1
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
2
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
3
|
Gong R, Jiang F, Moreland ZG, Reynolds MJ, de los Reyes SE, Gurel P, Shams A, Heidings JB, Bowl MR, Bird JE, Alushin GM. Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia. SCIENCE ADVANCES 2022; 8:eabl4733. [PMID: 35857845 PMCID: PMC9299544 DOI: 10.1126/sciadv.abl4733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/03/2022] [Indexed: 05/12/2023]
Abstract
The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Fangfang Jiang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Zane G. Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | | | - Pinar Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James B. Heidings
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
- UCL Ear Institute, University College London, London, UK
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
4
|
Miyoshi T, Belyantseva IA, Kitajiri SI, Miyajima H, Nishio SY, Usami SI, Kim BJ, Choi BY, Omori K, Shroff H, Friedman TB. Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Hum Genet 2022; 141:363-382. [PMID: 34232383 PMCID: PMC11351816 DOI: 10.1007/s00439-021-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| | - Shin-Ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Hiroki Miyajima
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Otolaryngology, Aizawa Hospital, Matsumoto, 390-8510, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, South Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Elferich J, Clark S, Ge J, Goehring A, Matsui A, Gouaux E. Molecular structures and conformations of protocadherin-15 and its complexes on stereocilia elucidated by cryo-electron tomography. eLife 2021; 10:74512. [PMID: 34964715 PMCID: PMC8776254 DOI: 10.7554/elife.74512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanosensory transduction (MT), the conversion of mechanical stimuli into electrical signals, underpins hearing and balance and is carried out within hair cells in the inner ear. Hair cells harbor actin-filled stereocilia, arranged in rows of descending heights, where the tips of stereocilia are connected to their taller neighbors by a filament composed of protocadherin 15 (PCDH15) and cadherin 23 (CDH23), deemed the ‘tip link.’ Tension exerted on the tip link opens an ion channel at the tip of the shorter stereocilia, thus converting mechanical force into an electrical signal. While biochemical and structural studies have provided insights into the molecular composition and structure of isolated portions of the tip link, the architecture, location, and conformational states of intact tip links, on stereocilia, remains unknown. Here, we report in situ cryo-electron microscopy imaging of the tip link in mouse stereocilia. We observe individual PCDH15 molecules at the tip and shaft of stereocilia and determine their stoichiometry, conformational heterogeneity, and their complexes with other filamentous proteins, perhaps including CDH23. The PCDH15 complexes occur in clusters, frequently with more than one copy of PCDH15 at the tip of stereocilia, suggesting that tip links might consist of more than one copy of PCDH15 complexes and, by extension, might include multiple MT complexes.
Collapse
Affiliation(s)
- Johannes Elferich
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Sarah Clark
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jingpeng Ge
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Aya Matsui
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
6
|
Miyoshi T, Friedman TB, Watanabe N. Fast-dissociating but highly specific antibodies are novel tools in biology, especially useful for multiplex super-resolution microscopy. STAR Protoc 2021; 2:100967. [PMID: 34841279 PMCID: PMC8605432 DOI: 10.1016/j.xpro.2021.100967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fast-dissociating, highly specific monoclonal antibodies (FDSAs) are single-molecule imaging probes useful for many biological assays including consecutive, multiplexable super-resolution microscopy. We developed a screening assay to characterize the kinetics of antibody-antigen interactions using single-molecule microscopy and established a pipeline to identify FDSAs from thousands of monoclonal candidates. Provided here are detailed protocols to prepare multi-well glass-bottom plates necessary for our assay to identify hybridoma clones secreting FDSAs. Synthesis of fluorescently labeled Fab fragments (Fab probes) from FDSAs is also described. For complete details on the use and execution of this protocol, please refer to Miyoshi et al. (2021).
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Single-Molecule Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD 20892, USA
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD 20892, USA
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Abstract
The application of cryo-correlative light and cryo-electron microscopy (cryo-CLEM) gives us a way to locate structures of interest in the electron microscope. In brief, the structures of interest are fluorescently tagged, and images from the cryo-fluorescent microscope (cryo-FM) maps are superimposed on those from the cryo-electron microscope (cryo-EM). By enhancing cryo-FM to include single-molecule localization microscopy (SMLM), we can achieve much better localization. The introduction of cryo-SMLM increased the yield of photons from fluorophores, which can benefit localization efforts. Dahlberg and Moerner (2021, Annual Review of Physical Chemistry, 72, 253-278) have a recent broad and elegant review of super-resolution cryo-CLEM. This paper focuses on cryo(F)PALM/STORM for the cryo-electron tomography community. I explore the current challenges to increase the accuracy of localization by SMLM and the mapping of those positions onto cryo-EM images and maps. There is much to consider: we need to know if the excitation of fluorophores damages the structures we seek to visualize. We need to determine if higher numerical aperture (NA) objectives, which add complexity to image analysis but increase resolution and the efficiency of photon collection, are better than lower NA objectives, which pose fewer problems. We need to figure out the best way to determine the axial position of fluorophores. We need to have better ways of aligning maps determined by FM with those determined by EM. We need to improve the instrumentation to be easier to use, more accurate, and ice-contamination free. The bottom line is that we have more work to do.
Collapse
|
8
|
Effertz T, Moser T, Oliver D. Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Fac Rev 2021; 9:24. [PMID: 33659956 PMCID: PMC7886071 DOI: 10.12703/r/9-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, genetics, physiology, and structural biology have advanced into the molecular details of the sensory physiology of auditory hair cells. Inner hair cells (IHCs) and outer hair cells (OHCs) mediate two key functions: active amplification and non-linear compression of cochlear vibrations by OHCs and sound encoding by IHCs at their afferent synapses with the spiral ganglion neurons. OHCs and IHCs share some molecular physiology, e.g. mechanotransduction at the apical hair bundles, ribbon-type presynaptic active zones, and ionic conductances in the basolateral membrane. Unique features enabling their specific function include prestin-based electromotility of OHCs and indefatigable transmitter release at the highest known rates by ribbon-type IHC active zones. Despite their compact morphology, the molecular machineries that either generate electrical signals or are driven by these signals are essentially all segregated into local subcellular structures. This review provides a brief account on recent insights into the molecular physiology of cochlear hair cells with a specific focus on organization into membrane domains.
Collapse
Affiliation(s)
- Thomas Effertz
- InnerEarLab, Department of Otorhinolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University, Deutschhausstraße 2, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps University, Marburg, Germany
| |
Collapse
|
9
|
Martins B, Sorrentino S, Chung WL, Tatli M, Medalia O, Eibauer M. Unveiling the polarity of actin filaments by cryo-electron tomography. Structure 2021; 29:488-498.e4. [PMID: 33476550 PMCID: PMC8111420 DOI: 10.1016/j.str.2020.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton plays a fundamental role in numerous cellular processes, such as cell motility, cytokinesis, and adhesion to the extracellular matrix. Revealing the polarity of individual actin filaments in intact cells would foster an unprecedented understanding of cytoskeletal processes and their associated mechanical forces. Cryo-electron tomography provides the means for high-resolution structural imaging of cells. However, the low signal-to-noise ratio of cryo-tomograms obscures the high frequencies, and therefore the polarity of actin filaments cannot be directly measured. Here, we developed a method that enables us to determine the polarity of actin filaments in cellular cryo-tomograms. We applied it to reveal the actin polarity distribution in focal adhesions, and show a linear relation between actin polarity and distance from the apical boundary of the adhesion site. Determining the polarity of individual actin filaments inside cells Reconstruction of actin networks from cryo-tomograms The polarity of actin changes from mixed to uniform along focal adhesions
Collapse
Affiliation(s)
- Bruno Martins
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simona Sorrentino
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
10
|
Song J, Patterson R, Metlagel Z, Krey JF, Hao S, Wang L, Ng B, Sazzed S, Kovacs J, Wriggers W, He J, Barr-Gillespie PG, Auer M. A cryo-tomography-based volumetric model of the actin core of mouse vestibular hair cell stereocilia lacking plastin 1. J Struct Biol 2020; 210:107461. [PMID: 31962158 PMCID: PMC7067663 DOI: 10.1016/j.jsb.2020.107461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Electron cryo-tomography allows for high-resolution imaging of stereocilia in their native state. Because their actin filaments have a higher degree of order, we imaged stereocilia from mice lacking the actin crosslinker plastin 1 (PLS1). We found that while stereocilia actin filaments run 13 nm apart in parallel for long distances, there were gaps of significant size that were stochastically distributed throughout the actin core. Actin crosslinkers were distributed through the stereocilium, but did not occupy all possible binding sites. At stereocilia tips, protein density extended beyond actin filaments, especially on the side of the tip where a tip link is expected to anchor. Along the shaft, repeating density was observed that corresponds to actin-to-membrane connectors. In the taper region, most actin filaments terminated near the plasma membrane. The remaining filaments twisted together to make a tighter bundle than was present in the shaft region; the spacing between them decreased from 13 nm to 9 nm, and the apparent filament diameter decreased from 6.4 to 4.8 nm. Our models illustrate detailed features of distinct structural domains that are present within the stereocilium.
Collapse
Affiliation(s)
- Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Roma Patterson
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zoltan Metlagel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jocelyn F Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Samantha Hao
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Linshanshan Wang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian Ng
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Julio Kovacs
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
11
|
Kovacs J, Song J, Auer M, He J, Hunter W, Wriggers W. Correction of Missing-Wedge Artifacts in Filamentous Tomograms by Template-Based Constrained Deconvolution. J Chem Inf Model 2020; 60:2626-2633. [PMID: 32045242 DOI: 10.1021/acs.jcim.9b01111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryo-electron tomography maps often exhibit considerable noise and anisotropic resolution, due to the low-dose requirements and the missing wedge in Fourier space. These spurious features are visually unappealing and, more importantly, prevent an automated segmentation of geometric shapes, requiring a subjective and labor-intensive manual tracing. We developed a novel computational strategy for objectively denoising and correcting missing-wedge artifacts in homogeneous specimen areas of tomograms, where it is assumed that a template repeats itself across the volume under consideration, as happens in the case of filaments. In our deconvolution approach, we use a template and a map of corresponding template locations, allowing us to compensate for the information lost in the missing wedge. We applied the method to tomograms of actin-filament bundles of inner-ear stereocilia, which are critical for the senses of hearing and balance. In addition, we demonstrate that our method can be used for cell membrane detection.
Collapse
Affiliation(s)
- Julio Kovacs
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Junha Song
- Cell and Tissue Imaging, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Manfred Auer
- Cell and Tissue Imaging, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Wade Hunter
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
12
|
Abstract
The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|