1
|
Grancher A, Cuissy S, Girot H, Gillibert A, Di Fiore F, Guittet L. Where do we stand with screening for colorectal cancer and advanced adenoma based on serum protein biomarkers? A systematic review. Mol Oncol 2024; 18:2629-2648. [PMID: 39344882 PMCID: PMC11547240 DOI: 10.1002/1878-0261.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) screening has been proven to reduce both mortality and the incidence of this disease. Most CRC screening programs are based on fecal immunochemical tests (FITs), which have a low participation rate. Searching for blood protein biomarkers can lead to the development of a more accepted screening test. The aim of this systematic review was to compare the diagnostic potential of the most promising serum protein biomarkers. A systematic review based on PRISMA guidelines was conducted in the PubMed and Web of Science databases between January 2010 and December 2023. Studies assessing blood protein biomarkers for CRC screening were included. The sensitivity, specificity, and area under the ROC curve of each biomarker were collected. Among 4685 screened studies, 94 were considered for analysis. Most of them were case-control studies, leading to an overestimation of the performance of candidate biomarkers. The performance of no protein biomarker or combination of biomarkers appears to match that of the FIT. Studies with a suitable design and population, testing new assay techniques, or based on algorithms combining FIT with serum tests are needed.
Collapse
Affiliation(s)
- Adrien Grancher
- U1086 "ANTICIPE" INSERM-University of Caen Normandy, Centre François Baclesse, Caen, France
- Department of Hepato-Gastroenterology and Digestive Oncology, Rouen University Hospital, France
| | - Steven Cuissy
- Department of Hepato-Gastroenterology and Digestive Oncology, Rouen University Hospital, France
| | - Hélène Girot
- Department of Medical Biochemistry, Rouen University Hospital, France
| | - André Gillibert
- Department of Biostatistics, Rouen University Hospital, France
| | - Frédéric Di Fiore
- Department of Hepato-Gastroenterology and Digestive Oncology, Rouen University Hospital, France
| | - Lydia Guittet
- U1086 "ANTICIPE" INSERM-University of Caen Normandy, Centre François Baclesse, Caen, France
- Public Health Department, Caen University Hospital, France
| |
Collapse
|
2
|
Montero-Calle A, Garranzo-Asensio M, Poves C, Sanz R, Dziakova J, Peláez-García A, de Los Ríos V, Martinez-Useros J, Fernández-Aceñero MJ, Barderas R. In-Depth Proteomic Analysis of Paraffin-Embedded Tissue Samples from Colorectal Cancer Patients Revealed TXNDC17 and SLC8A1 as Key Proteins Associated with the Disease. J Proteome Res 2024; 23:4802-4820. [PMID: 39441737 DOI: 10.1021/acs.jproteome.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A deeper understanding of colorectal cancer (CRC) biology would help to identify specific early diagnostic markers. Here, we conducted quantitative proteomics on FFPE healthy, adenoma, and adenocarcinoma tissue samples from six stage I sporadic CRC patients to identify dysregulated proteins during early CRC development. Two independent quantitative 10-plex TMT experiments were separately performed. After protein extraction, trypsin digestion, and labeling, proteins were identified and quantified by using a Q Exactive mass spectrometer. A total of 2681 proteins were identified and quantified after data analysis and bioinformatics with MaxQuant and the R program. Among them, 284 and 280 proteins showed significant upregulation and downregulation (expression ratio ≥1.5 or ≤0.67, p-value ≤0.05), respectively, in adenoma and/or adenocarcinoma compared to healthy tissue. Ten dysregulated proteins were selected to study their role in CRC by WB, IHC, TMA, and ELISA using tissue and plasma samples from CRC patients, individuals with premalignant colorectal lesions (adenomas), and healthy individuals. In vitro loss-of-function cell-based assays and in vivo experiments using three CRC cell lines with different metastatic properties assessed the important roles of SLC8A1 and TXNDC17 in CRC and liver metastasis. Additionally, SLC8A1 and TXNDC17 protein levels in plasma possessed the diagnostic ability of early CRC stages.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- Proteomics Core UCCTs, Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Jana Dziakova
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), E-28046 Madrid, Spain
| | | | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital/Universidad Autónoma de Madrid (IIS-FJD/UAM), E-28040 Madrid, Spain
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, E-28922 Madrid, Spain
| | | | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- Proteomics Core UCCTs, Instituto de Salud Carlos III, Majadahonda, E-28220 Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), E-28029 Madrid, Spain
| |
Collapse
|
3
|
Zhang Y, Ma W, Huang Z, Liu K, Feng Z, Zhang L, Li D, Mo T, Liu Q. Research and application of omics and artificial intelligence in cancer. Phys Med Biol 2024; 69:21TR01. [PMID: 39079556 DOI: 10.1088/1361-6560/ad6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
Cancer has a high incidence and lethality rate, which is a significant threat to human health. With the development of high-throughput technologies, different types of cancer genomics data have been accumulated, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. A comprehensive analysis of various omics data is needed to understand the underlying mechanisms of tumor development. However, integrating such a massive amount of data is one of the main challenges today. Artificial intelligence (AI) techniques such as machine learning are now becoming practical tools for analyzing and understanding multi-omics data on diseases. Enabling great optimization of existing research paradigms for cancer screening, diagnosis, and treatment. In addition, intelligent healthcare has received widespread attention with the development of healthcare informatization. As an essential part of innovative healthcare, practical, intelligent prognosis analysis and personalized treatment for cancer patients are also necessary. This paper introduces the advanced multi-omics data analysis technology in recent years, presents the cases and advantages of the combination of both omics data and AI applied to cancer diseases, and finally briefly describes the challenges faced by multi-omics analysis and AI at the current stage, aiming to provide new perspectives for oncology research and the possibility of personalized cancer treatment.
Collapse
Affiliation(s)
- Ye Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Wenwen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhiqiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhaoyi Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
4
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Rejas-González R, Montero-Calle A, Valverde A, Salvador NP, Carballés MJC, Ausín-González E, Sánchez-Naves J, Campuzano S, Barderas R, Guzman-Aranguez A. Proteomics Analyses of Small Extracellular Vesicles of Aqueous Humor: Identification and Validation of GAS6 and SPP1 as Glaucoma Markers. Int J Mol Sci 2024; 25:6995. [PMID: 39000104 PMCID: PMC11241616 DOI: 10.3390/ijms25136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cataracts and glaucoma account for a high percentage of vision loss and blindness worldwide. Small extracellular vesicles (sEVs) are released into different body fluids, including the eye's aqueous humor. Information about their proteome content and characterization in ocular pathologies is not yet well established. In this study, aqueous humor sEVs from healthy individuals, cataracts, and glaucoma patients were studied, and their specific protein profiles were characterized. Moreover, the potential of identified proteins as diagnostic glaucoma biomarkers was evaluated. The protein content of sEVs from patients' aqueous humor with cataracts and glaucoma compared to healthy individuals was analyzed by quantitative proteomics. Validation was performed by western blot (WB) and ELISA. A total of 828 peptides and 192 proteins were identified and quantified. After data analysis with the R program, 8 significantly dysregulated proteins from aqueous humor sEVs in cataracts and 16 in glaucoma showed an expression ratio ≥ 1.5. By WB and ELISA using directly aqueous humor samples, the dysregulation of 9 proteins was mostly confirmed. Importantly, GAS6 and SPP1 showed high diagnostic ability of glaucoma, which in combination allowed for discriminating glaucoma patients from control individuals with an area under the curve of 76.1% and a sensitivity of 65.6% and a specificity of 87.7%.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
| | - Alejandro Valverde
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Natalia Pastora Salvador
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - María José Crespo Carballés
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | | | - Susana Campuzano
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
6
|
Abad P, Coronado M, Vincelle-Nieto Á, Pérez-Benavente S, Fobil JN, Puyet A, Diez A, Reyes-Palomares A, Azcárate IG, Bautista JM. Shotgun Characterization of the Circulating IgM Antigenome of an Infectious Pathogen by Immunocapture-LC-MS/MS from Dried Serum Spots. J Proteome Res 2024; 23:633-643. [PMID: 38183416 DOI: 10.1021/acs.jproteome.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
One of the main challenges in compiling the complete collection of protein antigens from pathogens for the selection of vaccine candidates or intervention targets is to acquire a broad enough representation of them to be recognized by the highly diversified immunoglobulin repertoire in human populations. Dried serum spot sampling (DSS) retains a large repertoire of circulating immunoglobulins from each individual that can be representative of a population, according to the sample size. In this work, shotgun proteomics of an infectious pathogen based on DSS sampling coupled with IgM immunoprecipitation, liquid chromatography-mass spectrometry (LC-MS/MS), and bioinformatic analyses was combined to characterize the circulating IgM antigenome. Serum samples from a malaria endemic region at different clinical statuses were studied to optimize IgM binding efficiency and antibody leaching by varying serum/immunomagnetic bead ratios and elution conditions. The method was validated using Plasmodium falciparum extracts identifying 110 of its IgM-reactive antigens while minimizing the presence of human proteins and antibodies. Furthermore, the IgM antigen recognition profile differentiated between malaria-infected and noninfected individuals at the time of sampling. We conclude that a shotgun proteomics approach offers advantages in providing a high-throughput, reliable, and clean way to identify IgM-recognized antigens from trace amounts of serum. The mass spectrometry raw data and metadata have been deposited with ProteomeXchange via MassIVE with the PXD identifier PXD043800.
Collapse
Affiliation(s)
- Paloma Abad
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Montserrat Coronado
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - África Vincelle-Nieto
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Julius N Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P.O. Box LG 13, G-4381 Legon, Ghana
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Isabel G Azcárate
- Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
| | - José M Bautista
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
7
|
Montero-Calle A, Jiménez de Ocaña S, Benavente-Naranjo R, Rejas-González R, Bartolomé RA, Martínez-Useros J, Sanz R, Dziaková J, Fernández-Aceñero MJ, Mendiola M, Casal JI, Peláez-García A, Barderas R. Functional Proteomics Characterization of the Role of SPRYD7 in Colorectal Cancer Progression and Metastasis. Cells 2023; 12:2548. [PMID: 37947626 PMCID: PMC10648221 DOI: 10.3390/cells12212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
SPRY domain-containing protein 7 (SPRYD7) is a barely known protein identified via spatial proteomics as being upregulated in highly metastatic-to-liver KM12SM colorectal cancer (CRC) cells in comparison to its isogenic poorly metastatic KM12C CRC cells. Here, we aimed to analyze SPRYD7's role in CRC via functional proteomics. Through immunohistochemistry, the overexpression of SPRYD7 was observed to be associated with the poor survival of CRC patients and with an aggressive and metastatic phenotype. Stable SPRYD7 overexpression was performed in KM12C and SW480 poorly metastatic CRC cells and in their isogenic highly metastatic-to-liver-KM12SM-and-to-lymph-nodes SW620 CRC cells, respectively. Upon upregulation of SPRYD7, in vitro and in vivo functional assays confirmed a key role of SPRYD7 in the invasion and migration of CRC cells and in liver homing and tumor growth. Additionally, transient siRNA SPRYD7 silencing allowed us to confirm in vitro functional results. Furthermore, SPRYD7 was observed as an inductor of angiogenesis. In addition, the dysregulated SPRYD7-associated proteome and SPRYD7 interactors were elucidated via 10-plex TMT quantitative proteins, immunoproteomics, and bioinformatics. After WB validation, the biological pathways associated with the stable overexpression of SPRYD7 were visualized. In conclusion, it was demonstrated here that SPRYD7 is a novel protein associated with CRC progression and metastasis. Thus, SPRYD7 and its interactors might be of relevance in identifying novel therapeutic targets for advanced CRC.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Sofía Jiménez de Ocaña
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Ruth Benavente-Naranjo
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Raquel Rejas-González
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Rubén A. Bartolomé
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | | | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| |
Collapse
|
8
|
Montero-Calle A, Garranzo-Asensio M, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Poves C, Dziaková J, Sanz R, Díaz del Arco C, Pingarrón JM, Fernández-Aceñero MJ, Campuzano S, Barderas R. p53 and p63 Proteoforms Derived from Alternative Splicing Possess Differential Seroreactivity in Colorectal Cancer with Distinct Diagnostic Ability from the Canonical Proteins. Cancers (Basel) 2023; 15:2102. [PMID: 37046764 PMCID: PMC10092954 DOI: 10.3390/cancers15072102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease. Here, our aim was to characterize the humoral immune response associated with the different p53 and p63 proteoforms derived from alternative splicing and previously described as aberrantly expressed in CRC. Thus, here we investigated the diagnostic ability of the twelve p53 proteoforms and the eight p63 proteoforms described to date, and their specific N-terminal and C-terminal end peptides, by means of luminescence HaloTag beads immunoassays. Full-length proteoforms or specific peptides were cloned as HaloTag fusion proteins and their seroreactivity analyzed using plasma from CRC patients at stages I-IV (n = 31), individuals with premalignant lesions (n = 31), and healthy individuals (n = 48). p53γ, Δ40p53β, Δ40p53γ, Δ133p53γ, Δ160p53γ, TAp63α, TAp63δ, ΔNp63α, and ΔNp63δ, together with the specific C-terminal end α and δ p63 peptides, were found to be more seroreactive against plasma from CRC patients and/or individuals with premalignant lesions than from healthy individuals. In addition, ROC (receiver operating characteristic) curves revealed a high diagnostic ability of those p53 and p63 proteoforms to detect CRC and premalignant individuals (AUC higher than 85%). Finally, electrochemical biosensing platforms were employed in POC-like devices to investigate their usefulness for CRC detection using selected p53 and p63 proteoforms. Our results demonstrate not only the potential of these biosensors for the simultaneous analysis of proteoforms' seroreactivity, but also their convenience and versatility for the clinical detection of CRC by liquid biopsy. In conclusion, we here show that p53 and p63 proteoforms possess differential seroreactivity in CRC patients in comparison to controls, distinctive from canonical proteins, which should improve the diagnostic panels for obtaining a blood-based biomarker signature for CRC detection.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - Rebeca M. Torrente-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Víctor Ruiz-Valdepeñas Montiel
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain (M.J.F.-A.)
| | - José Manuel Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | | | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| |
Collapse
|
9
|
Chu HW, Chang KP, Yen WC, Liu HP, Chan XY, Liu CR, Hung CM, Wu CC. Identification of salivary autoantibodies as biomarkers of oral cancer with immunoglobulin A enrichment combined with affinity mass spectrometry. Proteomics 2023; 23:e2200321. [PMID: 36625099 DOI: 10.1002/pmic.202200321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Globally, oral cavity squamous cell carcinoma (OSCC) is one of the most common fatal illnesses. Its high mortality is ascribed to the fact that the disease is often diagnosed at a late stage, which indicates an urgent need for approaches for the early detection of OSCC. The use of salivary autoantibodies (autoAbs) as OSCC biomarkers has numerous advantages such as easy access to saliva samples and efficient detection of autoAbs using well-established secondary reagents. To improve OSCC screening, we identified OSCC-associated autoAbs with the enrichment of salivary autoAbs combined with affinity mass spectrometry (MS). The salivary IgA of healthy individuals and OSCC patients was purified with peptide M-conjugated beads and then applied to immunoprecipitated antigens (Ags) in OSCC cells. Using tandem MS analysis and spectral counting-based quantitation, the level of 10 Ags increased in the OSCC group compared with the control group. Moreover, salivary levels of autoAbs to the 10 Ags were determined by a multiplexed bead-based immunoassay. Among them, seven were significantly higher in early-stage OSCC patients than in healthy individuals. A marker panel consisting of autoAbs to LMAN2, PTGR1, RAB13, and UQCRC2 was further developed to improve the early diagnosis of OSCC.
Collapse
Affiliation(s)
- Hao-Wei Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chen Yen
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Xiu-Ya Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Rou Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Garranzo‐Asensio M, Rodríguez‐Cobos J, San Millán C, Poves C, Fernández‐Aceñero MJ, Pastor‐Morate D, Viñal D, Montero‐Calle A, Solís‐Fernández G, Ceron M, Gámez‐Chiachio M, Rodríguez N, Guzmán‐Aránguez A, Barderas R, Domínguez G. In-depth proteomics characterization of ∆Np73 effectors identifies key proteins with diagnostic potential implicated in lymphangiogenesis, vasculogenesis and metastasis in colorectal cancer. Mol Oncol 2022; 16:2672-2692. [PMID: 35586989 PMCID: PMC9298678 DOI: 10.1002/1878-0261.13228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Alterations in proteins of the p53-family are a common event in CRC. ΔNp73, a p53-family member, shows oncogenic properties and its effectors are largely unknown. We performed an in-depth proteomics characterization of transcriptional control by ∆Np73 of the secretome of human colon cancer cells and validated its clinical potential. The secretome was analyzed using high-density antibody microarrays and stable isotopic metabolic labeling. Validation was performed by semiquantitative PCR, ELISA, dot-blot and western blot analysis. Evaluation of selected effectors was carried out using 60 plasma samples from CRC patients, individuals carrying premalignant colorectal lesions and colonoscopy-negative controls. In total, 51 dysregulated proteins were observed showing at least 1.5-foldchange in expression. We found an important association between the overexpression of ∆Np73 and effectors related to lymphangiogenesis, vasculogenesis and metastasis, such as brain-derived neurotrophic factor (BDNF) and the putative aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (EMAP-II)-vascular endothelial growth factor C-vascular endothelial growth factor receptor 3 axis. We further demonstrated the usefulness of BDNF as a potential CRC biomarker able to discriminate between CRC patients and premalignant individuals from controls with high sensitivity and specificity.
Collapse
Affiliation(s)
| | - Javier Rodríguez‐Cobos
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - Coral San Millán
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - Carmen Poves
- Gastroenterology UnitHospital Universitario Clínico San CarlosMadridSpain
| | | | - Daniel Pastor‐Morate
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - David Viñal
- Medical Oncology DepartmentHospital Universitario La PazMadridSpain
| | - Ana Montero‐Calle
- Chronic Disease Programme (UFIEC)Instituto de Salud Carlos IIIMadridSpain
| | | | - María‐Ángeles Ceron
- Surgical Pathology DepartmentHospital Universitario Clínico San CarlosMadridSpain
| | - Manuel Gámez‐Chiachio
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| | - Nuria Rodríguez
- Medical Oncology DepartmentHospital Universitario La PazMadridSpain
| | - Ana Guzmán‐Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y OptometríaUniversidad Complutense de MadridSpain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC)Instituto de Salud Carlos IIIMadridSpain
| | - Gemma Domínguez
- Departamento de Bioquímica, Facultad de MedicinaInstituto de Investigaciones Biomédicas “Alberto Sols”, CSIC‐UAM, IdiPAZMadridSpain
| |
Collapse
|
11
|
Solís-Fernández G, Montero-Calle A, Sánchez-Martínez M, Peláez-García A, Fernández-Aceñero MJ, Pallarés P, Alonso-Navarro M, Mendiola M, Hendrix J, Hardisson D, Bartolomé RA, Hofkens J, Rocha S, Barderas R. Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis. Br J Cancer 2022. [DOI: 10.1038/s41416-022-01762-1
expr 880987936 + 827650491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
12
|
Solís-Fernández G, Montero-Calle A, Sánchez-Martínez M, Peláez-García A, Fernández-Aceñero MJ, Pallarés P, Alonso-Navarro M, Mendiola M, Hendrix J, Hardisson D, Bartolomé RA, Hofkens J, Rocha S, Barderas R. Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis. Br J Cancer 2022; 126:1604-1615. [PMID: 35347323 PMCID: PMC9130499 DOI: 10.1038/s41416-022-01762-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Maricruz Sánchez-Martínez
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | | | - Pilar Pallarés
- Unidades Centrales, Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Miren Alonso-Navarro
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), 3590 Diepenbeek, Hasselt, Belgium
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | | | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium.
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain.
| |
Collapse
|
13
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
14
|
Garranzo-Asensio M, Solís-Fernández G, Montero-Calle A, García-Martínez JM, Fiuza MC, Pallares P, Palacios-Garcia N, García-Jiménez C, Guzman-Aranguez A, Barderas R. Seroreactivity Against Tyrosine Phosphatase PTPRN Links Type 2 Diabetes and Colorectal Cancer and Identifies a Potential Diagnostic and Therapeutic Target. Diabetes 2022; 71:497-510. [PMID: 35040477 DOI: 10.2337/db20-1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Colorectal cancer (CRC) and diabetes are two of the most prevalent chronic diseases worldwide with dysregulated receptor tyrosine kinase signaling and strong co-occurrence correlation. Plasma autoantibodies represent a promising early diagnostic marker for both diseases before symptoms appear. In this study, we explore the value of autoantibodies against receptor-type tyrosine-protein phosphatase-like N (PTPRN; full-length or selected domains) as diagnostic markers using a cohort of individuals with type 2 diabetes (T2D), CRC, or both diseases or healthy individuals. We show that PTPRN autoantibody levels in plasma discriminated between patients with T2D with and without CRC. Consistently, high PTPRN expression correlated with decreased survival of patients with CRC. Mechanistically, PTPRN depletion significantly reduced invasiveness of CRC cells in vitro and liver homing and metastasis in vivo by means of a dysregulation of the epithelial-mesenchymal transition and a decrease of the insulin receptor signaling pathway. Therefore, PTPRN autoantibodies may represent a particularly helpful marker for the stratification of patients with T2D at high risk of developing CRC. Consistent with the critical role played by tyrosine kinases in diabetes and tumor biology, we provide evidence that tyrosine phosphatases such as PTPRN may hold potential as therapeutic targets in patients with CRC.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Solís-Fernández
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Leuven, Belgium
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel García-Martínez
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Maria Carmen Fiuza
- Surgery Department, University Hospital Fundación Alcorcon, Madrid, Spain
| | - Pilar Pallares
- Central Units, Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Palacios-Garcia
- Endocrinology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Custodia García-Jiménez
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Ana Guzman-Aranguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Solís-Fernández G, Montero-Calle A, Martínez-Useros J, López-Janeiro Á, de los Ríos V, Sanz R, Dziakova J, Milagrosa E, Fernández-Aceñero MJ, Peláez-García A, Casal JI, Hofkens J, Rocha S, Barderas R. Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells 2022; 11:447. [PMID: 35159257 PMCID: PMC8834500 DOI: 10.3390/cells11030447] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain;
| | - Álvaro López-Janeiro
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas (CIB-CSIC), 28039 Madrid, Spain;
| | - Rodrigo Sanz
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Jana Dziakova
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Elena Milagrosa
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas (CIB-CSIC), Department of Molecular Biomedicine, 28039 Madrid, Spain;
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| |
Collapse
|
16
|
Cui Y, Yang M, Zhu J, Zhang H, Duan Z, Wang S, Liao Z, Liu W. Developments in diagnostic applications of saliva in Human Organ Diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
San Segundo-Acosta P, Montero-Calle A, Jernbom-Falk A, Alonso-Navarro M, Pin E, Andersson E, Hellström C, Sánchez-Martínez M, Rábano A, Solís-Fernández G, Peláez-García A, Martínez-Useros J, Fernández-Aceñero MJ, Månberg A, Nilsson P, Barderas R. Multiomics Profiling of Alzheimer's Disease Serum for the Identification of Autoantibody Biomarkers. J Proteome Res 2021; 20:5115-5130. [PMID: 34628858 DOI: 10.1021/acs.jproteome.1c00630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods. To this end, an untargeted complementary screening using high-density (42,100 antigens) and low-density (384 antigens) planar protein-epitope signature tag (PrEST) arrays and an immunoprecipitation protocol coupled to mass spectrometry analysis were used for serum autoantibody profiling. From the untargeted screening phase, 377 antigens corresponding to 338 proteins were selected for validation. Out of them, IVD, CYFIP1, and ADD2 seroreactivity was validated using 128 sera from AD patients and controls by PrEST-suspension bead arrays, and ELISA or luminescence Halotag-based bead immunoassay using full-length recombinant proteins. Importantly, IVD, CYFIP1, and ADD2 showed in combination a noticeable AD diagnostic ability. Moreover, IVD protein abundance in the prefrontal cortex was significantly two-fold higher in AD patients than in controls by western blot and immunohistochemistry, whereas CYFIP1 and ADD2 were significantly down-regulated in AD patients. The panel of AD-related autoantigens identified by a comprehensive multiomics approach may provide new insights of the disease and should help in the blood-based diagnosis of Alzheimer's disease. Mass spectrometry raw data are available in the ProteomeXchange database with the access number PXD028392.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - August Jernbom-Falk
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Miren Alonso-Navarro
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Eni Andersson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | | | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid 28046, Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain
| | - María Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Universitario Clínico San Carlos, Departamento de Anatomía Patológica, Facultad de Medicina, Complutense University of Madrid, Madrid 28040, Spain
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| |
Collapse
|
18
|
Povedano E, Gamella M, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Montero-Calle A, Solís-Fernández G, Navarro-Villoslada F, Pedrero M, Peláez-García A, Mendiola M, Hardisson D, Feliú J, Barderas R, Pingarrón JM, Campuzano S. Multiplexed magnetic beads-assisted amperometric bioplatforms for global detection of methylations in nucleic acids. Anal Chim Acta 2021; 1182:338946. [PMID: 34602192 DOI: 10.1016/j.aca.2021.338946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
This work reports the first electrochemical bioplatform developed for the multidetection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in DNA, DNA N6-methyladenine (6mA) and RNA N6-methyladenosine (m6A) methylations at global level. Direct competitive immunoassays were implemented on the surface of magnetic beads (MBs) and optimized for the single amperometric determination of different targets varying in length, sequence and number of methylations on screen-printed carbon electrodes. After evaluating the sensitivity and selectivity of such determinations and the confirmation of no cross-reactivity, a multiplexed disposable platform allowing the simultaneous determination of the mentioned four methylation events in only 45 min has been prepared. The multiplexed bioplatform was successfully applied to the determination of m6A in cellular total RNA and of 5-mC, 5-hmC and 6mA in genomic DNA extracted from tissues. The developed bioplatform showed its usefulness to discriminate the aggressiveness of cancerous cells and between healthy and tumor tissues of colorectal cancer patients.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Maria Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | | | - Fernando Navarro-Villoslada
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alberto Peláez-García
- Department of Pathology, Hospital Universitario La Paz, IdiPAZ, 28046, Madrid, Spain
| | - Marta Mendiola
- Department of Pathology, Hospital Universitario La Paz, IdiPAZ, 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, IdiPAZ, 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)), Instituto de Salud Carlos III, 28029, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Jaime Feliú
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)), Instituto de Salud Carlos III, 28029, Madrid, Spain; Translational Oncology Group Hospital Universitario La Paz IdiPAZ, 28046, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Montero-Calle A, Aranguren-Abeigon I, Garranzo-Asensio M, Poves C, Fernández-Aceñero MJ, Martínez-Useros J, Sanz R, Dziaková J, Rodriguez-Cobos J, Solís-Fernández G, Povedano E, Gamella M, Torrente-Rodríguez RM, Alonso-Navarro M, de los Ríos V, Casal JI, Domínguez G, Guzman-Aranguez A, Peláez-García A, Pingarrón JM, Campuzano S, Barderas R. Multiplexed Biosensing Diagnostic Platforms Detecting Autoantibodies to Tumor-Associated Antigens from Exosomes Released by CRC Cells and Tissue Samples Showed High Diagnostic Ability for Colorectal Cancer. ENGINEERING 2021; 7:1393-1412. [DOI: 10.1016/j.eng.2021.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
20
|
Xia T, Tian H, Zhang K, Zhang S, Chen W, Shi S, You Y. Exosomal ERp44 derived from ER-stressed cells strengthens cisplatin resistance of nasopharyngeal carcinoma. BMC Cancer 2021; 21:1003. [PMID: 34493236 PMCID: PMC8424889 DOI: 10.1186/s12885-021-08712-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in head and neck. Platinum-based chemotherapy is an important treatment for NPC. However, the molecular mechanism of resistance to platinum drug remains unknown. Endoplasmic reticulum resident protein 44(ERp44), an unfolded protein response (UPR)-induced endoplasmic reticulum(ER) protein, is induced during ER stress. This research explored the mechanism of ERp44 in strengthening cisplatin resistance in NPC. Methods Western blot and immunohistochemistry were used to investigate the expression of ERp44 and Glucose-Regulated Protein 78(GRP78) in NPC. We took CCK8 to detect the role of ERp44 on cell chemosensitivity. Flow cytometric analysis and western blot were taken to analyze cell apoptosis. We performed differential centrifugation to isolate exosomes from serum or conditioned media of cells and analyzed the impact of exosomal ERp44 on cells cisplatin sensitivity. Finally, the results were confirmed in vivo. Results We found the increased expression of ERp44 and GRP78 in NPC and ERp44 was highly expressed in ER-stressed tissues. Cell proliferation was inhibited after cisplatin treatment when ERp44 was knocked down and ERp44 strengthened cisplatin resistance by influencing cell apoptosis and pyroptosis. Then we also collected exosomes and cell viability was increased after the addition of NPC-derived-exosomes with cisplatin treatment. More importantly, our results showed under ERS, NPC cells secreted exosomes containing ERp44 and could transfer them to adjacent cells to strengthen chemoresistance. Conclusion Our data suggested that exosomal ERp44 derived from ER-stressed NPC cells took an inevitable role in NPC chemoresistance and might act as a treatment target.
Collapse
Affiliation(s)
- Tian Xia
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Tian
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Wenhui Chen
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China. .,Medical College of Nantong University, Nantong, Jiangsu Province, China.
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China. .,Medical College of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
21
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.30.454526. [PMID: 34373855 PMCID: PMC8351778 DOI: 10.1101/2021.07.30.454526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
22
|
Tracking the Antibody Immunome in Sporadic Colorectal Cancer by Using Antigen Self-Assembled Protein Arrays. Cancers (Basel) 2021; 13:cancers13112718. [PMID: 34072782 PMCID: PMC8198956 DOI: 10.3390/cancers13112718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunome in Sporadic Colorectal Cancer as source for biomarkers. Hence, a self-assembled protein array has been designed and developed to perform a serum screening to determined specific immune response against tumor antigens proteins as potential diagnostics biomarker panel. Abstract Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.
Collapse
|
23
|
Wu YR, Lee YC, Li WM, Hsu WC, Lin HH, Chang LL, Huang AM, Jhan JH, Wu WJ, Li CC, Lee HY, Yeh HC, Ke HL. High Transaldolase 1 expression predicts poor survival of patients with upper tract urothelial carcinoma. Pathol Int 2021; 71:463-470. [PMID: 33848380 DOI: 10.1111/pin.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare tumor with an incidence that varies greatly between Eastern and Western countries. Transaldolase 1 (TALDO1) is a rate-limiting enzyme of the pentose phosphate pathway. In humans, aberrant TALDO1 activity has been implicated in various autoimmune diseases and malignancies; however, the function of TALDO1 in UTUC has not been previously investigated. Here we evaluated the clinical significance of TALDO1 expression in 115 paraffin-embedded tumor samples from patients with UTUC using immunohistochemistry. Our results demonstrated that there was an association between high TALDO1 expression and advanced stage (P = 0.011), tumor size (P = 0.005), tumor location (P = 0.047), distant metastases (P = 0.023), local recurrence (P = 0.002), and cancer death (P = 0.003). Using univariate and multivariate analyses, we found that chemotherapy was an independent factor for bladder recurrence-free survival. Late stage (III/IV) and high TALDO1 expression were independent prognostic factors for progression-free and cancer-specific survival. In summary, increased TALDO1 expression in UTUC was significantly correlated with late stage, tumor size, tumor location, distant metastases, local recurrence, and cancer death. Therefore, high TALDO1 expression could be a predictor of poor survival in patients with UTUC. Further studies are necessary to investigate the role of TALDO1 in UTUC development.
Collapse
Affiliation(s)
- Yi-Ru Wu
- General Division, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Wei-Chi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - A-Mei Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jhen-Hao Jhan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Ying Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Tian H, Shi S, You B, Zhang Q, Gu M, You Y. ER resident protein 44 promotes malignant phenotype in nasopharyngeal carcinoma through the interaction with ATP citrate lyase. J Transl Med 2021; 19:77. [PMID: 33593371 PMCID: PMC7887808 DOI: 10.1186/s12967-020-02694-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is one of the most common malignancy in head and neck. With the development of treatments, the prognosis has improved these years, but metastasis is still the main cause of treatment failure. The endoplasmic reticulum (ER) resident protein 44 is a UPR-induced ER protein of the protein disulphide isomerase (PDI) family. This study investigated the role of ERp44 in NPC progression. Methods Firstly, immunohistochemistry, western blot and qRT-PCR were used to investigate the expression of ERp44 in NPC samples and cell lines. We analyzed 44 NPC samples for ERp44 expression and investigated the association between its expression level with clinicopathologic parameters. Then we took CCK8, Transwell migration assay and used the zebrafish model to access the role of ERp44 on the malignant phenotype in NPC cells. Secondly, we used co-IP to gain the proteins that interact with ERp44 and took proteomic analysis. Furthermore, we successfully constructed the mutant variants of ERp44 and found the interaction domain with ATP citrate lyase(ACLY). Lastly, we subcutaneously injected NPC cells into nude mice and took immunohistochemistry to exam the expression of ACLY and ERp44. Then we used western blot to detect the expression level of epithelial-mesenchymal transition (EMT) markers. Results In the present study, we found ERp44 was elevated in NPC tissues and correlated with clinical stages and survive state of the patients. In vitro, the downregulation of ERp44 in NPC cells (CNE2, 5-8F) could suppress cells proliferation and migration. After that, we recognized that ACLY might be a potential target that could interact with ERp44. We further constructed the mutant variants of ERp44 and found the interaction domain with ACLY. The promotion of ERp44 on cell migration could be inhibited when ACLY was knocked down. More importantly, we also observed that the interaction of ERp44 with ACLY, especially the thioredoxin region in ERp44 play a vital role in regulating EMT. Lastly, we found ERp44 was positively correlated with the expression of ACLY and could promote NPC cells growth in nude mice. Conclusion Our data indicated that ERp44 participates in promoting NPC progression through the interaction with ACLY and regulation of EMT.
Collapse
Affiliation(s)
- Hui Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Medical College of Nantong University, Nantong, Jiangsu, China.
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Medical College of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
25
|
de Jonge H, Iamele L, Maggi M, Pessino G, Scotti C. Anti-Cancer Auto-Antibodies: Roles, Applications and Open Issues. Cancers (Basel) 2021; 13:813. [PMID: 33672007 PMCID: PMC7919283 DOI: 10.3390/cancers13040813] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Auto-antibodies are classically associated with autoimmune diseases, where they are an integral part of diagnostic panels. However, recent evidence is accumulating on the presence of auto-antibodies against single or selected panels of auto-antigens in many types of cancer. Auto-antibodies might initially represent an epiphenomenon derived from the inflammatory environment induced by the tumor. However, their effect on tumor evolution can be crucial, as is discussed in this paper. It has been demonstrated that some of these auto-antibodies can be used for early detection and cancer staging, as well as for monitoring of cancer regression during treatment and follow up. Interestingly, certain auto-antibodies were found to promote cancer progression and metastasis, while others contribute to the body's defense against it. Moreover, auto-antibodies are of a polyclonal nature, which means that often several antibodies are involved in the response to a single tumor antigen. Dissection of these antibody specificities is now possible, allowing their identification at the genetic, structural, and epitope levels. In this review, we report the evidence available on the presence of auto-antibodies in the main cancer types and discuss some of the open issues that still need to be addressed by the research community.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (H.d.J.); (L.I.); (M.M.); (G.P.)
| |
Collapse
|
26
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
27
|
Montero-Calle A, Barderas R. Analysis of Protein-Protein Interactions by Protein Microarrays. Methods Mol Biol 2021; 2344:81-97. [PMID: 34115353 DOI: 10.1007/978-1-0716-1562-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The analysis of the proteome and the interactome would be useful for a better understanding of the pathophysiology of several disorders, allowing the identification of potential specific markers for early diagnosis and prognosis, as well as potential targets of intervention. Among different proteomic approaches, high-density protein microarrays have become an interesting tool for the screening of protein-protein interactions and the interactome definition of disease-associated dysregulated proteins. This information might contribute to the identification of altered signaling pathways and protein functions involved in the pathogenesis of a disease. Remarkably, protein microarrays have been already satisfactorily employed for the study of protein-protein interactions in cancer, allergy, or neurodegenerative diseases. Here, we describe the utilization of recombinant protein microarrays for the identification of protein-protein interactions to help in the definition of disease-specific dysregulated interactomes.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Napoletano C, Steentoff C, Battisti F, Ye Z, Rahimi H, Zizzari IG, Dionisi M, Cerbelli B, Tomao F, French D, d’Amati G, Panici PB, Vakhrushev S, Clausen H, Nuti M, Rughetti A. Investigating Patterns of Immune Interaction in Ovarian Cancer: Probing the O-glycoproteome by the Macrophage Galactose-Like C-type Lectin (MGL). Cancers (Basel) 2020; 12:cancers12102841. [PMID: 33019700 PMCID: PMC7600217 DOI: 10.3390/cancers12102841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022] Open
Abstract
Glycosylation, the posttranslational linking of sugar molecules to proteins, is notoriously altered during tumor transformation. More specifically in carcinomas, GalNAc-type O-glycosylation, is characterized by biosynthetically immature truncated glycans present on the cancer cell surface, which profoundly impact anti-tumor immune recognition. The tumor-associated glycan pattern may thus be regarded as a biomarker of immune modulation. In epithelial ovarian cancer (EOC) there is a particular lack of specific biomarkers and molecular targets to aid early diagnosis and develop novel therapeutic interventions. The aim of this study was to investigate the ovarian cancer O-glycoproteome and identify tumor-associated glycoproteins relevant in tumor-dendritic cell (DC) interactions, mediated by macrophage galactose-like C type lectin (MGL), which recognizes the tumor-associated Tn O-glycan. Lectin weak affinity chromatography (LWAC) was employed to probe the O-glycopeptidome by MGL and Vicia villosa agglutinin (VVA) lectin using glycoengineered ovarian cancer cell lines and ovarian cancer tissues as input material. Biochemical and bioinformatics analysis gave information on the glycan arrangement recognized by MGL in tumor cells. The potential MGL binders identified were located, as expected, at the cell membrane, but also within the intracellular compartment and the matrisome, suggesting that MGL in vivo may play a complex role in sensing microenvironmental cues. The tumor glycoproteins binders for MGL may become relevant to characterize the interaction between the immune system and tumor progression and contribute to the design of glycan targeting-based strategies for EOC immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chiara Napoletano
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Catharina Steentoff
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Federico Battisti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Hassan Rahimi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Ilaria Grazia Zizzari
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Marco Dionisi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Bruna Cerbelli
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (B.C.); (G.d.)
| | - Federica Tomao
- Department of Gynecology-Obstetrics and Urology, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; (F.T.); (P.B.P.)
| | - Deborah French
- Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Giulia d’Amati
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (B.C.); (G.d.)
| | - Pierluigi Benedetti Panici
- Department of Gynecology-Obstetrics and Urology, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; (F.T.); (P.B.P.)
| | - Sergey Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Marianna Nuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
- Correspondence: (M.N.); (A.R.); Tel.: +39-06-4997-3029 (M.N.); +39-06-4997-3025 (A.R.)
| | - Aurelia Rughetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
- Correspondence: (M.N.); (A.R.); Tel.: +39-06-4997-3029 (M.N.); +39-06-4997-3025 (A.R.)
| |
Collapse
|
29
|
Arévalo B, Serafín V, Sánchez-Paniagua M, Montero-Calle A, Barderas R, López-Ruíz B, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Fast and sensitive diagnosis of autoimmune disorders through amperometric biosensing of serum anti-dsDNA autoantibodies. Biosens Bioelectron 2020; 160:112233. [DOI: 10.1016/j.bios.2020.112233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
|