic, Metabolomic, and Molecular Genetic Approaches for Enhancing Mango Fruit Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20-34. [PMID: 36573879 DOI: 10.1021/acs.jafc.2c05958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mango (Mangifera indica L.) is a nutritionally important fruit of high nutritive value, delicious in taste with an attractive aroma. Due to their antioxidant and therapeutic potential, mango fruits are receiving special attention in biochemical and pharmacognosy-based studies. Fruit quality determines consumer's acceptance, and hence, understanding the physiological, biochemical, and molecular basis of fruit development, maturity, ripening, and storage is essential. Transcriptomic, metabolomic, proteomic, and molecular genetic approaches have led to the identification of key genes, metabolites, protein candidates, and quantitative trait loci that are associated with enhanced mango fruit quality. The major pathways that determine the fruit quality include amino acid metabolism, plant hormone signaling, carbohydrate metabolism and transport, cell wall biosynthesis and degradation, flavonoid and anthocyanin biosynthesis, and carotenoid metabolism. Expression of the polygalacturonase, cutin synthase, pectin methyl esterase, pectate lyase, β-galactosidase, and ethylene biosynthesis enzymes are related to mango fruit ripening, flavor, firmness, softening, and other quality processes, while genes involved in the MAPK signaling pathway, heat shock proteins, hormone signaling, and phenylpropanoid biosynthesis are associated with diseases. Metabolomics identified volatiles, organic acids, amino acids, and various other compounds that determine the characteristic flavor and aroma of the mango fruit. Molecular markers differentiate the mango cultivars based on their geographical origins. Genetic linkage maps and quantitative trait loci studies identified regions in the genome that are associated with economically important traits. The review summarizes the applications of omics techniques and their potential applications toward understanding mango fruit physiology and their usefulness in future mango breeding.
Collapse
Affiliation(s)
- Sagar Datir
- Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6
- The Naoroji Godrej Centre for Plant Research, Shindewadi, Shirwal, Maharashtra - 412801 India
| | - Sharon Regan
- Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6
| |
Collapse
|
6
|
Zhang H, Chen C, Yang Z, Ye L, Miao J, Lan Y, Wang Q, Ye Z, Cao Y, Liu G. Combined transcriptomic and proteomic analysis of the antibacterial mechanisms of an antimicrobial substance produced by Lactobacillus paracasei FX-6 against colistin-resistant Escherichia coli. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Zhang Y, Hu W, Chen D, Ding M, Wang T, Wang Y, Chi J, Li Z, Li Q, Li C. An allergenic plant calmodulin from Artemisia pollen primes human DCs leads to Th2 polarization. Front Immunol 2022; 13:996427. [PMID: 36248805 PMCID: PMC9556433 DOI: 10.3389/fimmu.2022.996427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Artemisia pollen is the major cause of seasonal allergic respiratory diseases in the northern hemisphere. About 28.57% of Artemisia allergic patients’ IgE can recognize ArtCaM, a novel allergenic calmodulin from Artemisia identified in this study. These patients exhibited stronger allergic reactions and a longer duration of allergic symptoms. However, the signaling mechanism that triggers these allergic reactions is not fully understood. In this study, we found that extracellular ArtCaM directly induces the maturation of human dendritic cells (DCs), which is attributed to a series of Ca2+ relevant cascades, including Ca2+/NFAT/CaMKs. ArtCaM alone induces inflammatory response toward Th1, Th17, and Treg. Interestingly, a combination of ArtCaM and anti-ArtCaM IgE led to Th2 polarization. The putative mechanism is that anti-ArtCaM IgE partially blocks the ArtCaM-induced ERK signal, but does not affect Ca2+-dependent cascades. The crosstalk between ERK and Ca2+ signal primes DCs maturation and Th2 polarization. In summary, ArtCaM related to clinical symptoms when combined with anti-ArtCaM IgE, could be a novel allergen to activate DCs and promote Th2 polarization. Such findings provide mechanistic insights into Th2 polarization in allergic sensitization and pave the way for novel preventive and therapeutic strategies for efficient management of such pollen allergic disease.
Collapse
Affiliation(s)
- Yue Zhang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenzhi Hu
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Dongbo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, China
| | - Ming Ding
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Tao Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Yaojun Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Jiaoni Chi
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Zhimin Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| | - Chengxin Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| |
Collapse
|
8
|
Yu Y, Guo S, Ren Y, Zhang J, Li M, Tian S, Wang J, Sun H, Zuo Y, Chen Y, Gong G, Zhang H, Xu Y. Quantitative Transcriptomic and Proteomic Analysis of Fruit Development and Ripening in Watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2022; 13:818392. [PMID: 35392508 PMCID: PMC8980866 DOI: 10.3389/fpls.2022.818392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Fruit ripening is a highly complicated process, which is modulated by phytohormones, signal regulators and environmental factors playing in an intricate network that regulates ripening-related genes expression. Although transcriptomics is an effective tool to predict protein levels, protein abundances are also extensively affected by post-transcriptional and post-translational regulations. Here, we used RNA sequencing (RNA-seq) and tandem mass tag (TMT)-based quantitative proteomics to study the comprehensive mRNA and protein expression changes during fruit development and ripening in watermelon, a non-climacteric fruit. A total of 6,226 proteins were quantified, and the large number of quantitative proteins is comparable to proteomic studies in model organisms such as Oryza sativa L. and Arabidopsis. Base on our proteome methodology, integrative analysis of the transcriptome and proteome showed that the mRNA and protein levels were poorly correlated, and the correlation coefficients decreased during fruit ripening. Proteomic results showed that proteins involved in alternative splicing and the ubiquitin proteasome pathway were dynamically expressed during ripening. Furthermore, the spliceosome and proteasome were significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, suggesting that post-transcriptional and post-translational mechanisms might play important roles in regulation of fruit ripening-associated genes expression, which might account for the poor correlation between mRNAs and proteins during fruit ripening. Our comprehensive transcriptomic and proteomic data offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of fruit ripening.
Collapse
|
9
|
Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Front Genet 2021; 12:742095. [PMID: 34858472 PMCID: PMC8631721 DOI: 10.3389/fgene.2021.742095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Functional foods are natural products of plants that have health benefits beyond necessary nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our diet and their beneficial aspects are limited to few crops. Advances in sequencing and availability of different omics technologies have given opportunity to utilize these tools to enhance the functional components of the foods, thus ensuring the nutritional security. Integrated omics approaches including genomics, transcriptomics, proteomics, metabolomics coupled with artificial intelligence and machine learning approaches can be used to improve the crops. This review provides insights into omics studies that are carried out to find the active components and crop improvement by enhancing the functional compounds in different plants including cereals, millets, pulses, oilseeds, fruits, vegetables, spices, beverages and medicinal plants. There is a need to characterize functional foods that are being used in traditional medicines, as well as utilization of this knowledge to improve the staple foods in order to tackle malnutrition and hunger more effectively.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. Aravind
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. Poornima
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pushpa Bharati
- Department of Food Science and Nutrition, University of Agricultural Sciences, Dharwad, India
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Chittaranjan Kole
- President, International Phytomedomics and Nutriomics Consortium (ipnc.info), Daejeon, South Korea
| | - Naveen Puppala
- New Mexico State University-Agricultural Science Center at Clovis, New Mexico, NM, United States
| |
Collapse
|
10
|
Moh NMM, Zhang P, Chen Y, Chen M. Computational Identification of miRNAs and Temperature-Responsive lncRNAs From Mango ( Mangifera indica L.). Front Genet 2021; 12:607248. [PMID: 34163517 PMCID: PMC8216217 DOI: 10.3389/fgene.2021.607248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Mango is a major tropical fruit in the world and is known as the king of fruits because of its flavor, aroma, taste, and nutritional values. Although various regulatory roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been investigated in many plants, there is yet an absence of such study in mango. This is the first study to provide information on non-coding RNAs (ncRNAs) of mango with the aims of identifying miRNAs and lncRNAs and discovering their potential functions by interaction prediction of the miRNAs, lncRNAs, and their target genes. In this analysis, about a hundred miRNAs and over 7,000 temperature-responsive lncRNAs were identified and the target genes of these ncRNAs were characterized. According to these results, the newly identified mango ncRNAs, like other plant ncRNAs, have a potential role in biological and metabolic pathways including plant growth and developmental process, pathogen defense mechanism, and stress-responsive process. Moreover, mango lncRNAs can target miRNAs to reduce the stability of lncRNAs and can function as molecular decoys or sponges of miRNAs. This paper would provide information about miRNAs and lncRNAs of mango and would help for further investigation of the specific functions of mango ncRNAs through wet lab experiments.
Collapse
Affiliation(s)
- Nann Miky Moh Moh
- Biotechnology Research Department, Ministry of Education, Kyaukse, Myanmar
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peijing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yujie Chen
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences and Food, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Ming Chen
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences and Food, Inner Mongolia University for the Nationalities, Tongliao, China
| |
Collapse
|
11
|
Xin M, Li C, Khoo HE, Li L, He X, Yi P, Tang Y, Sun J. Dynamic Analyses of Transcriptome and Metabolic Profiling: Revealing Molecular Insight of Aroma Synthesis of Mango ( Mangifera indica L. Var. Tainong). FRONTIERS IN PLANT SCIENCE 2021; 12:666805. [PMID: 34025704 PMCID: PMC8138435 DOI: 10.3389/fpls.2021.666805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/09/2021] [Indexed: 05/28/2023]
Abstract
This study aimed to evaluate the changes in aromatic components and other chemical properties of Tainong mango during fruit development, ripening, and storage. As the volatiles of Tainong mango and their related molecular mechanisms remain unclear, volatile profile, metabonomics, and transcriptome analyses were applied to investigate the molecular determinants of the synthesis of aroma components in mango during fruit development and storage. Total acids, total sugar, total carotenoids, enzyme activities of the mango pulp samples were also determined. Volatile components of the mango pulp samples were identified using a gas chromatography-mass spectrometric method. Ribonucleic acid (RNA) sequences of the samples were analyzed by real-time polymerase chain reaction. The results showed that 181 volatiles were isolated and identified in the fruit at seven stages. Compared to the other stages, mango collected on day 8 and day 12 had higher concentrations of 17 volatile components, especially (E,Z)-2,6-nonadienal, 53384 transcripts were also detected through RNA sequencing. The differentially expressed genes analyses included catalytic activity, transferase activity, adenosine diphosphate binding, transcription factor activity, and oxidoreductase activity. α-Pinene content and expression of the differentially expressed genes involved in terpenoid metabolism and enzyme activities in the terpenoid metabolic pathways gradually increased during the maturity of the fruit, and had maximum values at day 8 of storage. Moreover, the integrative analyses revealed potential molecular insights of mango development and aroma formation in the fruit.
Collapse
Affiliation(s)
- Ming Xin
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Changbao Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hock Eng Khoo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ping Yi
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yayuan Tang
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
12
|
Bally ISE, Bombarely A, Chambers AH, Cohen Y, Dillon NL, Innes DJ, Islas-Osuna MA, Kuhn DN, Mueller LA, Ophir R, Rambani A, Sherman A, Yan H. The 'Tommy Atkins' mango genome reveals candidate genes for fruit quality. BMC PLANT BIOLOGY 2021; 21:108. [PMID: 33618672 PMCID: PMC7898432 DOI: 10.1186/s12870-021-02858-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. RESULTS This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar 'Tommy Atkins'. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of 'Tommy Atkins', supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between 'Tommy Atkins' x 'Kensington Pride' was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final 'Tommy Atkins' genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the 'Tommy Atkins' x 'Kensington Pride' mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. CONCLUSIONS The availability of the complete 'Tommy Atkins' mango genome will aid global initiatives to study mango genetics.
Collapse
Affiliation(s)
- Ian S E Bally
- Department of Agriculture and Fisheries, Horticulture and Forestry Science, 28 Peters St, Mareeba, QLD, 4880, Australia
| | - Aureliano Bombarely
- Department of Bioscience, University of Milan, Via Celoria 26, 20133, Milan, Italy
- School of Plants and Environmental Sciences, Virginia Tech, Ag Quad Lane, Blacksburg, VA, 24061, USA
| | - Alan H Chambers
- Tropical Research and Education Center, Horticultural Sciences Department, University of Florida, 18905 SW 280th St, Homestead, FL, 33031, USA.
| | - Yuval Cohen
- Department of Fruit Tree Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, 7528809, Rishon Le'Zion, Israel
| | - Natalie L Dillon
- Department of Agriculture and Fisheries, Horticulture and Forestry Science, 28 Peters St, Mareeba, QLD, 4880, Australia
| | - David J Innes
- Department of Agriculture and Fisheries, Horticulture and Forestry Science, EcoSciences Precinct, 41 Boggo Rd, Dutton Park, QLD, 4102, Australia
| | - María A Islas-Osuna
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - David N Kuhn
- Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Rd, Coral Gables, FL, 33158, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Ron Ophir
- Department of Fruit Tree Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, 7528809, Rishon Le'Zion, Israel
| | - Aditi Rambani
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Amir Sherman
- Department of Fruit Tree Sciences, Volcani Research Center, Derech Hamacabim 68, P.O. Box 15159, 7528809, Rishon Le'Zion, Israel
| | - Haidong Yan
- School of Plants and Environmental Sciences, Virginia Tech, Ag Quad Lane, Blacksburg, VA, 24061, USA
| |
Collapse
|
13
|
Zhang HP, Su Y, Yu Q, Qin GH. Quantitative proteomic analysis of pear (Pyrus pyrifolia cv. "Hosui") flesh provides novel insights about development and quality characteristics of fruit. PLANTA 2021; 253:69. [PMID: 33599839 DOI: 10.1007/s00425-021-03585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
A total of 6763 proteins were identified in the developing pear flesh, which were further screened for differentially expressed proteins related to fruit quality and ATP-binding cassette transporters. To obtain further details on changes in protein levels during fruit ripening and to identify and evaluate changes in various metabolic pathways that affect fruit quality, a proteomic method using tandem mass tags was implemented at three developmental stages in Pyrus pyrifolia cv. "Hosui" that identified 6763 proteins. Subcellular localization and Gene Ontology enrichment analysis revealed major functions of all identified proteins. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that all metabolic processes are reflected in the up- and downregulation of differentially expressed proteins during fruit development, which play predominant roles in cell division, cell expansion, and fruit ripening. Among the examined differentially expressed proteins, 160 related to fruit quality, and 14 ATP-binding cassette transporters related to fruit development were identified and analyzed. The quantitative data were validated by parallel reaction monitoring, which confirmed the reliability of the experimental results.
Collapse
Affiliation(s)
- Hu Ping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ying Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gai Hua Qin
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
14
|
Li L, Yang X, Hong R, Liu F. Combined proteomics and transcriptomics analysis of Lactococcus lactis under different culture conditions. J Dairy Sci 2021; 104:2564-2580. [PMID: 33455780 DOI: 10.3168/jds.2020-18895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/08/2020] [Indexed: 11/19/2022]
Abstract
During industrial handling, Lactococcus lactis needs to adapt to different culture conditions by regulating its metabolic pathways. Modifying culture conditions may be an important way to control the biomass and functional metabolites of lactic acid bacteria. In this study, we identified the differentially expressed genes and proteins of L. lactis under different culture conditions by integrating transcriptomics and proteomics. We also analyzed the data using a bioinformatic approach to reveal the regulatory mechanisms affected by culture conditions. The transcriptome and proteome studies indicated that different culture conditions (fructose, calcium ion, palmitic acid, low pH) affected gene and protein expressions. The levels of differentially expressed proteins did not significantly correlate with the expression levels of their corresponding genes. Our results highlight the importance of comparative transcriptomics and proteomics analyses. In this study, fructose and pH significantly affected sugar metabolism of L. lactis. When lactose was replaced by fructose, fructokinase expression was promoted, and fructose metabolism was accelerated, whereas starch and sucrose metabolism and galactose metabolism system were inhibited. Low pH may be beneficial to homofermentation of L. lactis, which may also metabolize galactose through the tagatose pathway and the Leloir pathway. Fatty acid metabolism and fatty acid biosynthesis were significantly downregulated under calcium ion and palmitic acid. The purine metabolism was upregulated under fructose treatment and downregulated under palmitic acid treatment.
Collapse
Affiliation(s)
- Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Hong
- Department of Academic Theory Research, Northeast Agricultural University, Harbin, 150030, China.
| | - Fei Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Poudel K, Luo X, Chen L, Jing D, Xia X, Tang L, Li H, Cao S. Identification of the SUT Gene Family in Pomegranate ( Punica granatum L.) and Functional Analysis of PgL0145810.1. Int J Mol Sci 2020; 21:ijms21186608. [PMID: 32927615 PMCID: PMC7554910 DOI: 10.3390/ijms21186608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
Sucrose, an important sugar, is transported from source to sink tissues through the phloem, and plays important role in the development of important traits in plants. However, the SUT gene family is still not well characterized in pomegranate. In this study, we first identified the pomegranate sucrose transporter (SUT) gene family from the whole genome. Then, the phylogenetic relationship of SUT genes, gene structure and their promoters were analyzed. Additionally, their expression patterns were detected during the development of the seed. Lastly, genetic transformation and cytological observation were used to study the function of PgL0145810.1. A total of ten pomegranate SUT genes were identified from the whole genome of pomegranate ‘Tunisia’. The promoter region of all the pomegranate SUT genes contained myeloblastosis (MYB) elements. Four of the SUT genes, PgL0328370.1, PgL0099690.1, PgL0145810.1 and PgL0145770.1, were differentially expressed during seed development. We further noticed that PgL0145810.1 was expressed most prominently in the stem parts in transgenic plants compared to other tissue parts (leaves, flowers and silique). The cells in the xylem vessels were small and lignin content was lower in the transgenic plants as compared to wild Arabidopsis plants. In general, our result suggests that the MYB cis-elements in the promoter region might regulate PgL0145810.1 expression to control the structure of xylem, thereby affecting seed hardness in pomegranate.
Collapse
|
16
|
Li L, Wu HX, Ma XW, Xu WT, Liang QZ, Zhan RL, Wang SB. Transcriptional mechanism of differential sugar accumulation in pulp of two contrasting mango (Mangifera indica L.) cultivars. Genomics 2020; 112:4505-4515. [PMID: 32735916 DOI: 10.1016/j.ygeno.2020.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Temporal transcriptome analysis combined with targeted metabolomics was employed to investigate the mechanisms of high sugar accumulation in fruit pulp of two contrasting mango cultivars. Ten sugar metabolites were identified in mango pulp with the most dominant being d-glucose. Analysis of the gene expression patterns revealed that the high-sugar cultivar prioritized the conversion of sucrose to d-glucose by up-regulating invertases and β-glucosidases and increased other genes directly contributing to the synthesis of sucrose and d-glucose. In contrast, it repressed the expression of genes converting sucrose, d-glucose and other sugars into intermediates compounds for downstream processes. It also strongly increased the expression of alpha-amylases which may promote high degradation of starch into d-glucose. Besides, ¾ of the sugar transporters was strongly up-regulated, indicative of their preponderant role in sugar accumulation in mango fruit. Overall, this study provides a good insight into the regulation pattern of high sugar accumulation in mango pulp.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Hong-Xia Wu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiao-Wei Ma
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Wen-Tian Xu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Qing-Zhi Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Ru-Lin Zhan
- Haikou Experimental Station (Institute of Tropical Fruit Tree), Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Song-Biao Wang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| |
Collapse
|
17
|
Chabikwa TG, Barbier FF, Tanurdzic M, Beveridge CA. De novo transcriptome assembly and annotation for gene discovery in avocado, macadamia and mango. Sci Data 2020; 7:9. [PMID: 31913298 PMCID: PMC6949230 DOI: 10.1038/s41597-019-0350-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
Avocado (Persea americana Mill.), macadamia (Macadamia integrifolia L.) and mango (Mangifera indica L.) are important subtropical tree species grown for their edible fruits and nuts. Despite their commercial and nutritional importance, the genomic information for these species is largely lacking. Here we report the generation of avocado, macadamia and mango transcriptome assemblies from pooled leaf, stem, bud, root, floral and fruit/nut tissue. Using normalized cDNA libraries, we generated comprehensive RNA-Seq datasets from which we assembled 63420, 78871 and 82198 unigenes of avocado, macadamia and mango, respectively using a combination of de novo transcriptome assembly and redundancy reduction. These unigenes were functionally annotated using Basic Local Alignment Search Tool (BLAST) to query the Universal Protein Resource Knowledgebase (UniProtKB). A workflow encompassing RNA extraction, library preparation, transcriptome assembly, redundancy reduction, assembly validation and annotation is provided. This study provides avocado, macadamia and mango transcriptome and annotation data, which is valuable for gene discovery and gene expression profiling experiments as well as ongoing and future genome annotation and marker development applications.
Collapse
Affiliation(s)
- Tinashe G Chabikwa
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Francois F Barbier
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
18
|
Tang L, Mo J, Guo T, Huang S, Li Q, Ning P, Hsiang T. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango. World J Microbiol Biotechnol 2019; 36:4. [PMID: 31832786 DOI: 10.1007/s11274-019-2781-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/01/2019] [Indexed: 02/02/2023]
Abstract
Colletotrichum gloeosporioides, one of the main agents of mango anthracnose, causes latent infections in unripe mango, and leads to huge economic losses during storage and transport. Dimethyl trisulfide (DMTS), one of the main volatile compounds produced by some microorganisms or plants, has shown antifungal activity against some phytopathogens in previous studies, but its effects on C. gloeosporioides and mechanisms of action have not been well characterized. In fumigation trials of conidia and mycelia of C. gloeosporioides for 2, 4, 6, 8, or 10 h, at a concentration of 100 μL/L of air space in vitro, DMTS caused serious damage to the integrity of plasma membranes, which significantly reduced the survival rate of spores, and resulted in abnormal hyphal morphology. Moreover, DMTS caused deterioration of subcellular structures of conidia and mycelia, such as cell walls, plasma membranes, Golgi bodies, and mitochondria, and contributed to leakage of protoplasm, thus promoting vacuole formation. In addition, to better understand the molecular mechanisms of the antifungal activity, the global gene expression profiles of isolate C. gloeosporioides TD3 treated in vitro with DMTS at a concentration of 100 μL/L of air for 0 h (Control), 1 h, or 3 h were investigated by RNA sequencing (RNA-seq), and over 62 Gb clean reads were generated from nine samples. Similar expressional patterns for nine differentially expressed genes (DEGs) in both RNA-seq and qRT-PCR assays showed the reliability of the RNA-seq data. In comparison to the non-treated control groups, we found DMTS suppressed expression of β-1, 3-D-glucan, chitin, sterol biosynthesis-related genes, and membrane protein-related genes. These genes related to the formation of fungal cell walls and plasma membranes might be associated with the toxicity of DMTS against C. gloeosporioides. This is the first study demonstrating antifungal activity of DMTS against C. gloeosporioides on mango by direct damage of conidia and hyphae, thus providing a novel tool for postharvest control of mango anthracnose.
Collapse
Affiliation(s)
- Lihua Tang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Jianyou Mo
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Tangxun Guo
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Suiping Huang
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China
| | - Qili Li
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China. .,The Key Lab for Biology of Crop Diseases and Insect Pests of Guangxi, Nanning, 530007, Guangxi, China.
| | - Ping Ning
- Guangxi Agricultural Vocational College, Nanning, 530007, Guangxi, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
19
|
Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, de Souza Miranda R, Alexandre E Silva LM, Moura CFH, Alves Filho EG, Canuto KM, Costa JH. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. PLANT MOLECULAR BIOLOGY 2019; 101:269-296. [PMID: 31338671 DOI: 10.1007/s11103-019-00903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
Collapse
Affiliation(s)
- Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | | | | | | | | | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
20
|
Xiao L, Li T, Jiang G, Jiang Y, Duan X. Cell wall proteome analysis of banana fruit softening using iTRAQ technology. J Proteomics 2019; 209:103506. [DOI: 10.1016/j.jprot.2019.103506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
21
|
Transcriptome Analysis of Elm (Ulmus pumila) Fruit to Identify Phytonutrients Associated Genes and Pathways. FORESTS 2019. [DOI: 10.3390/f10090738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Plant fruit is an important source of natural active phytonutrients that are profitable for human health. Elm (Ulmus pumila) fruit is considered as natural plant food in China that is rich in nutrients. In the present study, high-throughput RNA sequencing was performed in U. pumila edible fruits and leaves and 11,386 unigenes were filtered as dysregulated genes in fruit samples, including 5231 up- and 6155 downregulated genes. Hundreds of pathways were predicted to participate in seed development and phytonutrient biosynthesis in U. pumila by GO, MapMan, and KEGG enrichment analysis, including “seed maturation”, “glycine, serine, and threonine metabolism” and “phenylpropanoid biosynthesis”. ABA-mediated glucose response-related ethylene-activated signaling pathway (e.g., ABI4) were supposed to associate with elm fruit development; unsaturated fatty acids pathway (e.g., ACX2 and SAD) were predicted to participate in determination of fatty acid composition in elm fruit; flavonoid and coumarins biosynthesis (e.g., CYP98A3 and CCoAOMT1) were demonstrated to correlate with the bioactivity of elm fruits in human cancer and inflammation resistance. To provide more information about fruit developmental status, the qRT-PCR analysis for key genes of “phenylpropanoid biosynthesis” and “alpha-Linolenic acid metabolism” were conducted in samples of young fruits, ripe fruit, old fruit, and leaves. Two biosynthetic pathways for unsaturated fatty acid and Jasmonic acid (JA) were deduced to be involved in fruit development in U. pumila and the phenylpropanoid glycoside, syringin, was speculated to accumulate in the early development stages of elm fruit. Our transcriptome data supports molecular clues for seed development and biologically active substances in elm fruits.
Collapse
|
22
|
Barbier FF, Chabikwa TG, Ahsan MU, Cook SE, Powell R, Tanurdzic M, Beveridge CA. A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. PLANT METHODS 2019; 15:62. [PMID: 31171930 PMCID: PMC6549277 DOI: 10.1186/s13007-019-0447-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/27/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Woody tropical plants contain high levels of complex organic compounds that inhibit the chemical procedures needed to extract RNA or DNA, thus compromising downstream applications such as RNA sequencing and analysis of gene expression. To overcome this issue, researchers must use extraction protocols using CTAB/PVP buffer instead of commercially available DNA/RNA extraction kits. However, these protocols are time-consuming, use toxic chemicals like phenol and chloroform, and can only be used to process a small number of samples at a time. To overcome these issues, we developed a new CTAB/PVP based protocol for RNA or DNA extraction that eliminates the traditional phenol/chloroform step. Furthermore, the protocol was developed for 96-well plates to speed up processing. RESULTS Our new protocol enabled us to successfully extract RNA from macadamia, avocado, and mango tissues that are traditionally difficult to work with. This RNA was then successfully used to synthesise cDNA for real-time quantitative PCR and to generate good quality RNA-Seq libraries. Our protocol can be easily converted for rapid DNA extraction from different tropical and sub-tropical tree species. CONCLUSION This method enables safer and faster DNA and RNA extraction from recalcitrant species, thus facilitating future work on tropical trees.
Collapse
Affiliation(s)
- François F. Barbier
- School of Biological Sciences, and The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Tinashe G. Chabikwa
- School of Biological Sciences, and The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Muhammad U. Ahsan
- School of Biological Sciences, and The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Stacey E. Cook
- School of Biological Sciences, and The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Rosanna Powell
- School of Biological Sciences, and The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Milos Tanurdzic
- School of Biological Sciences, and The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Christine A. Beveridge
- School of Biological Sciences, and The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
23
|
Ji Z, Zeng Y, Liang Y, Qian Q, Yang C. Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress. BMC Genomics 2019; 20:91. [PMID: 30691406 PMCID: PMC6350333 DOI: 10.1186/s12864-019-5435-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background Bakanae disease, caused by the fungus Fusarium fujikuroi, occurs widely throughout Asia and Europe and sporadically in other rice production areas. Recent changes in climate and cropping patterns have aggravated this disease. To gain a better understanding of the molecular mechanisms of rice bakanae disease resistance, we employed a 6-plex tandem mass tag approach for relative quantitative proteomic comparison of infected and uninfected rice seedlings 7 days post-inoculation with two genotypes: the resistant genotype 93–11 and the susceptible genotype Nipponbare. Results In total, 123 (77.2% up-regulated, 22.8% down-regulated) and 91 (94.5% up-regulated, 5.5% down-regulated) differentially expressed proteins (DEPs) accumulated in 93–11 and Nipponbare, respectively. Only 11 DEPs were both shared by the two genotypes. Clustering results showed that the protein regulation trends for the two genotypes were highly contrasting, which suggested obviously different interaction mechanisms of the host and the pathogen between 93 and 11 and Nipponbare. Further analysis showed that a noticeable aquaporin, PIP2–2, was sharply upregulated with a fold change (FC) of 109.2 in 93–11, which might be related to pathogen defense and the execution of bakanae disease resistance. Certain antifungal proteins were regulated in both 93–11 and Nipponbare with moderate FCs. These proteins might participate in protecting the cellular integrity required for basic growth of the susceptible genotype. Correlation analysis between the transcriptome and proteome revealed that Pearson correlation coefficients of R = 0.677 (P = 0.0005) and R = − 0.097 (P = 0.702) were obtained for 93–11 and Nipponbare, respectively. Our findings raised an intriguing result that a significant positive correlation only in the resistant genotype, while no correlation was found in the susceptible genotype. The differences in codon usage was hypothesized for the cause of the result. Conclusions Quantitative proteomic analysis of the rice genotypes 93-11and Nipponbare after F. fujikuroi infection revealed that the aquaporin protein PIP2–2 might execute bakanae disease resistance. The difference in the correlation between the transcriptome and proteome might be due to the differences in codon usage between 93-11and Nipponbare. Overall, the protein regulation trends observed under bakanae disease stress are highly contrasting, and the molecular mechanisms of disease defense are obviously different between 93 and 11 and Nipponbare. In summary, these findings deepen our understanding of the functions of proteins induced by bakanae disease and the mechanisms of rice bakanae disease resistance. Electronic supplementary material The online version of this article (10.1186/s12864-019-5435-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhijuan Ji
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No.359 Tiyuchang Road, Hangzhou, 310006, People's Republic of China
| | - Yuxiang Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No.359 Tiyuchang Road, Hangzhou, 310006, People's Republic of China
| | - Yan Liang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No.359 Tiyuchang Road, Hangzhou, 310006, People's Republic of China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No.359 Tiyuchang Road, Hangzhou, 310006, People's Republic of China.
| | - Changdeng Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No.359 Tiyuchang Road, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
24
|
Liu Z, Lv J, Zhang Z, Li H, Yang B, Chen W, Dai X, Li X, Yang S, Liu L, Ou L, Ma Y, Zou X. Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development. J Proteome Res 2019; 18:982-994. [DOI: 10.1021/acs.jproteome.8b00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhoubin Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Junheng Lv
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Heng Li
- Shanghai Applied Protein Technology Co. Ltd, Shanghai 200233, P.R. China
| | - Bozhi Yang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiongze Dai
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xuefeng Li
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Sha Yang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Li Liu
- Shanghai Applied Protein Technology Co. Ltd, Shanghai 200233, P.R. China
| | - Lijun Ou
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yanqing Ma
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xuexiao Zou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| |
Collapse
|
25
|
Zhao X, Zhang Y, Wang M, Fang X, Cai X. Comparative proteomic analysis of latex from Euphorbia kansui laticifers at different development stages with and without UV-B treatment via iTRAQ-coupled two-dimensional liquid chromatography-MS/MS. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 47:67-79. [PMID: 31818367 DOI: 10.1071/fp19033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Euphorbia kansui Liou, an endemic species in China, is well-known in traditional Chinese medicine. All parts of E. kansui contain white latex, which is the protoplasm constituent of specialised cells known as laticifers. The latex contains many proteins with various biological functions. In the present study, isobaric tagging for relative and absolute quantitation (iTRAQ) and MS technology combined with western blot and quantitative real-time PCR analysis were used to identify latex proteins and analyse differentially accumulated proteins in laticifers at different development stages, with and without UV-B treatment according to the E. kansui transcriptome database and the NCBI Euphorbiaceae RefSeq protein database. A total of 322 latex proteins were successfully identified. Proteasome subunits, ubiquitinated proteins, vacuolar ATP synthase (V-ATPase) and lysosomal enzymes decreased, keeping the content at a higher level in laticifers in the early development stage. These results suggest that the ubiquitin-proteasome pathway and the lysosome autophagy pathway were involved in the partial degradation of laticifer cytoplasm. In addition, terpenoid biosynthesis-related proteins, 14-3-3 protein, V-ATPase and lysosomal enzymes increased under UV-B treatment, which showed that partial cytoplasmic degradation is positively correlated with secondary metabolite synthesis in the development of E. kansui laticifers. Besides, UV-B radiation can increase plant resistance by promoting laticifer development in E. kansui. This information provides a basis for further exploration of E. kansui laticifer development, and terpenoid synthesis and regulation.
Collapse
Affiliation(s)
- Xueyan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China; and Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xianyang, 712046, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China; and Corresponding author.
| |
Collapse
|
26
|
Ahmad R, Anjum MA, Malik W. RETRACTED ARTICLE: Characterization and Evaluation of Mango Germplasm Through Morphological, Biochemical, and Molecular Markers Focusing on Fruit Production: An Overview. Mol Biotechnol 2018; 61:631. [PMID: 30315501 DOI: 10.1007/s12033-018-0129-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Riaz Ahmad
- Department of Horticulture, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Akbar Anjum
- Department of Horticulture, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Waqas Malik
- Genomics Lab, Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
27
|
Luo X, Cao D, Li H, Zhao D, Xue H, Niu J, Chen L, Zhang F, Cao S. Complementary iTRAQ-based proteomic and RNA sequencing-based transcriptomic analyses reveal a complex network regulating pomegranate (Punica granatum L.) fruit peel colour. Sci Rep 2018; 8:12362. [PMID: 30120285 PMCID: PMC6098015 DOI: 10.1038/s41598-018-30088-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
Peel colour is an important factor affecting the marketability of pomegranate fruits. Therefore, elucidating the genetic mechanism of fruit peel colour development may be useful for breeding pomegranate cultivars with enhanced fruit peel colours. In this study, we combined an iTRAQ-based proteome-level analysis with an RNA sequencing-based transcriptome-level analysis to detect the proteins and genes related to fruit peel colour development in pomegranate. We analysed the ‘Tunisia’ (red fruit) and ‘White’ (white fruit) pomegranate cultivars at two stages of fruit development. A total of 27 differentially abundant proteins (increased abundance) and 54 differentially expressed genes (16 up-regulated and 38 down-regulated) were identified from our proteomics and transcriptomics data. The identified proteins and genes contribute to pomegranate fruit peel colour by participating in the biosynthesis of anthocyanins, stilbenoids, diarylheptanoids, gingerols, flavonoids, and phenylpropanoids. Several candidate proteins and genes corresponded to enzymes related to general reactions (PAL, 4CL, DFR, LDOX/ANS, CHS, and F3′5′H) and glycosylation (GT1 and UGAT) of compounds and pigments related to the colour of pomegranate fruit peel. Complementary proteome- and transcriptome-level analyses revealed a complex molecular network controlling fruit peel colour. The candidate genes identified in this study may be useful for the marker-based breeding of new pomegranate cultivars.
Collapse
Affiliation(s)
- Xiang Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Diguang Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Hui Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Juan Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Fuhong Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P. R. China.
| |
Collapse
|
28
|
Al‐Obaidi JR, Jamil NAM, Rahmad N, Rosli NHM. Proteomic and metabolomic study of wax apple (
Syzygium samarangense
) fruit during ripening process. Electrophoresis 2018; 39:2954-2964. [DOI: 10.1002/elps.201800185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jameel R. Al‐Obaidi
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | - Nor Azreen Mohd Jamil
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | - Norasfaliza Rahmad
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | | |
Collapse
|
29
|
Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. Putting primary metabolism into perspective to obtain better fruits. ANNALS OF BOTANY 2018; 122:1-21. [PMID: 29718072 PMCID: PMC6025238 DOI: 10.1093/aob/mcy057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2017] [Indexed: 05/18/2023]
Abstract
Background One of the key goals of fruit biology is to understand the factors that influence fruit growth and quality, ultimately with a view to manipulating them for improvement of fruit traits. Scope Primary metabolism, which is not only essential for growth but is also a major component of fruit quality, is an obvious target for improvement. However, metabolism is a moving target that undergoes marked changes throughout fruit growth and ripening. Conclusions Agricultural practice and breeding have successfully improved fruit metabolic traits, but both face the complexity of the interplay between development, metabolism and the environment. Thus, more fundamental knowledge is needed to identify further strategies for the manipulation of fruit metabolism. Nearly two decades of post-genomics approaches involving transcriptomics, proteomics and/or metabolomics have generated a lot of information about the behaviour of fruit metabolic networks. Today, the emergence of modelling tools is providing the opportunity to turn this information into a mechanistic understanding of fruits, and ultimately to design better fruits. Since high-quality data are a key requirement in modelling, a range of must-have parameters and variables is proposed.
Collapse
Affiliation(s)
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Univ. Bordeaux, Bordeaux Sci Agro, F-Villenave d’Ornon, France
| | | | | | - Annick Moing
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Léa Roch
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
30
|
Fu W, Gao Z, Gao L, Jin J, Liu M, Sun Y, Wu S, Wu L, Ma H, Dong Y, Wang X, Gao B, Wang H, Akkerdaas JH, Versteeg SA, van Ree R. Identification of a 62-kDa major allergen from Artemisia pollen as a putative galactose oxidase. Allergy 2018; 73:1041-1052. [PMID: 29220102 DOI: 10.1111/all.13375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Around 20 years ago, a 60- to 70-kDa protein was reported as a major allergen of mugwort (Artemisia vulgaris) pollen. This study was to identify and characterize its molecular properties. METHODS Sera from 113 Chinese and 20 Dutch Artemisia-allergic/sensitized subjects (and pools thereof) were used to identify the 60- to 70-kDa allergen. Pollen extracts of seven Artemisia species were compared by immunoblotting. Transcriptomics and proteomics (mass spectrometry) of A. annua pollen were used to identify the putative 60- to 70-kDa Artemisia allergen. Both the natural purified and recombinant allergens were evaluated for IgE reactivity by ImmunoCAP. Fourteen Chinese Artemisia-allergic patients were tested intradermally with purified natural allergen. RESULTS Immunoblots revealed two major bands at 12 and 25 kDa, and a weak band at 70 kDa for all seven Artemisia species. Using a combined transcriptomic and proteomic approach, the high molecular mass allergen in A. annua pollen was shown to be a 62-kDa putative galactose oxidase, with a putative N-glycosylation site. More than 94% of Artemisia pollen-allergic patients had IgE response to this allergen. Although recognition of a nonglycosylated recombinant version was only confirmed in a minority (16%) and at much lower IgE levels, this discrepancy cannot be explained simply by reactivity to the carbohydrate moiety on the natural allergen. Intradermal testing with the natural allergen was positive in five of nine sensitized patients. CONCLUSIONS The previously reported 60- to 70-kDa allergen of Artemisia pollen is most likely a 62-kDa putative galactose oxidase here designated Art an 7.
Collapse
Affiliation(s)
- W Fu
- Allergy Research Center, Zhejiang University, Hangzhou, China
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Z Gao
- Allergy Research Center, Zhejiang University, Hangzhou, China
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - L Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - J Jin
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - M Liu
- Department of Allergy, The Third People's Hospital of Datong, Shanxi, China
| | - Y Sun
- Department of Allergy, Yu Huang Ding Hospital, Yantai, Shandong, China
| | - S Wu
- Allergy Research Center, Zhejiang University, Hangzhou, China
| | - L Wu
- Department of Allergy, The Third People's Hospital of Datong, Shanxi, China
| | - H Ma
- Department of Allergy, The Third People's Hospital of Datong, Shanxi, China
| | - Y Dong
- Department of Allergy, The Third People's Hospital of Datong, Shanxi, China
| | - X Wang
- Department of Allergy, The Third People's Hospital of Datong, Shanxi, China
| | - B Gao
- Research Department, Hangzhou Aileji Biotech Ltd, Hangzhou, China
| | - H Wang
- Department of Allergy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - J H Akkerdaas
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S A Versteeg
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - R van Ree
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Bajpai A, Khan K, Muthukumar M, Rajan S, Singh NK. Molecular analysis of anthocyanin biosynthesis pathway genes and their differential expression in mango peel. Genome 2018; 61:157-166. [PMID: 29338343 DOI: 10.1139/gen-2017-0205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mango fruit is cherished by masses for its taste and nutrition, contributed by color, flavor, and aroma. Among these, peel color is an important trait contributing to fruit quality and market value. We attempted to elucidate the role of key genes of the anthocyanin biosynthesis pathway related to fruit peel color from the leaf transcriptome of mango cultivar Amrapali. A total of 108 mined transcript sequences were assigned to the phenylpropanoid-flavonoid pathway from which 15 contigs representing anthocyanin biosynthesis genes were annotated. Alternate splice variants were identified by mapping against genes of Citrus clementina and Vitis vinifera (closest relatives) and protein subcellular localization was determined. Phylogenetic analysis of these pathway genes clustered them into distinct groups aligning with homologous genes of Magnifera indica, C. clementina, and V. vinifera. Expression profiling revealed higher relative fold expressions in mature fruit peel of red-colored varieties (Arunika, Ambika, and Tommy Atkins) in comparison with the green-peeled Amrapali. MiCHS, MiCHI, and MiF3H alternate splice variants revealed differential gene expression. Functionally divergent variants indicate availability of an allelic pool programmed to play critical roles in peel color. This study provides insight into the molecular genetic basis of peel color and offers scope for development of biomarkers in varietal improvement programs.
Collapse
Affiliation(s)
- Anju Bajpai
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - Kasim Khan
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - M Muthukumar
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - S Rajan
- a ICAR-Central Institute for Subtropical Horticulture, Lucknow-226101, India
| | - N K Singh
- b ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi-110012, India
| |
Collapse
|
32
|
Salzano AM, Sobolev A, Carbone V, Petriccione M, Renzone G, Capitani D, Vitale M, Minasi P, Pasquariello MS, Novi G, Zambrano N, Scortichini M, Mannina L, Scaloni A. A proteometabolomic study of Actinidia deliciosa fruit development. J Proteomics 2017; 172:11-24. [PMID: 29133123 DOI: 10.1016/j.jprot.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anatoly Sobolev
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Milena Petriccione
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy
| | - Monica Vitale
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Paola Minasi
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Silvia Pasquariello
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Gianfranco Novi
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Marco Scortichini
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Luisa Mannina
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy.
| |
Collapse
|
33
|
Deshpande AB, Anamika K, Jha V, Chidley HG, Oak PS, Kadoo NY, Pujari KH, Giri AP, Gupta VS. Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics. Sci Rep 2017; 7:8711. [PMID: 28821734 PMCID: PMC5562913 DOI: 10.1038/s41598-017-08499-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 01/27/2023] Open
Abstract
Alphonso is known as the “King of mangos” due to its unique flavor, attractive color, low fiber pulp and long shelf life. We analyzed the transcriptome of Alphonso mango through Illumina sequencing from seven stages of fruit development and ripening as well as flower. Total transcriptome data from these stages ranged between 65 and 143 Mb. Importantly, 20,755 unique transcripts were annotated and 4,611 were assigned enzyme commission numbers, which encoded 142 biological pathways. These included ethylene and flavor related secondary metabolite biosynthesis pathways, as well as those involved in metabolism of starch, sucrose, amino acids and fatty acids. Differential regulation (p-value ≤ 0.05) of thousands of transcripts was evident in various stages of fruit development and ripening. Novel transcripts for biosynthesis of mono-terpenes, sesqui-terpenes, di-terpenes, lactones and furanones involved in flavor formation were identified. Large number of transcripts encoding cell wall modifying enzymes was found to be steady in their expression, while few were differentially regulated through these stages. Novel 79 transcripts of inhibitors of cell wall modifying enzymes were simultaneously detected throughout Alphonso fruit development and ripening, suggesting controlled activity of these enzymes involved in fruit softening.
Collapse
Affiliation(s)
- Ashish B Deshpande
- Plant Molecular Biology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Krishanpal Anamika
- Labs, Persistent Systems Limited, Pingala-Aryabhata, Erandwane, Pune, 411004, India
| | - Vineet Jha
- Labs, Persistent Systems Limited, Pingala-Aryabhata, Erandwane, Pune, 411004, India
| | - Hemangi G Chidley
- Plant Molecular Biology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Pranjali S Oak
- Plant Molecular Biology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Narendra Y Kadoo
- Plant Molecular Biology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Keshav H Pujari
- Dr. Balasaheb Sawant Konkan Agriculture University, Dapoli, 415712, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Vidya S Gupta
- Plant Molecular Biology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
| |
Collapse
|
34
|
Pérez-Mora W, Jorrin-Novo JV, Melgarejo LM. Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chem 2017; 240:496-504. [PMID: 28946303 DOI: 10.1016/j.foodchem.2017.07.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Substantial equivalence studies were performed in three Theobroma spp., cacao, bicolor and grandiflorum through chemical composition analysis and protein profiling of fruit (pulp juice and seeds). Principal component analysis of sugar, organic acid, and phenol content in pulp juice revealed equivalence among the three species, with differences in some of the compounds that may result in different organoleptic properties. Proteins were extracted from seeds and pulp juice, resolved by two dimensional electrophoresis and major spots subjected to mass spectrometry analysis and identification. The protein profile, as revealed by principal component analysis, was variable among the three species in both seed and pulp, with qualitative and quantitative differences in some of protein species. The functional grouping of the identified proteins correlated with the biological role of each organ. Some of the identified proteins are of interest, being minimally discussed, including vicilin, a protease inhibitor, and a flavonol synthase/flavanone 3-hydroxylase. BIOLOGICAL SIGNIFICANCE Theobroma grandiflorum and Theobroma bicolor are endemic Amazonian plants that are poorly traded at the local level. As close relatives of Theobroma cacao, they may provide a good alternative for human consumption and industrial purposes. In this regard, we performed equivalence studies by conducting a comparative biochemical and proteomics analysis of the fruit, pulp juice and seeds of these three species. The results indicated equivalent chemical compositions and variable protein profiles with some differences in the content of the specific compounds or protein species that may result in variable organoleptic properties between the species and can be exploited for traceability purposes.
Collapse
Affiliation(s)
- Walter Pérez-Mora
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Jesús V Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology Research Group, Dpt. of Biochemistry and Molecular University of Córdoba-CeiA3 Córdoba, Spain.
| | - Luz Marina Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
35
|
Li YH, Zhang HN, Wu QS, Muday GK. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments. PLANTA 2017; 245:1193-1213. [PMID: 28303391 DOI: 10.1007/s00425-017-2677-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/09/2017] [Indexed: 05/12/2023]
Abstract
A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.
Collapse
Affiliation(s)
- Yun-He Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, No. 1 Huxiu Road, Zhanjiang, 524091, China.
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang, 524091, China.
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA.
| | - Hong-Na Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, No. 1 Huxiu Road, Zhanjiang, 524091, China
| | - Qing-Song Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, No. 1 Huxiu Road, Zhanjiang, 524091, China
| | - Gloria K Muday
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| |
Collapse
|
36
|
Kuhn DN, Bally ISE, Dillon NL, Innes D, Groh AM, Rahaman J, Ophir R, Cohen Y, Sherman A. Genetic Map of Mango: A Tool for Mango Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:577. [PMID: 28473837 PMCID: PMC5397511 DOI: 10.3389/fpls.2017.00577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/30/2017] [Indexed: 05/27/2023]
Abstract
Mango (Mangifera indica) is an economically and nutritionally important tropical/subtropical tree fruit crop. Most of the current commercial cultivars are selections rather than the products of breeding programs. To improve the efficiency of mango breeding, molecular markers have been used to create a consensus genetic map that identifies all 20 linkage groups in seven mapping populations. Polyembryony is an important mango trait, used for clonal propagation of cultivars and rootstocks. In polyembryonic mango cultivars, in addition to a zygotic embryo, several apomictic embryos develop from maternal tissue surrounding the fertilized egg cell. This trait has been associated with linkage group 8 in our consensus genetic map and has been validated in two of the seven mapping populations. In addition, we have observed a significant association between trait and single nucleotide polymorphism (SNP) markers for the vegetative trait of branch habit and the fruit traits of bloom, ground skin color, blush intensity, beak shape, and pulp color.
Collapse
Affiliation(s)
- David N. Kuhn
- Subtropical Horticulture Research Station, United States Department of Agriculture—Agriculture Research ServiceMiami, FL, USA
| | - Ian S. E. Bally
- Department of Agriculture and Fisheries, Centre for Tropical Agriculture, Horticulture and Forestry ScienceBrisbane, QLD, Australia
| | - Natalie L. Dillon
- Department of Agriculture and Fisheries, Centre for Tropical Agriculture, Horticulture and Forestry ScienceBrisbane, QLD, Australia
| | - David Innes
- Department of Agriculture and Fisheries, Centre for Tropical Agriculture, Horticulture and Forestry ScienceBrisbane, QLD, Australia
| | - Amy M. Groh
- International Center for Tropical Botany, Florida International UniversityMiami, FL, USA
| | - Jordon Rahaman
- International Center for Tropical Botany, Florida International UniversityMiami, FL, USA
| | - Ron Ophir
- Department of Fruit Tree Sciences, Plant Sciences Institute, Agriculture Research OrganizationRishon Letzion, Israel
| | - Yuval Cohen
- Department of Fruit Tree Sciences, Plant Sciences Institute, Agriculture Research OrganizationRishon Letzion, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, Plant Sciences Institute, Agriculture Research OrganizationRishon Letzion, Israel
| |
Collapse
|
37
|
Wang T, Long X, Chen X, Liu Y, Liu Z, Han S, Yan S. Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate. Nanotoxicology 2017; 11:236-246. [DOI: 10.1080/17435390.2017.1290291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaohua Long
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaoyan Chen
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Yuanrui Liu
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Zhaopu Liu
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Shiqun Han
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Shaohua Yan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
38
|
Guo R, Landis JB, Moore MJ, Meng A, Jian S, Yao X, Wang H. Development and Application of Transcriptome-Derived Microsatellites in Actinidia eriantha (Actinidiaceae). FRONTIERS IN PLANT SCIENCE 2017; 8:1383. [PMID: 28890721 PMCID: PMC5574902 DOI: 10.3389/fpls.2017.01383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/25/2017] [Indexed: 05/04/2023]
Abstract
Actinidia eriantha Benth. is a diploid perennial woody vine native to China and is recognized as a valuable species for commercial kiwifruit improvement with high levels of ascorbic acid as well as having been used in traditional Chinese medicine. Due to the lack of genomic resources for the species, microsatellite markers for population genetics studies are scarce. In this study, RNASeq was conducted on fruit tissue of A. eriantha, yielding 5,678,129 reads with a total output of 3.41 Gb. De novo assembly yielded 69,783 non-redundant unigenes (41.3 Mb), of which 21,730 were annotated using protein databases. A total of 8,658 EST-SSR loci were identified in 7,495 unigene sequences, for which primer pairs were successfully designed for 3,842 loci (44.4%). Among these, 183 primer pairs were assayed for PCR amplification, yielding 69 with detectable polymorphism in A. eriantha. Additionally, 61 of the 69 polymorphic loci could be successfully amplified in at least one other Actinidia species. Of these, 14 polymorphic loci (mean NA = 6.07 ± 2.30) were randomly selected for assessing levels of genetic diversity and population structure within A. eriantha. Finally, a neighbor-joining tree and Bayesian clustering analysis showed distinct clustering into two groups (K = 2), agreeing with the geographical distributions of these populations. Overall, our results will facilitate further studies of genetic diversity within A. eriantha and will aid in discriminating outlier loci involved in local adaptation.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, United States
| | - Michael J. Moore
- Department of Biology, Oberlin CollegeOberlin, OH, United States
| | - Aiping Meng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Shuguang Jian
- South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Xiaohong Yao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- *Correspondence: Xiaohong Yao
| | - Hengchang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Hengchang Wang
| |
Collapse
|
39
|
Leaf Transcriptome Sequencing for Identifying Genic-SSR Markers and SNP Heterozygosity in Crossbred Mango Variety 'Amrapali' (Mangifera indica L.). PLoS One 2016; 11:e0164325. [PMID: 27736892 PMCID: PMC5063295 DOI: 10.1371/journal.pone.0164325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022] Open
Abstract
Mango (Mangifera indica L.) is called “king of fruits” due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties ‘Neelam’, ‘Dashehari’ and their hybrid ‘Amrapali’ using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango.
Collapse
|
40
|
Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. "Dashehari") unravels ripening associated genes. Sci Rep 2016; 6:32557. [PMID: 27586495 PMCID: PMC5009307 DOI: 10.1038/srep32557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
Ripening in mango is under a complex control of ethylene. In an effort to understand the complex spatio-temporal control of ripening we have made use of a popular N. Indian variety “Dashehari” This variety ripens from the stone inside towards the peel outside and forms jelly in the pulp in ripe fruits. Through a combination of 454 and Illumina sequencing, a transcriptomic analysis of gene expression from unripe and midripe stages have been performed in triplicates. Overall 74,312 unique transcripts with ≥1 FPKM were obtained. The transcripts related to 127 pathways were identified in “Dashehari” mango transcriptome by the KEGG analysis. These pathways ranged from detoxification, ethylene biosynthesis, carbon metabolism and aromatic amino acid degradation. The transcriptome study reveals differences not only in expression of softening associated genes but also those that govern ethylene biosynthesis and other nutritional characteristics. This study could help to develop ripening related markers for selective breeding to reduce the problems of excess jelly formation during softening in the “Dashehari” variety.
Collapse
|
41
|
Fan S, Zhang D, Lei C, Chen H, Xing L, Ma J, Zhao C, Han M. Proteome Analyses Using iTRAQ Labeling Reveal Critical Mechanisms in Alternate Bearing Malus prunifolia. J Proteome Res 2016; 15:3602-3616. [DOI: 10.1021/acs.jproteome.6b00357] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Lei
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
42
|
Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives. Mol Biotechnol 2016; 57:880-903. [PMID: 26271955 DOI: 10.1007/s12033-015-9884-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia,
| | | | | | | | | | | |
Collapse
|
43
|
Li T, Zhang J, Zhu H, Qu H, You S, Duan X, Jiang Y. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:725. [PMID: 27303420 PMCID: PMC4885882 DOI: 10.3389/fpls.2016.00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/11/2016] [Indexed: 05/15/2023]
Abstract
Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin "Shatangju" fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca(2+) signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca(2+) signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Jingying Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Hong Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Shulin You
- Zhangzhou Xiangcheng District Agricultural BureauFujian, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
44
|
Reuscher S, Fukao Y, Morimoto R, Otagaki S, Oikawa A, Isuzugawa K, Shiratake K. Quantitative Proteomics-Based Reconstruction and Identification of Metabolic Pathways and Membrane Transport Proteins Related to Sugar Accumulation in Developing Fruits of Pear (Pyrus communis). PLANT & CELL PHYSIOLOGY 2016; 57:505-18. [PMID: 26755692 DOI: 10.1093/pcp/pcw004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
During their 6 month development, pear (Pyrus communis) fruits undergo drastic changes in their morphology and their chemical composition. To gain a better understanding of the metabolic pathways and transport processes active during fruit development, we performed a time-course analysis using mass spectrometry (MS)-based protein identification and quantification of fruit flesh tissues. After pre-fractionation of the samples, 2,841 proteins were identified. A principal component analysis (PCA) separated the samples from seven developmental stages into three distinct clusters representing the early, mid and late developmental phase. Over-representation analysis of proteins characteristic of each developmental phase revealed both expected and novel biological processes relevant at each phase. A high abundance of aquaporins was detected in samples from fruits in the cell expansion stage. We were able quantitatively to reconstruct basic metabolic pathways such as the tricarboxylic acid (TCA) cycle, which indicates sufficient coverage to reconstruct other metabolic pathways. Most of the enzymes that presumably contribute to sugar accumulation in pear fruits could be identified. Our data indicate that invertases do not play a major role in the sugar conversions in developing pear fruits. Rather, sucrose might be broken down by sucrose synthases. Further focusing on sugar transporters, we identified several putative sugar transporters from diverse families which showed developmental regulation. In conclusion, our data set comprehensively describes the proteome of developing pear fruits and provides novel insights about sugar accumulation as well as candidate genes for key reactions and transport steps.
Collapse
Affiliation(s)
- Stefan Reuscher
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577 Japan
| | - Reina Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555 Japan RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Kanji Isuzugawa
- Yamagata Integrated Agricultural Research Center, Sagae, 999-7601 Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
45
|
Alves LC, Magalhães DMD, Labate MTV, Guidetti-Gonzalez S, Labate CA, Domingues DS, Sera T, Vieira LGE, Pereira LFP. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1635-1647. [PMID: 26809209 DOI: 10.1021/acs.jafc.5b04376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.
Collapse
Affiliation(s)
- Leonardo Cardoso Alves
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina , P.O. Box 6001, Londrina, Parana 86051-990, Brazil
| | | | | | - Simone Guidetti-Gonzalez
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Carlos Alberto Labate
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Douglas Silva Domingues
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | - Tumoru Sera
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | | | - Luiz Filipe Protasio Pereira
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- EMBRAPA Café , Brasilia, DF, Brazil
| |
Collapse
|
46
|
Hong K, Gong D, Zhang L, Hu H, Jia Z, Gu H, Song K. Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Gene 2016; 576:275-83. [DOI: 10.1016/j.gene.2015.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023]
|
47
|
Castro JC, Maddox JD, Cobos M, Requena D, Zimic M, Bombarely A, Imán SA, Cerdeira LA, Medina AE. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis. BMC Genomics 2015; 16:997. [PMID: 26602763 PMCID: PMC4658800 DOI: 10.1186/s12864-015-2225-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 11/17/2015] [Indexed: 01/13/2023] Open
Abstract
Background Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. Results In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. Conclusions This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with the empirically observed capability of M. dubia to synthesize and accumulate AsA and other important molecules, and adds to our current knowledge of the molecular biology and biochemistry of their production in plants. By providing insights into the mechanisms underpinning these metabolic processes, these results can be used to direct efforts to genetically manipulate this organism in order to enhance the production of these bioactive phytochemicals. The accumulation of AsA precursor and discovery of genes associated with their biosynthesis and metabolism in M. dubia is intriguing and worthy of further investigation. The sequences and pathways produced here present the genetic framework required for further studies. Quantitative transcriptomics in concert with studies of the genome, proteome, and metabolome under conditions that stimulate production and accumulation of AsA and their precursors are needed to provide a more comprehensive view of how these pathways for AsA metabolism are regulated and linked in this species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2225-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan C Castro
- Unidad Especializada de Biotecnología, Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Pasaje Los Paujiles S/N, San Juan Bautista, Iquitos, Perú. .,Círculo de Investigación en Plantas con Efecto en Salud (FONDECYT N° 010-2014), Lima, Perú.
| | - J Dylan Maddox
- Pritzker Laboratory for Molecular Systematics and Evolution, The Field Museum of Natural History, Chicago, IL, USA.
| | - Marianela Cobos
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú (UCP), Av. Abelardo Quiñones km 2.5, San Juan Bautista, Iquitos, Perú.
| | - David Requena
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias, Universidad Peruana Cayetano Heredia (UPCH), Av. Honorio Delgado 430, San Martín de Porres, Lima, Perú. .,FARVET S.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta, Ica, Perú.
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias, Universidad Peruana Cayetano Heredia (UPCH), Av. Honorio Delgado 430, San Martín de Porres, Lima, Perú. .,FARVET S.A.C. Carretera Panamericana Sur N° 766 Km 198.5, Chincha Alta, Ica, Perú.
| | | | - Sixto A Imán
- Área de Conservación de Recursos Fitogenéticos, Instituto Nacional de Innovación Agraria (INIA), Calle San Roque 209, Iquitos, Perú.
| | - Luis A Cerdeira
- Unidad Especializada de Biotecnología, Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Pasaje Los Paujiles S/N, San Juan Bautista, Iquitos, Perú.
| | - Andersson E Medina
- Unidad Especializada de Biotecnología, Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Universidad Nacional de la Amazonía Peruana (UNAP), Pasaje Los Paujiles S/N, San Juan Bautista, Iquitos, Perú.
| |
Collapse
|
48
|
Sherman A, Rubinstein M, Eshed R, Benita M, Ish-Shalom M, Sharabi-Schwager M, Rozen A, Saada D, Cohen Y, Ophir R. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome. BMC PLANT BIOLOGY 2015; 15:277. [PMID: 26573148 PMCID: PMC4647706 DOI: 10.1186/s12870-015-0663-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 11/04/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. RESULTS We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. CONCLUSIONS Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and strengthen the history of mango diversity.
Collapse
Affiliation(s)
- Amir Sherman
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - Mor Rubinstein
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - Ravit Eshed
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - Miri Benita
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - Mazal Ish-Shalom
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - Michal Sharabi-Schwager
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Ada Rozen
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - David Saada
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - Yuval Cohen
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| | - Ron Ophir
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| |
Collapse
|
49
|
Wang J, Dang Z, Zhang H, Zheng L, Borjigin T, Wang Y. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening. Mol Genet Genomics 2015; 291:383-98. [PMID: 26388259 DOI: 10.1007/s00438-015-1116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/04/2015] [Indexed: 11/26/2022]
Abstract
Nitraria tangutorum Bobr., a valuable wild shrub distributed in Northwest China, produces edible and medicinal berries. However, little is known about the molecular mechanisms of its fruit development and ripening. We performed de novo transcriptome sequencing of N. tangutorum fruit using the Illumina HiSeq™ 2000 sequencing platform. More than 62.94 million reads were obtained and assembled into 69,306 unigenes (average length, 587 bp). These unigenes were annotated by querying against five databases (Nr, Swiss-Prot, GO, COG, and KEGG); 42,929 and 26,809 unigenes were found in the Nr and Swiss-Prot databases, respectively. In ortholog analyses, 33,363 unigenes were assigned with one or more GO terms, 15,537 hits were aligned to 25 COG classes, and 24,592 unigenes were classified into 128 KEGG pathways. Digital gene expression analyses were conducted on N. tangutorum fruit at the green (S1), yellow (S2), and red (S3) developmental stages. In total, 8240, 5985, and 4994 differentially expressed genes (DEGs) were detected for S1 vs. S2, S1 vs. S3, and S2 vs. S3, respectively. Cluster analyses showed that a large proportion of DEGs related to plant hormones and transcription factors (TFs) showed high expression in S1, down-regulated expression in S2, and up-regulated expression in S3. We analyzed the expression patterns of 23 genes encoding 12 putative enzymes involved in flavonoid biosynthesis. The expression profiles of 10 DEGs involved in flavonoid biosynthesis were validated by Q-PCR analysis. The assembled and annotated transcriptome sequences and gene expression profile analyses provide valuable genetic resources for research on N. tangutorum.
Collapse
Affiliation(s)
- Jia Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhenhua Dang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huirong Zhang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Linlin Zheng
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Tebuqin Borjigin
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China
| | - Yingchun Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
50
|
Hoang VLT, Innes DJ, Shaw PN, Monteith GR, Gidley MJ, Dietzgen RG. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics 2015; 16:561. [PMID: 26220670 PMCID: PMC4518526 DOI: 10.1186/s12864-015-1784-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. RESULTS A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. CONCLUSIONS The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.
Collapse
Affiliation(s)
- Van L T Hoang
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - David J Innes
- Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland, Australia.
| | - P Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| | - Ralf G Dietzgen
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|