1
|
Lee MJ. Vitamin D Enhancement of Adipose Biology: Implications on Obesity-Associated Cardiometabolic Diseases. Nutrients 2025; 17:586. [PMID: 39940444 PMCID: PMC11820181 DOI: 10.3390/nu17030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Vitamin D is activated into 1α,25(OH)2D through two hydroxylation steps that are primarily catalyzed by 25-hydroxylase in the liver and 1α-hydroxylase in the kidneys. The active form of vitamin D regulates myriads of cellular functions through its nuclear receptor, vitamin D receptor (VDR). Vitamin D metabolizing enzymes and VDR are expressed in adipose tissues and vitamin D regulates multiple aspects of adipose biology including the recruitment and differentiation of adipose stem cells into adipocytes and metabolic, endocrine, and immune properties. Obesity is associated with low vitamin D status, which is thought to be explained by its sequestration in large mass of adipose tissues as well as dysregulated vitamin D metabolism. Low vitamin D status in obesity may negatively impact adipose biology leading to adipose tissue dysfunctions, the major pathological factors for cardiometabolic diseases in obesity. In this review, the current understanding of vitamin D metabolism and its molecular mechanisms of actions, focusing on vitamin D-VDR regulation of adipose biology with their implications on obesity-associated diseases, is discussed. Whether improving vitamin D status leads to reductions in adiposity and risks for cardiometabolic diseases is also discussed.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
2
|
Chen Z, Huang D, Yongyut P, Li G, Esteban MÁ, Jintasataporn O, Deng J, Zhang W, Ai Q, Mai K, Zhang Y. Vitamin D 3 deficiency induced intestinal inflammatory response of turbot through nuclear factor-κB/inflammasome pathway, accompanied by the mutually exclusive apoptosis and autophagy. Front Immunol 2022; 13:986593. [PMID: 36159807 PMCID: PMC9493454 DOI: 10.3389/fimmu.2022.986593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D3 (VD3) participated widely in the nuclear factor-κB (NF-κB)-mediated inflammation, apoptosis, and autophagy through the vitamin D receptor (VDR). However, the molecular mechanisms remain not understood in teleost. The present study investigated the functions of VD3/VDR on intestinal inflammation, autophagy, and apoptosis of turbot in vivo and in vitro. Triple replicates of 30 fish were fed with each of three diets with graded levels of 32.0 (D0), 1012.6 (D1), and 3978.2 (D2) IU/kg VD3. Obvious intestinal enteritis was observed in the D0 group and followed with dysfunction of intestinal mucosal barriers. The intestinal inflammatory response induced by VD3 deficiency was regulated by the NF-κB/inflammasome signalling. The promotion of intestinal apoptosis and suppression of intestinal autophagy were also observed in the D0 group. Similarly, VD3 deficiency in vitro induced more intense inflammation regulated by NF-κB/inflammasome signalling. The mutually exclusive apoptosis and autophagy were also observed in the group without 1,25(OH)2D3 in vitro, accompanied by similar changes in apoptosis and autophagy increased apoptosis. The gene expression of VDRs was significantly increased with the increasing VD3 supplementation both in vivo and in vitro. Moreover, VDR knockdown in turbot resulted in intestinal inflammation, and this process relied on the activation of inflammasome mediated by NF-κB signalling. Simultaneously, intestinal apoptosis was promoted, whereas intestinal autophagy was inhibited. In conclusion, VD3 deficiency could induce intestinal inflammation via activation of the NF-κB/inflammasome pathway, intestinal apoptosis, and autophagy formed a mutually exclusive relation in teleost. And VDR is the critical molecule in those processes.
Collapse
Affiliation(s)
- Zhichu Chen
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Prakaiwan Yongyut
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Guangbin Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Orapint Jintasataporn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Phummisutthigoon S, Lertsuwan K, Panupinthu N, Aeimlapa R, Teerapornpuntakit J, Chankamngoen W, Thongbunchoo J, Charoenphandhu N, Wongdee K. Fe3+ opposes the 1,25(OH)2D3-induced calcium transport across intestinal epithelium-like Caco-2 monolayer in the presence or absence of ascorbic acid. PLoS One 2022; 17:e0273267. [PMID: 36040915 PMCID: PMC9426938 DOI: 10.1371/journal.pone.0273267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/05/2022] [Indexed: 01/01/2023] Open
Abstract
Although iron is an essential element for hemoglobin and cytochrome synthesis, excessive intestinal iron absorption-as seen in dietary iron supplementation and hereditary disease called thalassemia-could interfere with transepithelial transport of calcium across the intestinal mucosa. The underlying cellular mechanism of iron-induced decrease in intestinal calcium absorption remains elusive, but it has been hypothesized that excess iron probably negates the actions of 1,25-dihydroxyvitamin D [1,25(OH)2D3]. Herein, we exposed the 1,25(OH)2D3-treated epithelium-like Caco-2 monolayer to FeCl3 to demonstrate the inhibitory effect of ferric ion on 1,25(OH)2D3-induced transepithelial calcium transport. We found that a 24-h exposure to FeCl3 on the apical side significantly decreased calcium transport, while increasing the transepithelial resistance (TER) in 1,25(OH)2D3-treated monolayer. The inhibitory action of FeCl3 was considered rapid since 60-min exposure was sufficient to block the 1,25(OH)2D3-induced decrease in TER and increase in calcium flux. Interestingly, FeCl3 did not affect the baseline calcium transport in the absence of 1,25(OH)2D3 treatment. Furthermore, although ascorbic acid is often administered to maximize calcium solubility and to enhance intestinal calcium absorption, it apparently had no effect on calcium transport across the FeCl3- and 1,25(OH)2D3-treated Caco-2 monolayer. In conclusion, apical exposure to ferric ion appeared to negate the 1,25(OH)2D3-stimulated calcium transport across the intestinal epithelium. The present finding has, therefore, provided important information for development of calcium and iron supplement products and treatment protocol for specific groups of individuals, such as thalassemia patients and pregnant women.
Collapse
Affiliation(s)
- Sukpapohn Phummisutthigoon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nattapon Panupinthu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wasutorn Chankamngoen
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jirawan Thongbunchoo
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
4
|
Young K, Beggs MR, Grimbly C, Alexander RT. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp Biol Med (Maywood) 2022; 247:1103-1111. [PMID: 35482362 PMCID: PMC9335508 DOI: 10.1177/15353702221091982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Calcium and phosphate are critical for numerous physiological processes. Consequently, the plasma concentration of these ions are tightly regulated. Calcitriol, the active form of vitamin D, is a positive modulator of mineralization as well as calcium and phosphate metabolism. The molecular and physiological effects of calcitriol are well documented. Calcitriol increases blood calcium and phosphate levels by increasing absorption from the intestine, and resorption of bone. Calcitriol synthesis is a multistep process. A precursor is first made via skin exposure to UV, it is then 25-hydroxylated in the liver to form 25-hydroxyitamin D. The next hydroxylation step occurs in the renal proximal tubule via the 1-αhydroxylase enzyme (encoded by CYP27B1) thereby generating 1,25-dihydroxyvitamin D, that is, calcitriol. At the same site, the 25-hydroxyvitamin D 24-hydroxlase enzyme encoded by CYP24A1 can hydroxylate 25-hydroxyvitamin D or calcitriol to deactivate the hormone. Plasma calcitriol levels are primarily determined by the regulated expression of CYP27B1 and CYP24A1. This occurs in response to parathyroid hormone (increases CYP27B1), calcitriol itself (decreases CYP27B1 and increases CYP24A1), calcitonin (increases or decreases CYP24A1 and increases CYP27B1), FGF23 (decreases CYP27B1 and increases CYP24A1) and potentially plasma calcium and phosphate levels themselves (mixed effects). Herein, we review the regulation of CYP27B1 and CYP24A1 transcription in response to the action of classic phophocalciotropic hormones and explore the possibility of direct regulation by plasma calcium.
Collapse
Affiliation(s)
- Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Chelsey Grimbly
- Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada,Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada,R Todd Alexander.
| |
Collapse
|
5
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
6
|
Szymczak-Pajor I, Miazek K, Selmi A, Balcerczyk A, Śliwińska A. The Action of Vitamin D in Adipose Tissue: Is There the Link between Vitamin D Deficiency and Adipose Tissue-Related Metabolic Disorders? Int J Mol Sci 2022; 23:956. [PMID: 35055140 PMCID: PMC8779075 DOI: 10.3390/ijms23020956] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue plays an important role in systemic metabolism via the secretion of adipocytokines and storing and releasing energy. In obesity, adipose tissue becomes dysfunctional and characterized by hypertrophied adipocytes, increased inflammation, hypoxia, and decreased angiogenesis. Although adipose tissue is one of the major stores of vitamin D, its deficiency is detective in obese subjects. In the presented review, we show how vitamin D regulates numerous processes in adipose tissue and how their dysregulation leads to metabolic disorders. The molecular response to vitamin D in adipose tissue affects not only energy metabolism and adipokine and anti-inflammatory cytokine production via the regulation of gene expression but also genes participating in antioxidant defense, adipocytes differentiation, and apoptosis. Thus, its deficiency disturbs adipocytokines secretion, metabolism, lipid storage, adipogenesis, thermogenesis, the regulation of inflammation, and oxidative stress balance. Restoring the proper functionality of adipose tissue in overweight or obese subjects is of particular importance in order to reduce the risk of developing obesity-related complications, such as cardiovascular diseases and diabetes. Taking into account the results of experimental studies, it seemed that vitamin D may be a remedy for adipose tissue dysfunction, but the results of the clinical trials are not consistent, as some of them show improvement and others no effect of this vitamin on metabolic and insulin resistance parameters. Therefore, further studies are required to evaluate the beneficial effects of vitamin D, especially in overweight and obese subjects, due to the presence of a volumetric dilution of this vitamin among them.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 15 Wroblewskiego, 93-590 Lodz, Poland;
| | - Anna Selmi
- Department of Molecular Biophysics, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland; (A.S.); (A.B.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland; (A.S.); (A.B.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
7
|
Navarro-García JA, González-Lafuente L, Fernández-Velasco M, Ruilope LM, Ruiz-Hurtado G. Fibroblast Growth Factor-23-Klotho Axis in Cardiorenal Syndrome: Mediators and Potential Therapeutic Targets. Front Physiol 2021; 12:775029. [PMID: 34867481 PMCID: PMC8634640 DOI: 10.3389/fphys.2021.775029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiorenal syndrome (CRS) is a complex disorder that refers to the category of acute or chronic kidney diseases that induce cardiovascular disease, and inversely, acute or chronic heart diseases that provoke kidney dysfunction. There is a close relationship between renal and cardiovascular disease, possibly due to the presence of common risk factors for both diseases. Thus, it is well known that renal diseases are associated with increased risk of developing cardiovascular disease, suffering cardiac events and even mortality, which is aggravated in those patients with end-stage renal disease or who are undergoing dialysis. Recent works have proposed mineral bone disorders (MBD) as the possible link between kidney dysfunction and the development of cardiovascular outcomes. Traditionally, increased serum phosphate levels have been proposed as one of the main factors responsible for cardiovascular damage in kidney patients. However, recent studies have focused on other MBD components such as the elevation of fibroblast growth factor (FGF)-23, a phosphaturic bone-derived hormone, and the decreased expression of the anti-aging factor Klotho in renal patients. It has been shown that increased FGF-23 levels induce cardiac hypertrophy and dysfunction and are associated with increased cardiovascular mortality in renal patients. Decreased Klotho expression occurs as renal function declines. Despite its expression being absent in myocardial tissue, several studies have demonstrated that this antiaging factor plays a cardioprotective role, especially under elevated FGF-23 levels. The present review aims to collect the recent knowledge about the FGF-23-Klotho axis in the connection between kidney and heart, focusing on their specific role as new therapeutic targets in CRS.
Collapse
Affiliation(s)
- José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
8
|
Aydemir Y, Erdogan B, Türkeli A. Vitamin D deficiency negatively affects both the intestinal epithelial integrity and bone metabolism in children with Celiac disease. Clin Res Hepatol Gastroenterol 2021; 45:101523. [PMID: 32952100 DOI: 10.1016/j.clinre.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM We aim to evaluate serum vitamin D levels, vitamin D receptor (VDR) expression in the intestinal epithelium, and their relation with epithelial barrier proteins and bone metabolism in children with Celiac disease (CD). METHODS Immunostaining for VDR, Claudin-2 and E-cadherin was performed in duodenal samples of the patients with CD and controls. H-score [∑Pi(I+1)] where I is the intensity score and Pi is the corresponding percentage of stained cells was calculated for each samples. The clinic, laboratory and histopathological findings were compared between patients and controls. RESULTS Thirty-six patients with CD and age and sex matched 36 controls were enrolled. 25-OH vitamin D levels were significantly lower in the patient group compared to the control group. The mean bone mineral density (BMD) value was significantly lower in patients with vitamin D deficiency compared to patients with normal vitamin D level. H-scores for both VDR and Claudin-2 were significantly lower in patient group when compared to the control group. H-scores for VDR, Claudin-2 and E-cadherin were significantly lower in patients with vitamin D deficiency compared to patients with normal vitamin D level. There were positive correlations between 25-OH vitamin D level and H-scores for VDR, E-cadherin and Claudin-2 in patient group. CONCLUSIONS Our findings showed that vitamin D deficiency is common among children with CD. Expression of VDR and epithelial barrier proteins Claudin-2 and E-cadherin which have important roles in paracellular pathway, was decreased in children with CD in correlation with histological findings of disease severity. Furthermore, deficiency of vitamin D was related to decreased expression of VDR and epithelial barrier proteins E-cadherin and Claudin-2. These findings indicate that paracellular pathway structures responsible for calcium absorption are disturbed in CD which is aggravated by vitamin D deficiency.
Collapse
Affiliation(s)
- Yusuf Aydemir
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Division of Gastroenterology and Hepatology, Odunpazari, 26040, Eskisehir, Turkey.
| | - Bahattin Erdogan
- Eskisehir City Hospital, Department of Pathology, Odunpazari, 26080, Eskisehir, Turkey.
| | - Ahmet Türkeli
- Kutahya University of Health Sciences, Department of Pediatrics, Division of Allergy and Immunology, 43100, Kutahya, Turkey.
| |
Collapse
|
9
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
10
|
Vermandere K, Bostick RM, Tran HQ, Gewirtz AT, Barry EL, Rutherford RE, Seabrook ME, Fedirko V. Effects of Supplemental Calcium and Vitamin D on Circulating Biomarkers of Gut Barrier Function in Patients with Colon Adenoma: A Randomized Clinical Trial. Cancer Prev Res (Phila) 2021; 14:393-402. [PMID: 33229339 PMCID: PMC8137511 DOI: 10.1158/1940-6207.capr-20-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Gut barrier dysfunction promotes chronic inflammation, contributing to several gastrointestinal diseases, including colorectal cancer. Preliminary evidence suggests that vitamin D and calcium could prevent colorectal carcinogenesis, in part, by influencing gut barrier function. However, relevant human data are scarce. We tested the effects of supplemental calcium (1,200 mg/day) and/or vitamin D3 (1,000 IU/day) on circulating concentrations of biomarkers of gut permeability (anti-flagellin and anti-lipopolysaccharide IgA and IgG, measured via ELISA) from baseline to 1 and 3 or 5 years postbaseline among 175 patients with colorectal adenoma in a randomized, double-blinded, placebo-controlled clinical trial. We also assessed factors associated with baseline concentrations of these biomarkers. We found no appreciable effects of supplemental vitamin D3 and/or calcium on individual or aggregate biomarkers of gut permeability. At baseline, a combined permeability score (the summed concentrations of all four biomarkers) was 14% lower among women (P = 0.01) and 10% higher among those who consumed >1 serving per day of red or processed meats relative to those who consumed none (P trend = 0.03). The permeability score was estimated to be 49% higher among participants with a body mass index (BMI) > 35 kg/m2 relative to those with a BMI < 22.5 kg/m2 (P trend = 0.17). Our results suggest that daily supplemental vitamin D3 and/or calcium may not modify circulating concentrations of gut permeability biomarkers within 1 or 3-5 years, but support continued investigation of modifiable factors, such as diet and excess adiposity, that could affect gut permeability. PREVENTION RELEVANCE: Calcium and vitamin D may be involved in regulating and maintaining the integrity of the intestinal mucosal barrier, the dysfunction of which results in exposure of the host to luminal bacteria, endotoxins, and antigens leading to potentially cancer-promoting endotoxemia and chronic colon inflammation. While our results suggest that daily supplementation with these chemopreventive agents does not modify circulating concentrations of gut permeability biomarkers, they support continued investigation of other potential modifiable factors, such as diet and excess adiposity, that could alter gut barrier function, to inform the development of treatable biomarkers of risk for colorectal neoplasms and effective colon cancer preventive strategies.
Collapse
Affiliation(s)
- Kelly Vermandere
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Roberd M Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Hao Q Tran
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Robin E Rutherford
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | | | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Nimitphong H, Guo W, Holick MF, Fried SK, Lee MJ. Vitamin D Inhibits Adipokine Production and Inflammatory Signaling Through the Vitamin D Receptor in Human Adipocytes. Obesity (Silver Spring) 2021; 29:562-568. [PMID: 33624437 DOI: 10.1002/oby.23109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of vitamin D on adipokine expression and inflammation in human adipose tissues and adipocytes and evaluate the molecular mechanisms involved. METHODS Omental and abdominal subcutaneous human adipose tissues were treated with 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), and adipokine levels were measured. Vitamin D effects were measured with or without dexamethasone because glucocorticoids are known to affect vitamin D actions. Using RNA interference, we examined whether the vitamin D receptor (VDR) mediated vitamin D actions on adipokine expression and inflammatory signaling pathways in human adipocytes. RESULTS mRNA levels and secretion of leptin and IL-6 were suppressed by 1,25(OH)2 D3 in omental adipose tissues. Cotreatment with dexamethasone did not affect these inhibitory actions but partially blocked CYP24A1 induction. Similar results were observed in the subcutaneous depot. In addition, 1,25(OH)2 D3 suppressed leptin and IL-6 expression as well as nuclear factor-κB and extracellular signal-regulated kinase-1/2 phosphorylation in human adipocytes. Adipokine expression also was decreased by 25-hydroxyvitamin D3 (25(OH)D3 ), but not vitamin D3 . Knockdown of VDR increased the inflammatory signaling activity in the control condition and blocked the inhibitory effects of 1,25(OH)2 D3 on adipokine and inflammatory signaling pathways. CONCLUSION Vitamin D acts through VDR to inhibit inflammatory pathways and adipokine expression in human adipocytes. Increasing vitamin D status may ameliorate obesity-associated metabolic complications by decreasing adipose tissue inflammation.
Collapse
Affiliation(s)
- Hataikarn Nimitphong
- Department of Medicine, Section of Endocrinology and Metabolism, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Weimin Guo
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael F Holick
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Susan K Fried
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mi-Jeong Lee
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
12
|
Nimitphong H, Park E, Lee MJ. Vitamin D regulation of adipogenesis and adipose tissue functions. Nutr Res Pract 2020; 14:553-567. [PMID: 33282119 PMCID: PMC7683208 DOI: 10.4162/nrp.2020.14.6.553] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin D insufficiency is associated with obesity and its related metabolic diseases. Adipose tissues store and metabolize vitamin D and expression levels of vitamin D metabolizing enzymes are known to be altered in obesity. Sequestration of vitamin D in large amount of adipose tissues and low vitamin D metabolism may contribute to the vitamin D inadequacy in obesity. Vitamin D receptor is expressed in adipose tissues and vitamin D regulates multiple aspects of adipose biology including adipogenesis as well as metabolic and endocrine function of adipose tissues that can contribute to the high risk of metabolic diseases in vitamin D insufficiency. We will review current understanding of vitamin D regulation of adipose biology focusing on vitamin D modulation of adiposity and adipose tissue functions as well as the molecular mechanisms through which vitamin D regulates adipose biology. The effects of supplementation or maintenance of vitamin D on obesity and metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Hataikarn Nimitphong
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Eunmi Park
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Korea
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
13
|
de Almeida LF, Coimbra TM. When Less or More Isn't Enough: Renal Maldevelopment Arising From Disequilibrium in the Renin-Angiotensin System. Front Pediatr 2019; 7:296. [PMID: 31380328 PMCID: PMC6650528 DOI: 10.3389/fped.2019.00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Environmental and nutritional factors during fetal and neonatal life can have long-lasting effects on renal functions and physiology and susceptibility to kidney disease in adulthood. All components of the renin-angiotensin system (RAS) are highly expressed in the kidneys during the period of renal development. The RAS plays a central role in the regulation of various cellular growth factors and stimulates adhesion molecules and cellular migration. The use of antagonists of this system during fetal development represents a major risk factor for hypertension, renal vascular dysfunction, and kidney medulla atrophy in adulthood. The inappropriate activation of the RAS by vitamin D (VitD) deficiency has been studied in recent years. Clinical and experimental studies have demonstrated an inverse relationship between circulating VitD levels and blood pressure, plasma and renin activity, and an increase in angiotensin II and the receptor AT1. These data raise new questions about the importance of the integrity of the RAS during development since RAS pathway inhibitors and VitD deficiency have opposing functions. This is a literature review on the possible mechanisms by which antagonists of the RAS and VitD deficiency during fetal development provoke disturbances in kidney structure and function. Potential mechanisms are presented and discussed, and the possible pathways by which an imbalanced maternal RAS may negatively impact fetal development and have consequences in adulthood are also explored.
Collapse
Affiliation(s)
- Lucas Ferreira de Almeida
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Terezila Machado Coimbra
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Moine L, Rivoira M, Díaz de Barboza G, Pérez A, Tolosa de Talamoni N. Glutathione depleting drugs, antioxidants and intestinal calcium absorption. World J Gastroenterol 2018; 24:4979-4988. [PMID: 30510373 PMCID: PMC6262252 DOI: 10.3748/wjg.v24.i44.4979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is a tripeptide that constitutes one of the main intracellular reducing compounds. The normal content of GSH in the intestine is essential to optimize the intestinal Ca2+ absorption. The use of GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione or vitamin K3, sodium deoxycholate or diets enriched in fructose, which induce several features of the metabolic syndrome, produce inhibition of the intestinal Ca2+ absorption. The GSH depleting drugs switch the redox state towards an oxidant condition provoking oxidative/nitrosative stress and inflammation, which lead to apoptosis and/or autophagy of the enterocytes. Either the transcellular Ca2+ transport or the paracellular Ca2+ route are altered by GSH depleting drugs. The gene and/or protein expression of transporters involved in the transcellular Ca2+ pathway are decreased. The flavonoids quercetin and naringin highly abrogate the inhibition of intestinal Ca2+ absorption, not only by restoration of the GSH levels in the intestine but also by their anti-apoptotic properties. Ursodeoxycholic acid, melatonin and glutamine also block the inhibition of Ca2+ transport caused by GSH depleting drugs. The use of any of these antioxidants to ameliorate the intestinal Ca2+ absorption under oxidant conditions associated with different pathologies in humans requires more investigation with regards to the safety, pharmacokinetics and pharmacodynamics of them.
Collapse
Affiliation(s)
- Luciana Moine
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María Rivoira
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Adriana Pérez
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
15
|
Elfers K, Marr I, Wilkens MR, Breves G, Langeheine M, Brehm R, Muscher-Banse AS. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet. PLoS One 2016; 11:e0154311. [PMID: 27120348 PMCID: PMC4847856 DOI: 10.1371/journal.pone.0154311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.
Collapse
Affiliation(s)
- Kristin Elfers
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Isabell Marr
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Mirja R. Wilkens
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Marion Langeheine
- Institute of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/122, 30173, Hannover, Germany
| | - Ralph Brehm
- Institute of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/122, 30173, Hannover, Germany
| | - Alexandra S. Muscher-Banse
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
- * E-mail:
| |
Collapse
|
16
|
Chen L, Tuo B, Dong H. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters. Nutrients 2016; 8:nu8010043. [PMID: 26784222 PMCID: PMC4728656 DOI: 10.3390/nu8010043] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
17
|
Vitamin D and the Epithelial to Mesenchymal Transition. Stem Cells Int 2016; 2016:6213872. [PMID: 26880977 PMCID: PMC4736588 DOI: 10.1155/2016/6213872] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022] Open
Abstract
Several studies support reciprocal regulation between the active vitamin D derivative 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the epithelial to mesenchymal transition (EMT). Thus, 1,25(OH)2D3 inhibits EMT via the induction of a variety of target genes that encode cell adhesion and polarity proteins responsible for the epithelial phenotype and through the repression of key EMT inducers. Both direct and indirect regulatory mechanisms mediate these effects. Conversely, certain master EMT inducers inhibit 1,25(OH)2D3 action by repressing the transcription of VDR gene encoding the high affinity vitamin D receptor that mediates 1,25(OH)2D3 effects. Consequently, the balance between the strength of 1,25(OH)2D3 signaling and the induction of EMT defines the cellular phenotype in each context. Here we review the current understanding of the genes and mechanisms involved in the interplay between 1,25(OH)2D3 and EMT.
Collapse
|
18
|
Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals. Nutr Res Rev 2015; 28:83-99. [PMID: 26466525 DOI: 10.1017/s0954422415000050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestine is the only gate for the entry of Ca to the body in humans and mammals. The entrance of Ca occurs via paracellular and intracellular pathways. All steps of the latter pathway are regulated by calcitriol and by other hormones. Dietary and pharmacological compounds also modulate the intestinal Ca absorption process. Among them, dietary Ca and P are known to alter the lipid and protein composition of the brush-border and basolateral membranes and, consequently, Ca transport. Ca intakes are below the requirements recommended by health professionals in most countries, triggering important health problems. Chronic low Ca intake has been related to illness conditions such as osteoporosis, hypertension, renal lithiasis and incidences of human cancer. Carbohydrates, mainly lactose, and prebiotics have been described as positive modulators of intestinal Ca absorption. Apparently, high meat proteins increase intestinal Ca absorption while the effect of dietary lipids remains unclear. Pharmacological compounds such as menadione, dl-butionine-S,R-sulfoximine and ursodeoxycholic acid also modify intestinal Ca absorption as a consequence of altering the redox state of the epithelial cells. The paracellular pathway of intestinal Ca absorption is poorly known and is under present study in some laboratories. Another field that needs to be explored more intensively is the influence of the gene × diet interaction on intestinal Ca absorption. Health professionals should be aware of this knowledge in order to develop nutritional or medical strategies to stimulate the efficiency of intestinal Ca absorption and to prevent diseases.
Collapse
|
19
|
Linder B, Weber S, Dittmann K, Adamski J, Hahn H, Uhmann A. A Functional and Putative Physiological Role of Calcitriol in Patched1/Smoothened Interaction. J Biol Chem 2015; 290:19614-28. [PMID: 26126827 DOI: 10.1074/jbc.m115.646141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 01/03/2023] Open
Abstract
The Patched1 (Ptch)-mediated inhibition of Smoothened (Smo) is still an open question. However, a direct Ptch/Smo interaction has been excluded, Smo modulators were identified, but the endogenous signal transmitting molecule remains undiscovered. Here, we demonstrate that calcitriol, the hormonally active form of vitamin D3, is an excellent candidate for transmission of Ptch/Smo interaction. Our study reveals that Ptch expression is sufficient to release calcitriol from the cell and that calcitriol inhibits Smo action and ciliary translocation by acting on a site distinct from the 7-transmembrane domain or the cysteine-rich domain. Moreover calcitriol strongly synergizes with itraconazole (ITZ) in Smo inhibition, which did not result from elevated calcitriol bioavailability due to ITZ-mediated 24-hydroxylase inhibition but rather from a direct interaction of the compounds at the level of Smo. Together, we suggest that calcitriol represents a possible endogenous transmitter of Ptch/Smo interaction. Moreover calcitriol or calcitriol derivatives combined with ITZ might be a treatment option of Hedgehog-associated cancers.
Collapse
Affiliation(s)
- Benedikt Linder
- From the Institute of Human Genetics, Tumor Genetics Group, and
| | - Susanne Weber
- the Department Genome Analysis Centre, Institute for Experimental Genetics, Helmholtz Zentrum Muenchen, National Research Center for Environment and Health, 85764 Neuherberg, Germany
| | - Kai Dittmann
- the Institute of Cellular and Molecular Immunology, University Medical Center, 37073 Goettingen and
| | - Jerzy Adamski
- the Department Genome Analysis Centre, Institute for Experimental Genetics, Helmholtz Zentrum Muenchen, National Research Center for Environment and Health, 85764 Neuherberg, Germany
| | - Heidi Hahn
- From the Institute of Human Genetics, Tumor Genetics Group, and
| | - Anja Uhmann
- From the Institute of Human Genetics, Tumor Genetics Group, and
| |
Collapse
|
20
|
Vitamin D status is a determinant of skeletal muscle mass in obesity according to body fat percentage. Nutrition 2015; 31:801-6. [DOI: 10.1016/j.nut.2014.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
|
21
|
Transcriptional regulators of claudins in epithelial tight junctions. Mediators Inflamm 2015; 2015:219843. [PMID: 25948882 PMCID: PMC4407569 DOI: 10.1155/2015/219843] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023] Open
Abstract
Human gastrointestinal tract is covered by a monolayer of specialized epithelial cells that constitute a protective barrier surface to external toxic and infectious agents along with metabolic and digestive functions. Intercellular junctions, among epithelial cells, such as desmosomes, adherens, gap, and tight junctions (TJs), not only provide mechanical integrity but also limit movement of molecules across the monolayer. TJ is a complex structure composed of approximately 35 different proteins that interact with each other at the apical side of two adjacent epithelial cells. Claudin family proteins are important members of TJ with so far 24 known isoforms in different species. Claudins are structural proteins of TJ that help to control the paracellular movement by forming fence and barrier across the epithelial monolayer. Altered function of claudins is implicated in different form of cancers, inflammatory bowel diseases (IBDs), and leaky diarrhea. Based on their significant role in the molecular architecture of TJ, diversity, and disease association, further understanding about claudin family proteins and their genetic/epigenetic regulators is indispensable.
Collapse
|
22
|
Almilaji A, Honisch S, Liu G, Elvira B, Ajay SS, Hosseinzadeh Z, Ahmed M, Munoz C, Sopjani M, Lang F. Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein. Kidney Blood Press Res 2014; 39:609-22. [PMID: 25571875 DOI: 10.1159/000368472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Klotho, a protein mainly produced in the kidney and released into circulating blood, contributes to the negative regulation of 1,25(OH)2D3 formation and is thus a powerful regulator of mineral metabolism. As β-glucuronidase, alpha Klotho protein further regulates the stability of several carriers and channels in the plasma membrane and thus regulates channel and transporter activity. Accordingly, alpha Klotho protein participates in the regulation of diverse functions seemingly unrelated to mineral metabolism including lymphocyte function. The present study explored the impact of alpha Klotho protein on the voltage gated K+ channel Kv1.3. METHODS cRNA encoding Kv1.3 (KCNA3) was injected into Xenopus oocytes and depolarization induced outward current in Kv1.3 expressing Xenopus oocytes determined utilizing dual electrode voltage clamp. Experiments were performed without or with prior treatment with recombinant human Klotho protein (50 ng/ml, 24 hours) in the absence or presence of a β-glucuronidase inhibitor D-saccharic acid-1,4-lactone (DSAL, 10 µM). Moreover, the voltage gated K+ current was determined in Jcam lymphoma cells by whole cell patch clamp following 24 hours incubation without or with recombinant human Klotho protein (50 ng/ml, 24 hours). Kv1.3 protein abundance in Jcam cells was determined utilising fluorescent antibodies in flow cytometry. RESULTS In Kv1.3 expressing Xenopus oocytes the Kv1.3 currents and the protein abundance of Kv1.3 were both significantly enhanced after treatment with recombinant human Klotho protein (50 ng/ml, 24 hours), an effect reversed by presence of DSAL. Moreover, treatment with recombinant human Klotho protein increased Kv currents and Kv1.3 protein abundance in Jcam cells. CONCLUSION Alpha Klotho protein enhances Kv1.3 channel abundance and Kv1.3 currents in the plasma membrane, an effect depending on its β-glucuronidase activity.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The emerging role of vitamin D as a regulator of both innate and adaptive immune responses has encouraged the investigation of its role in the pathogenesis of a variety of autoimmune conditions including the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Animal models consistently demonstrate that vitamin D significantly impacts on the modulation of astrointestinal inflammation, while epidemiological and observational data show an inverse relationship between vitamin D status and the onset/progression of Crohn's disease as well as the development of colorectal cancer. As vitamin D supplementation is readily available, at low cost, it is a very attractive potential therapeutic option. The biological plausibility for a role for vitamin D in inflammation modulation, the potential genetic links associated with vitamin D metabolism and the clinical aspects for it in IBD will be discussed.
Collapse
Affiliation(s)
- Simon Ghaly
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital and School of Medicine and Pharmacology, University of Western Australia, Level 5, T Block, Alma St, Fremanlte, Western Australia 6159, Australia
| | | |
Collapse
|
24
|
Alexander RT, Rievaj J, Dimke H. Paracellular calcium transport across renal and intestinal epithelia. Biochem Cell Biol 2014; 92:467-80. [PMID: 25386841 DOI: 10.1139/bcb-2014-0061] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca(2+)) is a key constituent in a myriad of physiological processes from intracellular signalling to the mineralization of bone. As a consequence, Ca(2+) is maintained within narrow limits when circulating in plasma. This is accomplished via regulated interplay between intestinal absorption, renal tubular reabsorption, and exchange with bone. Many studies have focused on the highly regulated active transcellular transport pathways for Ca(2+) from the duodenum of the intestine and the distal nephron of the kidney. However, comparatively little work has examined the molecular constituents creating the paracellular shunt across intestinal and renal epithelium, the transport pathway responsible for the majority of transepithelial Ca(2+) flux. More specifically, passive paracellular Ca(2+) absorption occurs across the majority of the intestine in addition to the renal proximal tubule and thick ascending limb of Henle's loop. Importantly, recent studies demonstrated that Ca(2+) transport through the paracellular shunt is significantly regulated. Therefore, we have summarized the evidence for different modes of paracellular Ca(2+) flux across renal and intestinal epithelia and highlighted recent molecular insights into both the mechanism of secondarily active paracellular Ca(2+) movement and the identity of claudins that permit the passage of Ca(2+) through the tight junction of these epithelia.
Collapse
Affiliation(s)
- R Todd Alexander
- a Department of Pediatrics, The University of Alberta, 4-585 Edmonton Clinic Health Academy, 11405 - 87 Ave, Edmonton, AB T6G 2R7, Canada
| | | | | |
Collapse
|
25
|
Goltzman D, Hendy GN, White JH. Vitamin D and its receptor during late development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:171-80. [PMID: 24939836 DOI: 10.1016/j.bbagrm.2014.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
Expression of the vitamin D receptor (VDR) is widespread but may vary depending on the developmental stage of the animal, and therefore may differentially influence phenotypic function. Thus, the major role of the 1,25-dihydroxyvitamin D [1,25(OH)2D]/VDR system is to regulate mineral and skeletal homeostasis, although mainly after birth. Post-natally, under conditions of low dietary calcium, the 1,25(OH)2D/VDR system enhances intestinal transcellular transport of calcium and possibly paracellular calcium entry by regulating genes that are critical for these functions. This process, by providing adequate calcium, is essential for normal development of the skeletal growth plate and mineralization of bone. Furthermore, blood calcium and phosphorus homeostasis is maintained by an interplay between feedback loops of the 1,25(OH)2D/VDR system with parathyroid hormone and with fibroblast-growth factor (FGF) 23 respectively. The 1,25(OH)2D/VDR system can also modulate the expression of genes involved in both bone formation and resorption post-natally. Ligand independent activity of the VDR normally influences mammalian hair cycling after birth by potentiating Wnt and bone morphogenetic protein (BMP) signaling. Nevertheless ligand bound VDR may also modulate epidermal cell proliferation/differentiation by regulating the balance in function of c-MYC and its antagonist the transcriptional repressor MAD1/MXD1 in skin epithelia. The 1,25(OH)2D/VDR system can also modulate innate immune cells and promote a more tolerogenic immunological status and may therefore influence inflammation and the development of autoimmunity; whether this impacts the fetus is uncertain. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- D Goltzman
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| | - G N Hendy
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| | - J H White
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| |
Collapse
|
26
|
Abstract
Rickets, historically referred to as "the English disease", is common worldwide. Absence of phosphate at the growth plate and mineralising bone surfaces due to inadequate vitamin D supply either from sunlight exposure or diet is the main cause. Inherited disorders causing hypophosphataemia have shown the intricacies of phosphate metabolism. Present advice about the provision of vitamin D to young infants needs to be clarified; the existing guidance is fragmentary and contradictory, and will not help to eradicate the disease.
Collapse
Affiliation(s)
- Charlotte Jane Elder
- University of Sheffield, Academic Unit of Child Health, Sheffield Children's Hospital, Western Bank, Sheffield, UK
| | - Nicholas J Bishop
- University of Sheffield, Academic Unit of Child Health, Sheffield Children's Hospital, Western Bank, Sheffield, UK.
| |
Collapse
|
27
|
Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic Niches and Neurogenesis Modulation by Vitamins. ACTA ACUST UNITED AC 2014. [PMID: 26203401 DOI: 10.4172/2157-7633.1000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the generation of new neurons occurs in adult mammals, it has been classically described in two defined regions of the brain denominated neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus. In these regions, neural stem cells give rise to new neurons and glia, which functionally integrate into the existing circuits under physiological conditions. However, accumulating evidence indicates the presence of neurogenic potential in other brain regions, from which multipotent precursors can be isolated and differentiated in vitro. In some of these regions, neuron generation occurs at low levels; however, the addition of growth factors, hormones or other signaling molecules increases the proliferation and differentiation of precursor cells. In addition, vitamins, which are micronutrients necessary for normal brain development, and whose deficiency produces neurological impairments, have a regulatory effect on neural stem cells in vitro and in vivo. In the present review, we will describe the progress that has been achieved in determining the neurogenic potential in other regions, known as unconventional niches, as well as the characteristics of the neural stem cells described for each region. Finally, we will revisit the roles of commonly known vitamins as modulators of precursor cell proliferation and differentiation, and their role in the complex and tight molecular signaling that impacts these neurogenic niches.
Collapse
Affiliation(s)
- Karina Oyarce
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| |
Collapse
|
28
|
de Brito Galvao JF, Nagode LA, Schenck PA, Chew DJ. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease. J Vet Emerg Crit Care (San Antonio) 2013; 23:134-62. [PMID: 23566108 PMCID: PMC3677418 DOI: 10.1111/vec.12036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 02/05/2013] [Indexed: 12/13/2022]
Abstract
Objective To review the inter-relationships between calcium, phosphorus, parathyroid hormone (PTH), parent and activated vitamin D metabolites (vitamin D, 25(OH)-vitamin D, 1,25(OH)2-vitamin D, 24,25(OH)2-vitamin D), and fibroblast growth factor-23 (FGF-23) during chronic kidney disease (CKD) in dogs and cats. Data Sources Human and veterinary literature. Human Data Synthesis Beneficial effects of calcitriol treatment during CKD have traditionally been attributed to regulation of PTH but new perspectives emphasize direct renoprotective actions independent of PTH and calcium. It is now apparent that calcitriol exerts an important effect on renal tubular reclamation of filtered 25(OH)-vitamin D, which may be important in maintaining adequate circulating 25(OH)-vitamin D. This in turn may be vital for important pleiotropic actions in peripheral tissues through autocrine/paracrine mechanisms that impact the health of those local tissues. Veterinary Data Synthesis Limited information is available reporting the benefit of calcitriol treatment in dogs and cats with CKD. Conclusions A survival benefit has been shown for dogs with CKD treated with calcitriol compared to placebo. The concentrations of circulating 25(OH)-vitamin D have recently been shown to be low in people and dogs with CKD and are related to survival in people with CKD. Combination therapy for people with CKD using both parental and activated vitamin D compounds is common in human nephrology and there is a developing emphasis using combination treatment with activated vitamin D and renin-angiotensin-aldosterone-system (RAAS) inhibitors.
Collapse
|
29
|
Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 2013; 1:e24978. [PMID: 24478939 PMCID: PMC3879173 DOI: 10.4161/tisb.24978] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023] Open
Abstract
Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Basic Medicine; Hangzhou Normal University, Hangzhou, PR China ; Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Lei Ding
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA ; Department of Oncology; Beijing Shijitan Hospital; Capital Medical University; Beijing, PR China
| | - Qun Lu
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|
30
|
Salmonella infection upregulates the leaky protein claudin-2 in intestinal epithelial cells. PLoS One 2013; 8:e58606. [PMID: 23505542 PMCID: PMC3594366 DOI: 10.1371/journal.pone.0058606] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/07/2013] [Indexed: 02/08/2023] Open
Abstract
Background Tight junctions seal the space between adjacent epithelial cells. Mounting evidence suggests that tight junction proteins play a key role in the pathogenesis of human disease. Claudin is a member of the tight junction protein family, which has 24 members in humans. To regulate cellular function, claudins interact structurally and functionally with membrane and scaffolding proteins via their cytoplasmic domain. In particular, claudin-2 is known to be a leaky protein that contributes to inflammatory bowel disease and colon cancer. However, the involvement of claudin-2 in bacterial infection in the intestine remains unknown. Methods/Principal Findings We hypothesized that Salmonella elevates the leaky protein claudin-2 for its own benefit to facilitate bacterial invasion in the colon. Using a Salmonella-colitis mouse model and cultured colonic epithelial cells, we found that pathogenic Salmonella colonization significantly increases the levels of claudin-2 protein and mRNA in the intestine, but not that of claudin-3 or claudin-7 in the colon, in a time-dependent manner. Immunostaining studies showed that the claudin-2 expression along the crypt-villous axis postinfection. In vitro, Salmonella stimulated claudin-2 expression in the human intestinal epithelial cell lines SKCO15 and HT29C19A. Further analysis by siRNA knockdown revealed that claudin-2 is associated with the Salmonella-induced elevation of cell permeability. Epithelial cells with claudin-2 knockdown had significantly less internalized Salmonella than control cells with normal claudin-2 expression. Inhibitor assays demonstrated that this regulation is mediated through activation of the EGFR pathway and the downstream protein JNK. Conclusion/Significance We have shown that Salmonella targets the tight junction protein claudin-2 to facilitate bacterial invasion. We speculate that this disruption of barrier function contributes to a new mechanism by which bacteria interact with their host cells and suggests the possibility of blocking claudin-2 as a potential therapeutic strategy to prevent bacterial invasion.
Collapse
|
31
|
Wongdee K, Charoenphandhu N. Regulation of epithelial calcium transport by prolactin: from fish to mammals. Gen Comp Endocrinol 2013; 181:235-40. [PMID: 22814336 DOI: 10.1016/j.ygcen.2012.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/08/2012] [Indexed: 12/11/2022]
Abstract
Among the reported ∼300 biological actions, the established role of prolactin (PRL) is to act as a vertebrate hypercalcemic hormone that regulates epithelial calcium transport in several organs, such as the gills, intestine, and kidney. In fish, PRL stimulates the branchial calcium transport by increasing the activity of Ca(2+)-ATPase. Although this calciotropic hormone also induces hypercalcemia in amphibians, reptiles and birds, little has been known regarding the underlying mechanism. In contrast, the effects of PRL on the epithelial calcium transport in mammals are well documented. In rodents, PRL has been shown to stimulate the renal tubular calcium reabsorption and intestinal calcium absorption, the latter of which is mediated by the PRL-induced upregulation of calcium transporter gene expression and activities. Recently, we demonstrated that the duodenal calcium absorption in lactating rats was markedly enhanced by the suckling-induced PRL surge, presumably to provide calcium for milk production. The cellular and molecular mechanisms of the PRL-stimulated calcium transport in mammals have been elaborated in this review.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
32
|
Lameris AL, Huybers S, Kaukinen K, Mäkelä TH, Bindels RJ, Hoenderop JG, Nevalainen PI. Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scand J Gastroenterol 2013. [PMID: 23205909 DOI: 10.3109/00365521.2012.741616] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Claudins, being part of the tight junction protein family, partially determine the integrity and paracellular permeability of the intestinal epithelium. The aim of this study was twofold. First, the authors set out to create an overview of claudin mRNA expression along the proximal-distal axis of the healthy human intestine. Second, the authors aimed to analyze expression levels of claudins in patients with active and inactive inflammatory bowel diseases (IBD) such as Crohn's disease or ulcerative colitis (UC). METHODS mRNA expression levels of claudins were determined in gastrointestinal biopsies from healthy patients as well as patients diagnosed with IBD using SybrGreen real-time PCR. RESULTS Claudins show distinct expression patterns throughout the gastrointestinal tract. Some claudins show a proximal expression pattern, such as CLDN18 which is solely expressed in the stomach, and CLDN2 and -15 that are predominantly expressed in the proximal parts of the gastrointestinal tract. Other claudins, such as CLDN3, -4, -7 and -8, are predominantly expressed in the distal parts of the gastrointestinal tract or show a ubiquitous expression pattern throughout the entire gastrointestinal tract, which is the case for CLDN12. In addition, we show that changes in claudin expression in IBD are dependent on gastrointestinal location and inflammatory activity. CONCLUSIONS This study provides detailed mRNA expression patterns of various claudins throughout the human gastrointestinal tract. Analysis of expression levels of claudins in patients with CD, active and inactive UC shows that changes in expression are confined to specific intestinal segments and strongly depend on inflammatory activity.
Collapse
Affiliation(s)
- Anke L Lameris
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Dietary supplementation with vitamin D stimulates intestinal epithelial cell turnover after massive small bowel resection in rats. Pediatr Surg Int 2013; 29:41-50. [PMID: 23114406 DOI: 10.1007/s00383-012-3205-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE While the endocrine action of the active metabolite 1,25-dihydroxyvitamin D (VtD) has been well characterized in relation to the maintenance of plasma calcium and phosphate homeostasis through regulation of intestinal absorption, recent research has focused on its autocrine and/or paracrine activities. Such activities have been best characterized in intestine, where VtD regulates cell differentiation and maturation. The purpose of this study was to evaluate the effect of VtD on enterocyte turnover in a rat model of short bowel syndrome (SBS). METHODS Male rats were divided into four groups: sham rats underwent bowel transection, sham-VtD rats underwent bowel transection and were treated oral VtD, SBS rats underwent a 75 % bowel resection, and SBS-VtD rats underwent bowel resection and were treated with VtD. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined at sacrifice. Illumina's digital gene expression (DGE) analysis was used to determine VtD pathway-related gene expression profiling. VtD receptor (VDR) and its promoter, Bax and Bcl-2 mRNA expression were determined using real-time PCR. Western blotting was used to determine p-ERK, Bax and β-catenin protein levels. RESULTS From the total of 20,000 probes, 11 genes related to VtD signaling were investigated. Of these genes, five were found to be up-regulated in SBS versus sham animals with a relative change in gene expression level of 20 %, five remained unchanged, and one was down-regulated. VtD treatment in sham and SBS rats resulted in significant up-regulation of the VDR gene and its promoter's expression. SBS-VtD rats demonstrated a significant increase in all intestinal mucosal parameters compared to SBS animals. A significant increase in cell proliferation in SBS-VtD rats was accompanied by increased β-catenin protein levels. A significant decrease in cell apoptosis in this group was correlated with lower Bax/Bcl-2 mRNA and protein levels. CONCLUSION In a rat model of SBS, dietary supplementation with VtD stimulates enterocyte turnover, which correlates with up-regulated VtD receptor expression in the remaining small intestine.
Collapse
|
34
|
Abstract
Tissue barriers are critical in the pathogenesis of human diseases, such as atopic dermatitis, inflammatory bowel diseases and various cancers. Preserving or restoring barrier functions of the epithelia cells is a therapeutic strategy to prevent and treat the illness. Mounting evidence indicates that vitamin D and the vitamin D receptor (VDR) play key roles in the pathogenesis of human diseases. In particular, we note an interesting link between vitamin D/VDR signaling and tissue barriers. In the current review, we summarize the recent progress on vitamin D and cell junction complexes. We focus on the functions of VDR and VDR-associated intracellular junction proteins, such as β-catenin and claudins. We also discuss the potential therapeutic functions of vitamin D in treating defective tissue barriers that involve skin, intestine, lung, kidney and other organs. However, the mechanisms for the vitamin D/VDR signaling in tissue barriers remain largely unknown. Further studies on vitamin D/VDR’s multiple functions in physiological models will suggest new therapeutic targets for prevention and treatment diseases with defective barrier functions.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Biochemistry, Rush University, 1735 W. Harrison Street, Chicago, IL, 60612, USA
| | - Shaoping Wu
- Department of Biochemistry, Rush University, 1735 W. Harrison Street, Chicago, IL, 60612, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, 1735 W. Harrison Street, Chicago, IL, 60612, USA
| |
Collapse
|
35
|
Abstract
Calcium is the most abundant cation in the human body, of which approximately 99% occurs in bone, contributing to its rigidity and strength. Bone also functions as a reservoir of Ca for its role in multiple physiologic and biochemical processes. This article aims to provide a thorough understanding of the absorptive mechanisms and factors affecting these processes to enable one to better appreciate an individual's Ca needs, and to provide a rationale for correcting Ca deficiencies. An overview of Ca requirements and suggested dosing regimens is presented, with discussion of various Ca preparations and potential toxicities of Ca treatment.
Collapse
Affiliation(s)
- Ronald D Emkey
- Pennsylvania Regional Center for Arthritis & Osteoporosis Research, 1200 Broadcasting Road, Suite 200, Wyomissing, PA 19610, USA.
| | | |
Collapse
|
36
|
Abstract
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is the major controlling hormone of intestinal calcium absorption. As the body's demand for calcium increases from a diet deficient in calcium, from growth, pregnancy or lactation, the synthesis of 1,25(OH)(2)D(3) is increased resulting in the stimulation of intestinal calcium absorption. However a complete description of the molecular mechanisms involved in the 1,25(OH)(2)D(3) regulated calcium absorptive process remains incomplete. Intestinal calcium absorption occurs by both an active saturable transcellular pathway and a passive nonsaturable paracellular pathway. Each step in the process of transcellular calcium transport (apical entry of calcium, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the plasma membrane pump) has been reported to involve a vitamin D dependent component. This article will review recent studies, including those using knockout mice, that have suggested that 1,25(OH)(2)D(3) mediated calcium absorption is more complex than the traditional three step model of transcellular calcium transport. Current concepts are reviewed and questions that remain are addressed. Evidence for a role of 1,25(OH)(2)D(3) in the regulation of the paracellular pathway is also discussed.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07013, USA.
| |
Collapse
|
37
|
Christakos S. Recent advances in our understanding of 1,25-dihydroxyvitamin D(3) regulation of intestinal calcium absorption. Arch Biochem Biophys 2012; 523:73-6. [PMID: 22230327 DOI: 10.1016/j.abb.2011.12.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 02/07/2023]
Abstract
Calcium is required for many cellular processes including muscle contraction, nerve pulse transmission, stimulus secretion coupling and bone formation. The principal source of new calcium to meet these essential functions is from the diet. Intestinal absorption of calcium occurs by an active transcellular path and by a non-saturable paracellular path. The major factor influencing intestinal calcium absorption is vitamin D and more specifically the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). This article emphasizes studies that have provided new insight related to the mechanisms involved in the intestinal actions of 1,25(OH)(2)D(3). The following are discussed: recent studies, including those using knock out mice, that suggest that 1,25(OH)(2)D(3) mediated calcium absorption is more complex than the traditional transcellular model; evidence for 1,25(OH)(2)D(3) mediated active transport of calcium by distal as well as proximal segments of the intestine; 1,25(OH)(2)D(3) regulation of paracellular calcium transport and the role of 1,25(OH)(2)D(3) in protection against mucosal injury.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
38
|
Bibliography. Spondyloarthropathies. Current world literature. Curr Opin Rheumatol 2011; 23:406-7. [PMID: 21637083 DOI: 10.1097/bor.0b013e3283489bf8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|