1
|
Bassols A, Amigó N, Pérez-Rodado M, Saco Y, Peña R, Pato R, Pisoni L, Devant M, Marti S. Fecal metabolomics to understand intestinal dysfunction in male dairy beef calves at arrival to the rearing farm. Sci Rep 2025; 15:6887. [PMID: 40011507 PMCID: PMC11865560 DOI: 10.1038/s41598-025-90407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Fecal biomarkers are becoming an important analytical tool since feces are in direct contact with the inflamed intestine and site for the gut microbiome. The objective of this study was the identification of differential fecal metabolites by means of 1H-NMR to evaluate the management of male dairy beef calves, and which could become potential biomarkers of gastrointestinal disorders. Holstein calves were subjected to a protocol aimed to simulate real conditions of the dairy beef market. Three groups were studied: Control (CTR: high colostrum, no transport, milk replacer), LCMR (low colostrum, transport, milk replacer) and LCRS (low colostrum, transport, rehydrating solution). Fecal lactoferrin was determined as marker of intestinal inflammation, and metabolomic profiling was performed in feces collected the day after arrival to the farm. 41 polar and 10 non-polar metabolites were identified, of which proline, formate and creatine increased in the LCRS group, whereas butyrate and uracil decreased. Less differences were found in non-polar metabolites. Multivariate analysis indicated that most differences are found between the LCRS group and the others. In conclusion, this study indicates that feed restriction has a more important effect at this age than colostrum uptake and transport. These results should help to identify robust fecal biomarkers to assess calf intestinal health and improve management protocols.
Collapse
Affiliation(s)
- Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
| | - Núria Amigó
- Biosfer Teslab, Plaça del Prim 10, 43201, Reus, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Av. Universitat 1, 43204, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Marc Pérez-Rodado
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Raquel Pato
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària (SBCV), Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Lucia Pisoni
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Maria Devant
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Sònia Marti
- Ruminant Production Program, IRTA (Institut de Recerca i Tecnologies Agroalimentàries), Torre Marimon, 08140, Caldes de Montbui, Spain
| |
Collapse
|
2
|
Shashank CG, Sejian V, Silpa MV, Devaraj C, Madhusoodan AP, Rebez EB, Kalaignazhal G, Sahoo A, Dunshea FR. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BIOTECH 2024; 13:49. [PMID: 39584906 PMCID: PMC11586948 DOI: 10.3390/biotech13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
The livestock sector, essential for maintaining food supply and security, encounters numerous obstacles as a result of climate change. Rising global populations exacerbate competition for natural resources, affecting feed quality and availability, heightening livestock disease risks, increasing heat stress, and contributing to biodiversity loss. Although various management and dietary interventions exist to alleviate these impacts, they often offer only short-lived solutions. We must take a more comprehensive approach to understanding how animals adapt to and endure their environments. One such approach is quantifying transcriptomes under different environments, which can uncover underlying pathways essential for livestock adaptation. This review explores the progress and techniques in studies that apply gene expression analysis to livestock production systems, focusing on their adaptation to climate change. We also attempt to identify various biomarkers and transcriptomic differences between species and pure/crossbred animals. Looking ahead, integrating emerging technologies such as spatialomics could further accelerate genetic improvements, enabling more thermoresilient and productive livestock in response to future climate fluctuations. Ultimately, insights from these studies will help optimize livestock production systems by identifying thermoresilient/desired animals for use in precise breeding programs to counter climate change.
Collapse
Affiliation(s)
- Chikamagalore Gopalakrishna Shashank
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Veerasamy Sejian
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | | | - Chinnasamy Devaraj
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | | | - Ebenezer Binuni Rebez
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | - Gajendirane Kalaignazhal
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, India;
| | - Artabandhu Sahoo
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Faculty of Biological Science, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Sacarrão-Birrento L, Harrison LJS, Pienaar R, Toka FN, Torres-Acosta JFJ, Vilela VLR, Hernández-Castellano LE, Arriaga-Jordán CM, Soltan YA, Ungerfeld R, Özkan S, van Harten S, Ferlizza E, Rossiter P, Patra AK, Gunal AC, Bianchi CP, Starič J, Lach G, de Almeida AM. Challenges for Animal Health and Production in the Tropics and Mediterranean for the next 55 years. Trop Anim Health Prod 2024; 56:381. [PMID: 39532768 DOI: 10.1007/s11250-024-04212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Tropical Animal Health and Production is a journal founded 55 years ago. It is dedicated to the publication of results of original research, investigation, and observation in all fields of animal health, welfare and production which may lead to improved health and productivity of livestock and better utilization of animal resources in tropical, subtropical and similar environments. Research is in strong alignment with the United Nations' Sustainable Development Goals, particularly No Poverty, Zero Hunger, and Good Health and Well-being. To celebrate its 55th anniversary, the editorial board has composed this Editorial article in an effort to address the major challenges that animal and veterinary scientists in the tropics and adjacent regions will address over the next 55 years. The task is accomplished in a systematic fashion addressing the topic species by species (cattle, small ruminants, pigs, poultry, camelids, etc.) and in the context of different groups of health challenges encompassing production, vector-borne, parasitic and transboundary diseases. Challenges are difficult and complex, and the solutions herein proposed may be difficult to implement. It aims to be an informed overview of the major difficulties the sector will experience in the near future, ultimately suggesting tools to address them. Only time will tell if they are accurate, effective or implementable. Nevertheless, Tropical Animal Health and Production Editorial Board, secretariat, reviewers and authors will certainly do their best to contribute to the advancement of animal health and production in the Tropics and the Mediterranean.
Collapse
Affiliation(s)
- Laura Sacarrão-Birrento
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Leslie J S Harrison
- University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, EH25 9RG, UK
| | - Ronel Pienaar
- Agricultural Research Council - Onderstepoort Veterinary Research, Epidemiology, Parasites and Vectors, Onderstepoort, South Africa
| | - Felix N Toka
- Ross University School of Veterinary Medicine, West Farm, P. O. Box 334, Basseterre, St. Kitts And Nevis
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786, Warsaw, Poland
| | - Juan F J Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Vinícius Longo Ribeiro Vilela
- Department of Veterinary Medicine, Federal Institute of Paraíba - IFPB, Sousa, Paraíba, Brazil
- Post-Graduate Program in Science and Animal Health, Federal University of Campina Grande - UFCG, Patos, Paraíba, Brazil
| | - Lorenzo E Hernández-Castellano
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413, Arucas, Spain
| | - Carlos Manuel Arriaga-Jordán
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Instituto Literario # 100, Toluca, Estado de México, Mexico
| | - Yosra Ahmed Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Rodolfo Ungerfeld
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Sezen Özkan
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Türkiye
| | | | - Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Langston, OK, 73050, USA
| | - Aysel Caglan Gunal
- Department of Biology Education, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Carolina Paula Bianchi
- Laboratorio de Endocrinología, Centro de Investigación Veterinaria de Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Argentina
| | - Jože Starič
- Section for Ruminants, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| |
Collapse
|
4
|
Chagas ACS, Ribeiro DM, Osório H, Abreu AAP, Okino CH, Niciura SCM, Amarante AFT, Bello HJS, Melito GR, Esteves SN, Almeida AM. Molecular signatures of Haemonchus contortus infection in sheep: A comparative serum proteomic study on susceptible and resistant sheep breeds. Vet Parasitol 2024; 331:110280. [PMID: 39116550 DOI: 10.1016/j.vetpar.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.
Collapse
Affiliation(s)
- Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil.
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana A P Abreu
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cintia H Okino
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | | | - Hornblenda J S Bello
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Gláucia R Melito
- Centro Universitário Central Paulista (UNICEP), São Carlos, SP, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Wanapat M, Dagaew G, Sommai S, Matra M, Suriyapha C, Prachumchai R, Muslykhah U, Phupaboon S. The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review. J Anim Sci Biotechnol 2024; 15:58. [PMID: 38689368 PMCID: PMC11062008 DOI: 10.1186/s40104-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies-which have been steadily gaining popularity as technological tools-to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, University of Technology Thanyaburi, Rajamangala Pathum Thani, 12130, Thailand
| | - Uswatun Muslykhah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Ribeiro DM, Coelho D, Costa M, Carvalho DFP, Leclercq CC, Renaut J, Freire JPB, Almeida AM, Mestre Prates JA. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Sci Rep 2024; 14:4589. [PMID: 38409238 DOI: 10.1038/s41598-024-55462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Diogo Coelho
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mónica Costa
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Céline C Leclercq
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André Martinho Almeida
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
7
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
8
|
Ribeiro DM, Palma M, Salvado J, Hernández-Castellano LE, Capote J, Castro N, Argüello A, Matzapetakis M, Araújo SS, de Almeida AM. Goat mammary gland metabolism: An integrated Omics analysis to unravel seasonal weight loss tolerance. J Proteomics 2023; 289:105009. [PMID: 37757955 DOI: 10.1016/j.jprot.2023.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Seasonal weight loss (SWL), is a major limitation to animal production. In the Canary Islands, there are two dairy goat breeds with different levels of tolerance to SWL: Majorera (tolerant) and Palmera (susceptible). Our team has studied the response of these breeds to SWL using different Omics tools. The objective of this study was to integrate such results in a data driven approach and using dedicated tools, namely the DIABLO method. The outputs of our analysis mainly separate unrestricted from restricted goats. Metabolites behave as "hub" molecules, grouping interactions with several genes and proteins. Unrestricted goats upregulated protein synthesis, along with arginine catabolism and adipogenesis pathways, which are related with higher anabolic rates and a larger proportion of secretory tissue, in agreement with their higher milk production. Contrarily, restricted goats seemingly increased the synthesis of acetyl-CoA through serine and acetate conversion into pyruvate. This may have occurred to increase fatty acid synthesis and/or to use them as an energy source in detriment to glucose, which was more available in the diet of unrestricted goats. Lastly, restricted Palmera upregulated the expression of PEBP4 and GPD1 genes compared to all other groups, which might support their use as putative biomarkers for SWL susceptibility. SIGNIFICANCE: Seasonal weight loss (SWL) is a major issue influencing animal production in the tropics and Mediterranean. By studying its impact on the mammary gland of tolerant and susceptible dairy goat breeds, using Omics, we aim at surveying the tissue for possible biomarkers that reflect these traits. In this study, data integration of three Omics (transcriptomics, proteomics and metabolomics) was performed using bioinformatic tools, to relate putative biomarkers and evaluate all three levels of information; in a novel approach. This information can enhance selection programs, lowering the impact of SWL on food production systems.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Mariana Palma
- ITQB/UNL - Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Lisboa, Oeiras, Portugal; Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José Salvado
- ITQB/UNL - Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Lisboa, Oeiras, Portugal
| | - Lorenzo E Hernández-Castellano
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35412 Arucas, Spain
| | - Juan Capote
- Canary Islands Institute of Agronomical Research, Valle Guerra, Spain
| | - Noemí Castro
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35412 Arucas, Spain
| | - Anastasio Argüello
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35412 Arucas, Spain
| | - Manolis Matzapetakis
- ITQB/UNL - Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Lisboa, Oeiras, Portugal
| | - Susana S Araújo
- Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit | North Delegation, Edíficio SIDE-UP, 5340-257 Macedo de Cavaleiros, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
9
|
Taborda-Charris JC, Rodríguez-Hernández R, Herrera-Sánchez MP, Uribe-García HF, Otero-Arroyo RJ, Naranjo-Gomez JS, Lozano-Villegas KJ, Rondón-Barragín IS. Expression profiling of heat shock protein genes in whole blood of Romosinuano cattle breed. Vet World 2023. [DOI: 10.14202/10.14202/vetworld.2023.601-606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Background and Aim: Heat shock proteins are highly conserved proteins that work as molecular chaperones expressed in response to thermal stress. This study aimed to determine the expression profile of genes related to the heat stress response in whole blood obtained from the Romosinuano creole breed.
Materials and Methods: Real-time polymerase chain reaction was performed to analyze the transcript of hsp90, hsp70, hsp60, and hsf1 in the whole blood of Romosinuano under different temperature-humidity indices (THIs).
Results: The expression levels of the hsp70 and hsf1 genes at the high-THI level were higher (p = 0.0011 and p = 0.0003, respectively) than those at the low-THI level. In addition, no differences in the expression levels of the hsp60 and hsP90 genes were detected between the two THIs.
Conclusion: The overexpression of hsf1 and hsp70 genes play an important role in protecting cells from damage induced by heat stress.
Keywords: climate change, external environment, heat shock proteins, heat stress, mRNA, temperature-humidity index.
Collapse
|
10
|
Taborda-Charris JC, Rodríguez-Hernández R, Herrera-Sánchez MP, Uribe-García HF, Otero-Arroyo RJ, Naranjo-Gomez JS, Lozano-Villegas KJ, Rondón-Barragán IS. Expression profiling of heat shock protein genes in whole blood of Romosinuano cattle breed. Vet World 2023; 16:601-606. [PMID: 37041848 PMCID: PMC10082753 DOI: 10.14202/vetworld.2023.601-606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Heat shock proteins are highly conserved proteins that work as molecular chaperones expressed in response to thermal stress. This study aimed to determine the expression profile of genes related to the heat stress response in whole blood obtained from the Romosinuano creole breed. Materials and Methods Real-time polymerase chain reaction was performed to analyze the transcript of hsp90, hsp70, hsp60, and hsf1 in the whole blood of Romosinuano under different temperature-humidity indices (THIs). Results The expression levels of the hsp70 and hsf1 genes at the high-THI level were higher (p = 0.0011 and p = 0.0003, respectively) than those at the low-THI level. In addition, no differences in the expression levels of the hsp60 and hsP90 genes were detected between the two THIs. Conclusion The overexpression of hsf1 and hsp70 genes play an important role in protecting cells from damage induced by heat stress.
Collapse
Affiliation(s)
- Juan Camilo Taborda-Charris
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - María Paula Herrera-Sánchez
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - Heinner Fabian Uribe-García
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Rafael J. Otero-Arroyo
- Grupo de Investigación en Reproducción y Mejoramiento Genético Animal, Facultad de Ciencias Agropecuarias, Universidad de Sucre, Sincelejo 700001, Sucre, Colombia
- Laboratorio de Reproducción Animal, Corporación de Ciencias Biotecnológicas, Embriotecno, Montería 230029, Córdoba, Colombia
| | - Juan Sebastian Naranjo-Gomez
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Kelly Johanna Lozano-Villegas
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
- Corresponding author: Iang Schroniltgen Rondón-Barragán, e-mail: Co-authors: JCT: , RR: , MPH: , HFU: , RJO: , JSN: , KJL:
| |
Collapse
|
11
|
Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals (Basel) 2022; 12:ani12070885. [PMID: 35405874 PMCID: PMC8996830 DOI: 10.3390/ani12070885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary New technologies have been recognized as valuable in controlling, monitoring, and managing farm animal activities. It makes it possible to deepen the knowledge of animal behavior and improve animal welfare and health, which has positive implications for the sustainability of animal production. In recent years, successful technological developments have been applied in intensive farming systems; however, due to challenging conditions that extensive pasture-based systems show, technology has been more limited. Nevertheless, awareness of the available technological solutions for extensive conditions can increase the implementation of their adoption among farmers and researchers. In this context, this review addresses the role of different technologies applied to sheep and goat production in extensive systems. Examples related to precision livestock farming, omics, thermal stress, colostrum intake, passive immunity, and newborn survival are presented; biomarkers of metabolic diseases and parasite resistance breeding are discussed. Abstract Sheep and goat extensive production systems are very important in the context of global food security and the use of rangelands that have no alternative agricultural use. In such systems, there are enormous challenges to address. These include, for instance, classical production issues, such as nutrition or reproduction, as well as carbon-efficient systems within the climate-change context. An adequate response to these issues is determinant to economic and environmental sustainability. The answers to such problems need to combine efficiently not only the classical production aspects, but also the increasingly important health, welfare, and environmental aspects in an integrated fashion. The purpose of the study was to review the application of technological developments, in addition to remote-sensing in tandem with other state-of-the-art techniques that could be used within the framework of extensive production systems of sheep and goats and their impact on nutrition, production, and ultimately, the welfare of these species. In addition to precision livestock farming (PLF), these include other relevant technologies, namely omics and other areas of relevance in small-ruminant extensive production: heat stress, colostrum intake, passive immunity, newborn survival, biomarkers of metabolic disease diagnosis, and parasite resistance breeding. This work shows the substantial, dynamic nature of the scientific community to contribute to solutions that make extensive production systems of sheep and goats more sustainable, efficient, and aligned with current concerns with the environment and welfare.
Collapse
|
12
|
The rumen liquid metatranscriptome of post-weaned dairy calves differed by pre-weaning ruminal administration of differentially-enriched, rumen-derived inocula. Anim Microbiome 2022; 4:4. [PMID: 34983694 PMCID: PMC8728904 DOI: 10.1186/s42523-021-00142-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background Targeted modification of the dairy calf ruminal microbiome has been attempted through rumen fluid inoculation to alter productive phenotypes later in life. However, sustainable effects of the early life interventions have not been well studied, particularly on the metabolically active rumen microbiota and its functions. This study investigated the sustained effects of adult-derived rumen fluid inoculations in pre-weaning dairy calves on the active ruminal microbiome of post-weaned dairy calves analyzed via RNA-sequencing. Results Two different adult-derived microbial inocula (bacterial- or protozoal-enriched rumen fluid; BE or PE, respectively) were administered in pre-weaned calves (3–6 weeks) followed by analyzing active rumen microbiome of post-weaned calves (9 weeks). The shared bacterial community at the genus level of 16S amplicon-seq and RNA-seq datasets was significantly different (P = 0.024), 21 out of 31 shared major bacterial genera differed in their relative abundance between the two analytic pipelines. No significant differences were found in any of the prokaryotic alpha- and beta-diversity measurements (P > 0.05), except the archaeota that differed for BE based on the Bray–Curtis dissimilarity matrix (P = 0.009). Even though the relative abundances of potentially transferred microbial and functional features from the inocula were minor, differentially abundant prokaryotic genera significantly correlated to various fermentation and animal measurements including butyrate proportion, body weight, and papillae length and counts. The overall microbial functions were affected quantitatively by BE and qualitatively by PE (P < 0.05), and this might be supported by the individual KEGG module and CAZymes profile differences. Exclusive networks between major active microbial (bacterial and archaeal genera) and functional features (KEGG modules) were determined which were differed by microbial inoculations. Conclusions This study demonstrated that actively transcribed microbial and functional features showed reliable connections with different fermentations and animal development responses through adult rumen fluid inoculations compared to our previous 16S amplicon sequencing results. Exclusive microbial and functional networks of the active rumen microbiome of dairy calves created by BE and PE might also be responsible for the different ruminal and animal characteristics. Further understanding of the other parts of the gastrointestinal tract (e.g., abomasum, omasum, and small intestine) using metatranscriptomics will be necessary to elucidate undetermined biological factors affected by microbial inoculations. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00142-z.
Collapse
|
13
|
Kra G, Nemes-Navon N, Daddam JR, Livshits L, Jacoby S, Levin Y, Zachut M, Moallem U. Proteomic analysis of peripheral blood mononuclear cells and inflammatory status in postpartum dairy cows supplemented with different sources of omega-3 fatty acids. J Proteomics 2021; 246:104313. [PMID: 34216809 DOI: 10.1016/j.jprot.2021.104313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023]
Abstract
We examined the effects of dietary n-3 fatty acids on the proteome of peripheral blood mononuclear cells (PBMC) in transition dairy cows. Forty-two dry cows were divided into three groups supplemented with: saturated fat (CTL); flaxseed oil (FLX); or fish oil (FO). PBMC were collected from five cows per group at week 1 postpartum for proteomic analysis. The n-3 fatty acid content in plasma and PBMC was higher in FLX and FO than in CTL cows. In PBMC, 3807 proteins were quantified and 44, 42 and 65 were differently abundant in FLX vs. CTL, FO vs. CTL and FLX vs. FO, respectively. In FLX vs. CTL, the abundance of the p65-subunit-of-transcription-factor NF-κB was higher, whereas albumin, C4b-binding protein and complement factor H levels were lower. In FLX vs. FO, complement factors B and H and hemopexin were higher. The top canonical pathway enriched in FLX compared to other groups was acute-phase-response signaling. The percentage of CD25+ blood cells was lower in FLX and FO at 1 week postpartum, and gene expression of NF-κB in white blood cells was lower in FLX than in CTL. Dietary sources of n-3 fatty acids differentially affected the proteome of PBMC, possibly altering the inflammatory status. SIGNIFICANCE: The transition dairy cow experiences a variable degree of systemic subacute inflammation, and proteomics of peripheral blood mononuclear cells (PBMC) may contribute to obtain insight into this process. Omega-3 fatty acids can moderate the immunological effect, and therefore we examined the effects of these fatty acids from flaxseed (FLX) or fish oils (FO) on the proteome of PBMC at week 1 postpartum. More than 3800 proteins were quantified, and in cows supplemented with FLX, enrichment of the acute-phase-signaling and complement systems were apparent in the PBMC compared to CTL and FO PBMC. This information may be useful to further explore the mechanism by which dietary omega-3 fatty acids affect the immune system in postpartum dairy cows.
Collapse
Affiliation(s)
- Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nataly Nemes-Navon
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Israel
| | - Lilya Livshits
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Israel
| | - Shamay Jacoby
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Israel.
| |
Collapse
|
14
|
Ribeiro DM, Martins CF, Kuleš J, Horvatić A, Guillemin N, Freire JPB, Eckersall PD, Almeida AM, Prates JAM. Influence of dietary Spirulina inclusion and lysozyme supplementation on the longissimus lumborum muscle proteome of newly weaned piglets. J Proteomics 2021; 244:104274. [PMID: 34023516 DOI: 10.1016/j.jprot.2021.104274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Arthrospira platensis (Spirulina) is a microalga with a high content of crude protein. It has a recalcitrant cell wall that limits the accessibility of the animal endogenous enzymes to its intracellular nutrients. Enzymatic supplementation aiming to degrade cell walls could benefit microalgae digestibility. The objective of this study was to evaluate the impact of dietary Spirulina and lysozyme supplementation over the muscle proteome of piglets during the post-weaning stage. Thirty piglets were randomly distributed among three diets: control (no microalga), SP (10% Spirulina) and SP + L (10% Spirulina +0.01% lysozyme). After 4 weeks, they were sacrificed and samples of the longissimus lumborum muscle were taken. The muscle proteome was analysed using a Tandem Mass Tag (TMT)-based quantitative approach. A total of 832 proteins were identified. Three comparisons were computed: SP vs Ctrl, SP + L vs Ctrl and SP + L vs SP. They had ten, four and twelve differentially abundant proteins. Glycogen metabolism and nutrient reserves utilization are increased in the SP piglets. Structural muscle protein synthesis increased, causing higher energy requirements in SP + L piglets. Our results demonstrate the usefulness of proteomics to disclose the effect of dietary microalgae, whilst unveiling putative mechanisms derived from lysozyme supplementation. Data available via ProteomeXchange with identifier PXD024083. SIGNIFICANCE: Spirulina, a microalga, is an alternative to conventional crops which could enhance the environmental sustainability of animal production. Due to its recalcitrant cell wall, its use requires additional measures to prevent anti-nutritional effects on the feeding of piglets in the post-weaning period, during which they endure post-weaning stress. One of such measures could be CAZyme supplementation to help degrade the cell wall during digestion. Muscle proteomics provides insightful data on the effect of dietary microalgae and enzyme activity on piglet metabolism.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Cátia F Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Anita Horvatić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nicolas Guillemin
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - P David Eckersall
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - André M Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
15
|
Miller I, de Almeida AM, Eckersall PD. Across the great divide: Proteomics becoming an essential tool for animal and veterinary sciences. J Proteomics 2021; 241:104225. [PMID: 33857699 DOI: 10.1016/j.jprot.2021.104225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ingrid Miller
- University of Veterinary Medicine Vienna, Vienna, Austria.
| | - André M de Almeida
- LEAF, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - P David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
16
|
Almeida AM, Ali SA, Ceciliani F, Eckersall PD, Hernández-Castellano LE, Han R, Hodnik JJ, Jaswal S, Lippolis JD, McLaughlin M, Miller I, Mohanty AK, Mrljak V, Nally JE, Nanni P, Plowman JE, Poleti MD, Ribeiro DM, Rodrigues P, Roschitzki B, Schlapbach R, Starič J, Yang Y, Zachut M. Domestic animal proteomics in the 21st century: A global retrospective and viewpoint analysis. J Proteomics 2021; 241:104220. [PMID: 33838350 DOI: 10.1016/j.jprot.2021.104220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Animal production and health are of significant economic importance, particularly regarding the world food supply. Animal and veterinary sciences have evolved immensely in the past six decades, particularly in genetics, nutrition, housing, management and health. To address major challenges such as those posed by climate change or metabolic disorders, it is of utmost importance to use state-of-the-art research tools. Proteomics and the other post-genomic tools (transcriptomics or metabolomics) are among them. Proteomics has experienced a considerable development over the last decades. This brought developments to different scientific fields. The use and adoption of proteomics tools in animal and veterinary sciences has some limitations (database availability or access to proteomics platforms and funding). As a result, proteomics' use by animal science researchers varies across the globe. In this viewpoint article, we focus on the developments of domestic animal proteomics over the last decade in different regions of the globe and how the researchers have coped with such challenges. In the second part of the article, we provide examples of funding, educational and laboratory establishment initiatives designed to foster the development of (animal-based) proteomics. International scientific collaboration is a definitive and key feature in the development and advancement of domestic animal proteomics. SIGNIFICANCE: Animal production and health are very important for food supply worldwide particularly as a source of proteinaceous foods. Animal and veterinary sciences have evolved immensely in the last decades. In order to address the major contemporary challenges facing animal and veterinary sciences, it is of utmost importance to use state-of-the-art research tools such as Proteomics and other Omics. Herein, we focus on the major developments in domestic animal proteomics worldwide during the last decade and how different regions of the world have used the technology in this specific research field. We address also major international efforts aiming to increase the research output in this area and highlight the importance of international cooperation to address specific problems inherent to domestic animal proteomics.
Collapse
Affiliation(s)
- André M Almeida
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy
| | - P David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lorenzo E Hernández-Castellano
- Department of Animal Science, AU-Foulum, Aarhus University, 8830 Tjele, Denmark; Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jaka J Hodnik
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Mark McLaughlin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ingrid Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Jarlath E Nally
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Paolo Nanni
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | - Mirele D Poleti
- FZEA - Faculty of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte - 225, 13635-900 Pirassununga, SP, Brazil
| | - David M Ribeiro
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Pedro Rodrigues
- CCMAR - Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Jože Starič
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization/Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
17
|
Munekata PES, Pateiro M, López-Pedrouso M, Gagaoua M, Lorenzo JM. Foodomics in meat quality. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Costa CM, Difante GS, Costa ABG, Gurgel ALC, Ferreira MA, Santos GT. Grazing intensity as a management strategy in tropical grasses for beef cattle production: a meta-analysis. Animal 2021; 15:100192. [PMID: 33637442 DOI: 10.1016/j.animal.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
Correct pasture management associated with the adjustment of grazing intensity determines pasture persistence and the level of production per animal and per land area. The objective of this review was to examine the effect of grazing intensity in tropical pastures on the performance and productivity of beef cattle by a meta-analytical approach. The review followed a protocol developed and tested based on the PICOS strategy to formulate the guiding question: population (beef cattle), intervention (high grazing intensities), comparison (low grazing intensities), outcome (animal performance and productivity), and study design (experimental). Data were collected from papers published in the electronic databases of SCOPUS (Elsevier), Web of Science (Main collection), SpringerLink, Wiley Online Library, and Science Direct (Elsevier) by a single cross-reference search. The selected studies were considered relevant when they: (1) were primary research published in the format of a research article; (2) included grazing intensities as a management strategy; and (3) evaluated average daily gain (ADG, kg/animal per day), stocking rates (SR, animal unit (AU)/ha; AU = 450 kg), and weight gain per area (WGH, kg/ha). Thirteen manuscripts were selected due to their methodological strength for data extraction. The means under continuous stocking were 0.67 kg/animal per day for ADG, 518.12 kg/ha for WGH, and 4.19 AU/ha for SR. Under intermittent stocking, the means were 0.62 kg/animal per day for ADG, 980.18 kg/ha for WGH, and 5.10 AU/ha for SR. In tropical forages, the heights of 20 to 40 cm for pastures under continuous stocking and the defoliation intensities of 40 to 50% for those under intermittent stocking result in greater individual performance and animal productivity per land area.
Collapse
Affiliation(s)
- C M Costa
- Graduate Program in Animal Science, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Müler, 2443, 79074-460 Campo Grande, Mato Grosso do Sul, Brazil.
| | - G S Difante
- Graduate Program in Animal Science, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Müler, 2443, 79074-460 Campo Grande, Mato Grosso do Sul, Brazil
| | - A B G Costa
- Graduate Program in Animal Science, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Müler, 2443, 79074-460 Campo Grande, Mato Grosso do Sul, Brazil
| | - A L C Gurgel
- Graduate Program in Animal Science, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Müler, 2443, 79074-460 Campo Grande, Mato Grosso do Sul, Brazil
| | - M A Ferreira
- Graduate Program in Nursin, Federal University of Mato Grosso do Sul, Cidade Universitária, Caixa Postal 549, 79070-900 Campo Grande, Mato Grosso do Sul, Brazil
| | - G T Santos
- Graduate Program in Animal Science, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Müler, 2443, 79074-460 Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
19
|
Systematic Review of Ticks and Tick-Borne Pathogens of Small Ruminants in Pakistan. Pathogens 2020; 9:pathogens9110937. [PMID: 33187238 PMCID: PMC7696454 DOI: 10.3390/pathogens9110937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Ticks and tick-borne diseases (TTBDis) are a major constraint to the health and production of small ruminants in Pakistan. Despite being the subject of intermittent studies over the past few decades, comprehensive information on the epidemiology and control of TTBDis is lacking. Herein, we have systematically reviewed the current knowledge on TTBDis of small ruminants in Pakistan. Critical appraisal of the selected 71 articles published between 1947 to 2020 revealed that morphological examination had been the most widely used method for the identification of TTBDis in Pakistan. Tick fauna comprise at least 40 species, mainly belonging to Haemaphysalis, Hyalomma and Rhipicephalus. The prevalence of ticks is the highest in summer (June–September) and it is also higher in goats than sheep. Anaplasma, Babesia and Theileria spp. are the major tick-borne pathogens (TBPs), and their prevalence is usually higher in sheep than goats. Spatio-temporal distribution, genetic diversity and control of ticks and TBPs of small ruminants as well as the competence of tick vectors for various TBPs remain to be explored. Therefore, coordinated and focused investigations are required to fill knowledge gaps in these areas to maximise the health, production and welfare of small ruminants and minimise economic losses associated with TTBDis in Pakistan.
Collapse
|
20
|
González-García E, Alhamada M, Debus N, Menassol JB, Tesnière A, Gonçalves Vero J, Barboza B, Bocquier F. Short-, Medium- and Long-Term Metabolic Responses of Adult Meat Ewes Subjected to Nutritional and β-Adrenergic Challenges. Animals (Basel) 2020; 10:ani10081320. [PMID: 32751763 PMCID: PMC7460355 DOI: 10.3390/ani10081320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The ability of Merinos d’Arles ewes to quickly overcome undernutrition situations by efficiently using their body energy reserves was confirmed in this study. There is potential for a simplified ß-adrenergic challenge protocol helping to identify differences in adaptive capacity among individuals reared and fed under similar conditions in the same flock. Abstract Shortage and refeeding situations lead to switches in metabolic pathways induced by undernutrition and body energy reserve (BR) replenishment cycles. In a 122-d experiment, 36 adult Merinos d’Arles ewes were chosen and first accustomed to diet ingredients (i.e., wheat straw, pelleted alfalfa and sugar beet pulp) and the facility environment for 22 d. Then, ewes were randomly assigned to one of three “diet challenge” treatments during 50 d, (control, underfed and overfed; 12 ewes each) corresponding to 100%, 70% or 160% of energy requirements allowances, respectively. Then, a “refeeding challenge” was applied the last 50 d (i.e., diets adjusted with the same ingredients). An individual monitoring of body weight (BW), body condition score (BCS) and energy metabolism was carried out. The last day, a “ß-adrenergic challenge” was applied. Anabolic or catabolic responses were accompanied by synchronized metabolic regulations, leading to contrasting metabolic and BR profiles. Average BW and BCS were higher and lower in overfed and underfed ewes, respectively, which was proportional to lower and higher BR mobilization dynamics. Higher plasma free fatty acids (FFA) were accompanied by lower blood insulin, leptin and glucose levels. After refeeding, a rebound in BW and BCS were observed, and FFA were drastically reduced in underfed ewes. No differences were detected in plasma FFA at the end of the study, but the lipolytic activity was different and contrasted with the adipose tissue mass.
Collapse
Affiliation(s)
- Eliel González-García
- INRAE UMR868, Systèmes d’Elevage Méditerranées et Tropicaux (SELMET), CEDEX 1, F-34000 Montpellier, France; (M.A.); (N.D.); (J.-B.M.); (A.T.); (F.B.)
- Correspondence:
| | - Moutaz Alhamada
- INRAE UMR868, Systèmes d’Elevage Méditerranées et Tropicaux (SELMET), CEDEX 1, F-34000 Montpellier, France; (M.A.); (N.D.); (J.-B.M.); (A.T.); (F.B.)
| | - Nathalie Debus
- INRAE UMR868, Systèmes d’Elevage Méditerranées et Tropicaux (SELMET), CEDEX 1, F-34000 Montpellier, France; (M.A.); (N.D.); (J.-B.M.); (A.T.); (F.B.)
| | - Jean-Baptiste Menassol
- INRAE UMR868, Systèmes d’Elevage Méditerranées et Tropicaux (SELMET), CEDEX 1, F-34000 Montpellier, France; (M.A.); (N.D.); (J.-B.M.); (A.T.); (F.B.)
- L’institut Agro-Montpellier SupAgro, Sciences Animales, Department MPRS, CEDEX 1, F-34000 Montpellier, France
| | - Anne Tesnière
- INRAE UMR868, Systèmes d’Elevage Méditerranées et Tropicaux (SELMET), CEDEX 1, F-34000 Montpellier, France; (M.A.); (N.D.); (J.-B.M.); (A.T.); (F.B.)
| | - Jéssica Gonçalves Vero
- Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias, Londrina CEP 86057-970, Brazil; (J.G.V.); (B.B.)
| | - Bruna Barboza
- Universidade Estadual de Londrina (UEL), Centro de Ciências Agrárias, Londrina CEP 86057-970, Brazil; (J.G.V.); (B.B.)
| | - François Bocquier
- INRAE UMR868, Systèmes d’Elevage Méditerranées et Tropicaux (SELMET), CEDEX 1, F-34000 Montpellier, France; (M.A.); (N.D.); (J.-B.M.); (A.T.); (F.B.)
- L’institut Agro-Montpellier SupAgro, Sciences Animales, Department MPRS, CEDEX 1, F-34000 Montpellier, France
| |
Collapse
|