1
|
Hong J, Yang Z, Gao J, Yu K, Hu A, Kuang Y, Gajendran B, Zacksenhaus E, Xiao X, Wang C, Liu W, Ben-David Y. Vitamin D3 and its active form calcitriol suppress erythroleukemia through upregulation of CHAC1 and downregulation of NOTCH1. Med Oncol 2025; 42:138. [PMID: 40146328 DOI: 10.1007/s12032-025-02695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
Vitamin D3 (VD3) and its active form calcitriol (Ca) exhibit anti-neoplastic activity against several types of cancer, although the underlying mechanism is not fully understood. Herein, we tested the effects of VD3 and Ca on erythro-leukemogenesis and investigated the underlying mechanism. VD3 and Ca treatment strongly inhibited cancer progression in a mouse model of erythroleukemia induced by the Friend virus. In tissue culture, VD3 and Ca inhibited proliferation of leukemic cell lines. Growth inhibition was associated with induction of G1 phase cell cycle arrest and apoptosis. Transcription of the VD3 receptor, VDR, is strongly induced by Ca, but not VDR. However, leukemia growth suppression by both VD3 and Ca is shown to be independent of VDR. In leukemic cells, both VD3 and Ca induced genes associated with metabolic pathways. Both VD3 and Ca induce the cytosolic glutathione degradase CHAC1 through activation of the ER stress response pathway ATF3/ATF4/CHOP genes. Higher expression of CHAC1 also suppressed the oncogene NOTCH1. Accordingly, knockdown of CHAC1 antagonized the inhibitory effect of VD3 and Ca on leukemic growth leading to higher NOTCH1 expression. Conversely, overexpression of CHAC1 suppressed leukemia cell growth and inhibited the expression of NOTCH1. Additionally, glutathione antagonized leukemia cell suppression induced by VD3 and Ca, demonstrating that this vitamin inhibits the proliferation of leukemic cells via CHAC1. Taken together, our results demonstrated that VD3 and Ca can prolong the survival of leukemia mice and inhibit the proliferation of erythroleukemia cell HEL through CHAC1 or CHAC1-mediated NOTCH1 inhibition.
Collapse
MESH Headings
- Animals
- Calcitriol/pharmacology
- Mice
- Humans
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/biosynthesis
- Cholecalciferol/pharmacology
- Cell Proliferation/drug effects
- Down-Regulation/drug effects
- Up-Regulation/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Zhongyou Yang
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Jian Gao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Kunlin Yu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Anling Hu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Yi Kuang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Babu Gajendran
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Xiao Xiao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China
| | - Chunlin Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China.
| | - Wuling Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China.
| | - Yaacov Ben-David
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Province Science City, No. 3491 Bai-Jin Avenue, High Tech Zone, Baiyun District, Guiyang, 550014, China.
| |
Collapse
|
2
|
Zhang RM, Oh J, Wice BM, Dusso A, Bernal-Mizrachi C. Acute hyperglycemia induces podocyte apoptosis by monocyte TNF-α release, a process attenuated by vitamin D and GLP-1 receptor agonists. J Steroid Biochem Mol Biol 2025; 247:106676. [PMID: 39818342 PMCID: PMC11859504 DOI: 10.1016/j.jsbmb.2025.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Targeting optimal glycemic control based on hemoglobin A1c (A1c) values reduces but does not abolish the onset of diabetic kidney disease and its progression to chronic kidney disease (CKD). This suggests that factors other than the average glucose contribute to the residual risk. Vitamin D deficiency and frequent episodes of acute hyperglycemia (AH) are associated with the onset of albuminuria and CKD progression in diabetes. This study aimed to determine if moderate levels of AH harm podocytes directly or promote a pro-inflammatory monocyte/macrophage phenotype that leads to podocyte apoptosis, and whether vitamin D deficiency accelerates these processes. We found that AH (16.7 mM D- glucose) didn't induce podocyte apoptosis directly, but it did promote a pro-inflammatory response in human monocytes and macrophages, resulting in an increased TNF-α secretion causing podocyte apoptosis. The AH-induced monocyte TNF-α secretion was inversely correlated with healthy donors' serum 25(OH)D levels. AH induced monocyte TNF-α release by increasing oxidative and ER stress, which in turn increased ADAM17 (A Disintegrin And Metalloprotease 17) and iRhom2 (inactive Rhomboid protein 2) expression, both essential for TNF-α secretion. Additionally, monocyte activation of glucagon-like peptide-1 receptor (GLP-1R), using a GLP-1R agonist, downregulated ADAM17/iRhom2 expression, decreasing TNF-α release and reducing podocyte apoptosis. These results show that a normal vitamin D status may attenuate a mechanism by which AH contributes to podocyte apoptosis and CKD progression and might enhance a novel anti-inflammatory role of GLP-1 to prevent AH-driven CKD progression in diabetes.
Collapse
Affiliation(s)
- Rong M Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jisu Oh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Burton M Wice
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Adriana Dusso
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Carlos Bernal-Mizrachi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, VA Medical Center, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Fuentes-Barría H, Aguilera-Eguía R, Flores-Fernández C, Angarita-Davila L, Rojas-Gómez D, Alarcón-Rivera M, López-Soto O, Maureira-Sánchez J. Vitamin D and Type 2 Diabetes Mellitus: Molecular Mechanisms and Clinical Implications-A Narrative Review. Int J Mol Sci 2025; 26:2153. [PMID: 40076782 PMCID: PMC11900948 DOI: 10.3390/ijms26052153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Vitamin D has been widely studied for its implications on type 2 diabetes mellitus, a chronic condition characterized by insulin resistance, inflammation, and metabolic dysfunction. This review explores the molecular mechanisms underpinning vitamin D's effects on glucose metabolism, inflammation, and adipogenesis, while assessing its potential clinical applications in type 2 diabetes. In its 1,25-dihydroxyvitamin D3 form, vitamin D modulates various metabolic processes, affecting proinflammatory cytokines and activating the AMPK pathway, inhibiting mTOR signaling, and promoting adipocyte differentiation. These effects enhance insulin sensitivity and reduce chronic inflammation, key contributors to metabolic dysfunction. In this context, the progression of prediabetes has been linked to vitamin D, which limits pathological progression and increases the likelihood of restoring a normal metabolic state, crucial in diabetes progression. Moreover, vitamin D has been reported to reduce the likelihood of developing diabetes by 15%, particularly in doses higher than the traditional recommendations for bone health. Despite promising evidence, discrepancies in study designs, serum vitamin D measurements, and population-specific factors highlight the need for standardized methodologies and personalized approaches. In conclusion, vitamin D has complementary therapeutic potential in treating type 2 diabetes, revealing gaps in research, such as optimal dosing and long-term effects across populations. Future studies should integrate molecular insights into clinical practice to optimize vitamin D's impact on metabolic health.
Collapse
Affiliation(s)
- Héctor Fuentes-Barría
- Vicerrectoría de Investigación e Innovación, Universidad Arturo Prat, Iquique 1100000, Chile;
- Escuela de Ondontología, Facultad de Odontología, Universidad Andres Bello, Concepción 3349001, Chile
| | - Raúl Aguilera-Eguía
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 3349001, Chile;
| | - Cherie Flores-Fernández
- Departamento de Gestión de la Información, Universidad Tecnológica Metropolitana, Santiago 7550000, Chile;
| | - Lissé Angarita-Davila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 3349001, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 7550000, Chile;
| | - Miguel Alarcón-Rivera
- Escuela de Ciencias del Deporte y Actividad Física, Facultad de Salud, Universidad Santo Tomás, Talca 3460000, Chile;
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Olga López-Soto
- Facultad de Salud, Universidad Autónoma de Manizales, Manizales 170017, Colombia;
| | | |
Collapse
|
4
|
Wang D, Sun Z, Yin Y, Xiang J, Wei Y, Ma Y, Wang L, Liu G. Vitamin D and Atherosclerosis: Unraveling the Impact on Macrophage Function. Mol Nutr Food Res 2024; 68:e2300867. [PMID: 38864846 DOI: 10.1002/mnfr.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Indexed: 06/13/2024]
Abstract
Vitamin D plays a crucial role in preventing atherosclerosis and in the regulation of macrophage function. This review aims to provide a comprehensive summary of the clinical evidence regarding the impact of vitamin D on atherosclerotic cardiovascular disease, atherosclerotic cerebrovascular disease, peripheral arterial disease, and associated risk factors. Additionally, it explores the mechanistic studies investigating the influence of vitamin D on macrophage function in atherosclerosis. Numerous findings indicate that vitamin D inhibits monocyte or macrophage recruitment, macrophage cholesterol uptake, and esterification. Moreover, it induces autophagy of lipid droplets in macrophages, promotes cholesterol efflux from macrophages, and regulates macrophage polarization. This review particularly focuses on analyzing the molecular mechanisms and signaling pathways through which vitamin D modulates macrophage function in atherosclerosis. It claims that vitamin D has a direct inhibitory effect on the formation, adhesion, and migration of lipid-loaded monocytes, thus exerting anti-atherosclerotic effects. Therefore, this review emphasizes the crucial role of vitamin D in regulating macrophage function and preventing the development of atherosclerosis.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhen Sun
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yajuan Yin
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyi Xiang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yuzhe Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Le Wang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Gang Liu
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
5
|
Lin DW, Yang TM, Ho C, Shih YH, Lin CL, Hsu YC. Targeting Macrophages: Therapeutic Approaches in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4350. [PMID: 38673935 PMCID: PMC11050450 DOI: 10.3390/ijms25084350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes is not solely a metabolic disorder but also involves inflammatory processes. The immune response it incites is a primary contributor to damage in target organs. Research indicates that during the initial phases of diabetic nephropathy, macrophages infiltrate the kidneys alongside lymphocytes, initiating a cascade of inflammatory reactions. The interplay between macrophages and other renal cells is pivotal in the advancement of kidney disease within a hyperglycemic milieu. While M1 macrophages react to the inflammatory stimuli induced by elevated glucose levels early in the disease progression, their subsequent transition to M2 macrophages, which possess anti-inflammatory and tissue repair properties, also contributes to fibrosis in the later stages of nephropathy by transforming into myofibroblasts. Comprehending the diverse functions of macrophages in diabetic kidney disease and regulating their activity could offer therapeutic benefits for managing this condition.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi City 60069, Taiwan;
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Cheng Ho
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Chun-Liang Lin
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| |
Collapse
|
6
|
Cui P, Hou H, Song B, Xia Z, Xu Y. Vitamin D and ischemic stroke - Association, mechanisms, and therapeutics. Ageing Res Rev 2024; 96:102244. [PMID: 38395199 DOI: 10.1016/j.arr.2024.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Confronting the rising tide of ischemic stroke and its associated mortality and morbidity with ageing, prevention and acute management of ischemic stroke is of paramount importance. Mounting observational studies have established a non-linear association of vitamin D status with cardiovascular diseases, including ischemic stroke. Paradoxically, current clinical trials fail to demonstrate the cardiovascular benefits of vitamin D supplementation. We aim to update recent clinical and experimental findings on the role of vitamin D in the disease course of ischemic stroke, from its onset, progression, recovery, to recurrence, and the established and alternative possible pathophysiological mechanisms. This review justifies the necessities to address stroke etiological subtypes and focus on vitamin D-deficient subjects for investigating the potential of vitamin D supplementation as a preventive and therapeutic approach for ischemic stroke. Well-powered clinical trials are warranted to determine the efficacy, safety, timing, target individuals, optimal dosages, and target 25OHD concentrations of vitamin D supplementation in the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pan Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China; Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiman Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China; Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Stifel U, Caratti G, Tuckermann J. Novel insights into the regulation of cellular catabolic metabolism in macrophages through nuclear receptors. FEBS Lett 2022; 596:2617-2629. [PMID: 35997656 DOI: 10.1002/1873-3468.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Regulation of cellular catabolic metabolism in immune cells has recently become a major concept for resolution of inflammation. Nuclear receptors (NRs), including peroxisome proliferator activator receptors (PPARs), 1,25-dihydroxyvitamin D(3) receptor (VDR), liver X receptors (LXRs), glucocorticoid receptors (GRs), estrogen-related receptor α (ERRα) and Nur77, have been identified as major modulators of inflammation, affecting innate immune cells, such as macrophages. Evidence emerges on how NRs regulate cellular metabolism in macrophages during inflammatory processes and contribute to the resolution of inflammation. This could have new implications for our understanding of how NRs shape immune responses and inform anti-inflammatory drug design. This review will highlight the recent developments about NRs and their role in cellular metabolism in macrophages.
Collapse
Affiliation(s)
- Ulrich Stifel
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Hutchinson PE, Pringle JH. Consideration of possible effects of vitamin D on established cancer, with reference to malignant melanoma. Pigment Cell Melanoma Res 2022; 35:408-424. [PMID: 35445563 PMCID: PMC9322395 DOI: 10.1111/pcmr.13040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that Vitamin D has a beneficial, inhibitory effect on cancer development and subsequent progression, including melanoma (MM), and favourable MM outcome has been reported as directly related to vitamin D3 status, assessed by serum 25-hydroxyvitamin D3 (25[OH]D3 ) levels taken at diagnosis. It has been recommended that MM patients with deficient levels of 25(OH)D3 be given vitamin D3 . We examine possible beneficial or detrimental effects of treating established cancer with vitamin D3 . We consider the likely biological determinants of cancer outcome, the reported effects of vitamin D3 on these in both cancerous and non-cancerous settings, and how the effect of vitamin D3 might change depending on the integrity of tumour vitamin D receptor (VDR) signalling. We would argue that the effect of defective tumour VDR signalling could result in loss of suppression of growth, reduction of anti-tumour immunity, with potential antagonism of the elimination phase and enhancement of the escape phase of tumour immunoediting, possibly increased angiogenesis but continued suppression of inflammation. In animal models, having defective VDR signalling, vitamin D3 administration decreased survival and increased metastases. Comparable studies in man are lacking but in advanced disease, a likely marker of defective VDR signalling, studies have shown modest or no improvement in outcome with some evidence of worsening. Work is needed in assessing the integrity of tumour VDR signalling and the safety of vitamin D3 supplementation when defective.
Collapse
Affiliation(s)
| | - James H. Pringle
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| |
Collapse
|
9
|
Wan Z, Geng T, Li R, Chen X, Lu Q, Lin X, Chen L, Guo Y, Liu L, Shan Z, Pan A, Manson JE, Liu G. Vitamin D status, genetic factors, and risk of cardiovascular disease among individuals with type 2 diabetes: a prospective study. Am J Clin Nutr 2022; 116:1389-1399. [PMID: 35771998 DOI: 10.1093/ajcn/nqac183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The presence of a threshold effect has been proposed, suggesting that beneficial effects from vitamin D supplementation may only be present when vitamin D concentration was below a particular threshold. OBJECTIVES To investigate the associations of serum 25-hydroxyvitamin D [25(OH)D] concentrations and genetic factors with risks of total and subtypes of CVD in individuals with type 2 diabetes (T2D), among whom vitamin D deficiency or insufficiency is particularly common. METHODS This prospective study included 15,103 individuals with T2D, initially free of CVD and with serum 25(OH)D measurements in UK Biobank. Incidence of total and subtypes of CVD, including ischemic heart disease (IHD) and stroke, were ascertained via electronic health records. Weighted genetic risk scores (GRSs) were constructed for IHD and stroke, respectively. RESULTS The mean (standard deviation) of serum 25(OH)D concentration was 43.4 (20.4) nmol/L, and 65.7% participants had vitamin D below 50 nmol/L. During a median of 11.2 years of follow-up, 3,534 incident CVD events were documented. Compared with individuals with 25(OH)D <25 nmol/L, participants with 25(OH)D ≥75 nmol/L had an HR of 0.75 (0.64, 0.88) for CVD, 0.69 (0.56, 0.84) for IHD, and 0.74 (0.52, 1.06) for stroke. Participants with 25(OH)D ≥50 nmol/L and low GRS, as compared with individuals with 25(OH)D <25 nmol/L and high GRS, had a 50% (39%, 65%) lower risk of IHD. No significant interactions between serum 25(OH)D and the GRSs and genetic variants in vitamin D receptor (VDR) were demonstrated. CONCLUSIONS Higher serum 25(OH)D concentrations were significantly associated with lower risks of total CVD and IHD among patients with T2D, regardless of genetic susceptibility and genetic variants in VDR. Risk reductions tended to plateau at serum 25(OH)D levels around 50 nmol/L. These findings suggest that maintaining adequate vitamin D status and avoiding deficiency may help to prevent CVD complications among patients with T2D.
Collapse
Affiliation(s)
- Zhenzhen Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Chang H, Ni Y, Shen C, Li C, He K, Zhu X, Chen L, Chen L, Qiu J, Ji Y, Hou M, Ji M, Xu Z. Peritoneal GATA6 + macrophage drives hepatic immunopathogenesis and maintains the T reg cell niche in the liver. Immunol Suppl 2022; 167:77-93. [PMID: 35689656 DOI: 10.1111/imm.13519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
The source of macrophages that contribute to human liver disease remains poorly understood. The purpose of this study is to investigate the functional mechanism of peritoneal macrophages in the development of hepatic immunopathology. By performing the natural infection with the blood fluke Schistosoma japonicum (S. japonicum) and the chemically carbon tetrachloride (CCl4 )-induced liver injured mouse model, we identified the peritoneal cavity as an essential source of hepatic macrophages. Here, we show that a large number of F4/80+ macrophages was accumulated in the peritoneal cavity during liver injury. An unknown source population of macrophages, which highly expressed GATA6 that is specific to peritoneal macrophages, was found to exist in the injured livers. Peritoneal macrophage deletion by injection with clodronate-containing liposomes led to an attenuated hepatic pathology and the inflammatory microenvironment, while adoptive transfer of macrophages into the abdominal cavity, by contrast, results in restoring liver pathology. Importantly, there are set genes of monocyte chemoattractant protein (MCP)-1, -2, and -3 that are highly related to recruit GATA6+ macrophages during S. japonicum infection, while administration of bindarit, a selective inhibitor of MCPs synthesis, dramatically decreased the hepatic expression of GATA6+ macrophages and thus attenuated hepatic pathology. Furthermore, in vivo study showed that peritoneal macrophages promote hepatic immunopathology is dependent on the accumulation of regulatory T cells (Tregs) in the liver. Altogether, these data provide the first clear evidence that GATA6+ peritoneal macrophages play critical roles in both the formation of hepatic immunopathology and the accumulation of Tregs cells.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyue Ni
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaiyue He
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Chen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Chen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfan Qiu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Xie Y, Jia Y, Li Z, Hu F. Scavenger receptor A in immunity and autoimmune diseases: Compelling evidence for targeted therapy. Expert Opin Ther Targets 2022; 26:461-477. [PMID: 35510370 DOI: 10.1080/14728222.2022.2072729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Scavenger receptor A (SR-A) is reported to be involved in innate and adaptive immunity and in recent years, the soluble form of SR-A has also been identified. Intriguingly, SR-A displays double-edged sword features in different diseases. Moreover, targeted therapy on SR-A, including genetic modulation, small molecule inhibitor, inhibitory peptides, fucoidan, and blocking antibodies, provides potential strategies for treatment. Currently, therapeutics targeting SR-A are in preclinical studies and clinical trials, revealing great perspectives in future immunotherapy. AREAS COVERED Through searching PubMed (January 1979-March 2022) and clinicaltrials.gov, we review most of the research and clinical trials involving SR-A. This review briefly summarizes recent study advances on SR-A, with particular concern on its role in immunity and autoimmune diseases. EXPERT OPINION Given the emerging evidence of SR-A in immunity, its targeted therapy has been studied in various diseases, especially autoimmune diseases. However, many challenges still remain to be overcome, such as the double-sworded effects and the specific isoform targeting. For further clinical success of SR-A targeted therapy, the crystal structure illustration and the dual function discrimination of SR-A should be further investigated. Nevertheless, although challenging, targeting SR-A would be a potential effective strategy in the treatment of autoimmune diseases and other immune-related diseases.
Collapse
Affiliation(s)
- Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Peking, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, Peking, China
| |
Collapse
|
12
|
Tintut Y, Demer LL. Potential impact of the steroid hormone, vitamin D, on the vasculature. Am Heart J 2021; 239:147-153. [PMID: 34051171 DOI: 10.1016/j.ahj.2021.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The role of vitamin D in the cardiovascular system is complex because it regulates expression of genes involved in diverse metabolic processes. Although referred to as a vitamin, it is more accurately considered a steroid hormone, because it is produced endogenously in the presence of ultraviolet light. It occurs as a series of sequentially activated forms, here referred to as vitamin D-hormones. A little-known phenomenon, based on pre-clinical data, is that its biodistribution and potential effects on vascular disease likely depend on whether it is derived from diet or sunlight. Diet-derived vitamin D-hormones are carried in the blood, at least in part, in chylomicrons and lipoprotein particles, including low-density lipoprotein. Since low-density lipoprotein is known to accumulate in the artery wall and atherosclerotic plaque, diet-derived vitamin D-hormones may also collect there, and possibly promote the osteochondrogenic mineralization associated with plaque. Also, little known is the fact that the body stores vitamin D-hormones in adipose tissue with a half-life on the order of months, raising doubts about whether the use of the term "daily requirement" is appropriate. Cardiovascular effects of vitamin D-hormones are controversial, and risk appears to increase with both low and high blood levels. Since low serum vitamin D-hormone concentration is reportedly associated with increased cardiovascular and orthopedic risk, oral supplementation is widely used, often together with calcium supplements. However, meta-analyses show that oral vitamin D-hormone supplementation does not protect against cardiovascular events, findings that are also supported by a randomized controlled trial. These considerations suggest that prevalent recommendations for vitamin D-hormone supplementation for the purpose of cardiovascular protection should be carefully reconsidered.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA; VA Greater Los Angeles Healthcare System, Los Angeles, Los Angeles, CA.
| |
Collapse
|
13
|
Acharya P, Dalia T, Ranka S, Sethi P, Oni OA, Safarova MS, Parashara D, Gupta K, Barua RS. The Effects of Vitamin D Supplementation and 25-Hydroxyvitamin D Levels on the Risk of Myocardial Infarction and Mortality. J Endocr Soc 2021; 5:bvab124. [PMID: 34396023 PMCID: PMC8358990 DOI: 10.1210/jendso/bvab124] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Objective The aim of the study was to examine the effects of the vitamin D (Vit-D) treatment and nontreatment on Vit-D–deficient patients without a prior history of myocardial infarction (MI). Materials and Methods This was a retrospective, observational, nested case–control study of patients (N = 20 025) with low 25-hydroxyvitamin D ([25-OH]D) levels (<20 ng/mL) who received care at the Veterans Health Administration from 1999 to 2018. Patients were divided into 3 groups: Group A (untreated, levels ≤20 ng/mL), Group B (treated, levels 21-29 ng/mL), and Group C (treated, levels ≥30 ng/mL). The risk of MI and all-cause mortality were compared utilizing propensity score–weighted Cox proportional hazard models. Results Among the cohort of 20 025 patients, the risk of MI was significantly lower in Group C than in Group B (hazard ratio [HR] 0.65, 95% CI 0.49-0.85, P = .002) and Group A (HR 0.73, 95% CI 0.55-0.96), P = .02). There was no difference in the risk of MI between Group B and Group A (HR 1.14, 95% CI 0.91-1.42, P = 0.24). Compared with Group A, both Group B (HR 0.59, 95% CI 0.54-0.63, P < .001) and Group C (HR 0.61, 95% CI 0.56-0.67, P < .001) had significantly lower all-cause mortality. There was no difference in all-cause mortality between Group B and Group C (HR 0.99, 95% CI 0.89-1.09, P = .78). Conclusions In patients with Vit-D deficiency and no prior history of MI, treatment to the (25-OH)D level of >20 ng/mL and >30 ng/mL was associated with a significantly lower risk of all-cause mortality. The lower risk of MI was observed only in individuals maintaining (25-OH)D levels ≥30 ng/mL.
Collapse
Affiliation(s)
- Prakash Acharya
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tarun Dalia
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sagar Ranka
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Prince Sethi
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Olurinde A Oni
- Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO 4128, USA
| | - Maya S Safarova
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Deepak Parashara
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO 4128, USA.,Division of Cardiovascular Medicine, Kansas City VA Medical Center, Kansas City, MO 4128, USA
| | - Kamal Gupta
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajat S Barua
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Division of Cardiovascular Research, Kansas City VA Medical Center, Kansas City, MO 4128, USA.,Division of Cardiovascular Medicine, Kansas City VA Medical Center, Kansas City, MO 4128, USA
| |
Collapse
|
14
|
Al-Ishaq RK, Kubatka P, Brozmanova M, Gazdikova K, Caprnda M, Büsselberg D. Health implication of vitamin D on the cardiovascular and the renal system. Arch Physiol Biochem 2021; 127:195-209. [PMID: 31291127 DOI: 10.1080/13813455.2019.1628064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin D regulates the calcium and phosphorus balance in the body. The activated form of vitamin D (1 α,25-dihydroxyvitamin D) binds to vitamin D receptor which regulates genes that control cell proliferation, differentiation and apoptosis. In the cardiovascular system, the vitamin D receptor is present in cardiomyocytes and the arterial wall. A clear correlation between vitamin D level and cardiovascular diseases is established. Vitamin D deficiency affects the renin-angiotensin system leading to ventricular hypertrophy and eventually to stroke. While clinical trials highlighted the positive effects of vitamin D supplements on cardiovascular disease these still need to be confirmed. This review outlines the association between vitamin D and cardiovascular and renal disease summarising the experimental data of selective cardiovascular disorders.
Collapse
Affiliation(s)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Martina Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovak
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Doha, Qatar
| |
Collapse
|
15
|
Macrophage secretion of miR-106b-5p causes renin-dependent hypertension. Nat Commun 2020; 11:4798. [PMID: 32968066 PMCID: PMC7511948 DOI: 10.1038/s41467-020-18538-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Myeloid cells are known mediators of hypertension, but their role in initiating renin-induced hypertension has not been studied. Vitamin D deficiency causes pro-inflammatory macrophage infiltration in metabolic tissues and is linked to renin-mediated hypertension. We tested the hypothesis that impaired vitamin D signaling in macrophages causes hypertension using conditional knockout of the myeloid vitamin D receptor in mice (KODMAC). These mice develop renin-dependent hypertension due to macrophage infiltration of the vasculature and direct activation of renal juxtaglomerular (JG) cell renin production. Induction of endoplasmic reticulum stress in knockout macrophages increases miR-106b-5p secretion, which stimulates JG cell renin production via repression of transcription factors E2f1 and Pde3b. Moreover, in wild-type recipient mice of KODMAC/miR106b−/− bone marrow, knockout of miR-106b-5p prevents the hypertension and JG cell renin production induced by KODMAC macrophages, suggesting myeloid-specific, miR-106b-5p-dependent effects. These findings confirm macrophage miR-106b-5p secretion from impaired vitamin D receptor signaling causes inflammation-induced hypertension. Myeloid cells are involved in hypertension, but their exact role in renin-induced hypertension remains unclear. Here the authors show that impaired vitamin D signaling in myeloid cells causes hypertension via macrophage-specific miR-106b-5p secretion, which activates renin production in the kidney.
Collapse
|
16
|
Jiang Y, Zhao Y, Zhu X, Liu Y, Wu B, Guo Y, Liu B, Zhang X. Effects of autophagy on macrophage adhesion and migration in diabetic nephropathy. Ren Fail 2020; 41:682-690. [PMID: 31352855 PMCID: PMC6711118 DOI: 10.1080/0886022x.2019.1632209] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Macrophage infiltration in kidney is a major pathological feature of diabetic nephropathy (DN), which has been demonstrated associate with macrophages autophagy homeostasis. However, the relationships between autophagy and the infiltration response related of macrophages adhesion and migration are unknown. This study aims to investigate the impact of macrophages adhesion and migration by modulating autophagy. Methods: In vivo, rats were randomly distributed into control (NC) and DN groups. The pathological changes in renal tissue were assessed, and expression of CD68, LC3, P62 were analyzed. In vitro, RAW264.7 cells were divided into NC and high glucose (HG) groups. The capacity of macrophages adhesion migration and the expression of autophagy markers were observed with and without autophagy modulators (rapamycin, 3-methyladenine, chloroquine, and bafilomycin A1 for RAPA, 3-MA, CQ, BAFA). The macrophages autophagosome and the process of degradation and fusion of autophagosome-lysosome were observed by electron microscopy. Results: In vivo, renal injury is aggravated in diabetic rat compared with NC group. The autophagy level is inhibited in renal tissues of DN group with the increasing expression of CD68 and P62, while expression level of LC3 decreased (p < .05). In vitro, HG and 3-MA reduce the numbers of autophagosome of macrophages to inhibit autophagy level with decrease expression of LC3 and Beclin-1, but increase expression of P62, which promote the adhesion and migration capacity of macrophages (p < .05). Moreover, CQ and BAFA suppress autophagy level by inhibiting the process of autophagosome-lysosome degradation and fusion of macrophages, as well as the expression of LC3 and Beclin-1. We notice an increase expression of P62 by CQ and BAFA stimulation (p < .05). CQ and BAFA further facilitate the adhesion and migration capacity of macrophages. However, RAPA increases the numbers of macrophages autophagosome that inhibited by HG, resulting in a recovery of autophagy level with increase expression of LC3 and Beclin-1, whereas a reduction expression of P62, which lead to inhibition of adhesion and migration of macrophages induced by HG (p < .05) Conclusions: High glucose efficiently reduced the level of macrophage autophagy, following macrophages adhesion and migration enhanced when autophagy is suppressed. Activation of autophagosome improve the level of autophagy, but leading to a reduction of the macrophages adhesion and migration. While, inhibiting the process of degradation and fusion of autophagosome-lysosome suppress the level of autophagy and promote the macrophages adhesion and migration. These results indicate that high glucose may play an important role in macrophages adhesion and migration through modulating autophagy activities in diabetic nephropathy.
Collapse
Affiliation(s)
- Yuteng Jiang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yu Zhao
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaodong Zhu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yuqiu Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Beibei Wu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yinfeng Guo
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Bicheng Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaoliang Zhang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
17
|
Alfieri C, Ruzhytska O, Vettoretti S, Caldiroli L, Cozzolino M, Messa P. Native Hypovitaminosis D in CKD Patients: From Experimental Evidence to Clinical Practice. Nutrients 2019; 11:E1918. [PMID: 31443249 PMCID: PMC6723756 DOI: 10.3390/nu11081918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Native hypovitaminosis D (n-hVITD) is frequently found from the early stages of chronic kidney disease (CKD) and its prevalence increases with CKD progression. Even if the implications of n-hVITD in chronic kidney disease-mineral bone disorder (CKD-MBD) have been extensively characterized in the literature, there is a lot of debate nowadays about the so called "unconventional effects" of native vitamin D (25(OH)VitD) supplementation in CKD patients. In this review, highlights of the dimension of the problem of n-hVITD in CKD stages 2-5 ND patients will be presented. In addition, it will focus on the "unconventional effects" of 25(OH)VitD supplementation, the clinical impact of n-hVITD and the most significant interventional studies regarding 25(OH)VitD supplementation in CKD stages 2-5 ND.
Collapse
Affiliation(s)
- Carlo Alfieri
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Oksana Ruzhytska
- Department of Internal Medicine n3, Ternopil State Medical University, 46002 Ternopil, Ukraine
| | - Simone Vettoretti
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lara Caldiroli
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Cozzolino
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Piergiorgio Messa
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
18
|
Smith AD, Panickar KS, Urban JF, Dawson HD. Impact of Micronutrients on the Immune Response of Animals. Annu Rev Anim Biosci 2019; 6:227-254. [PMID: 29447473 DOI: 10.1146/annurev-animal-022516-022914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamins and minerals (micronutrients) play an important role in regulating and shaping an immune response. Deficiencies generally result in inadequate or dysregulated cellular activity and cytokine expression, thereby affecting the immune response. Decreased levels of natural killer, granulocyte, and phagocytic cell activity and T and B cell proliferation and trafficking are associated with inadequate levels of micronutrients, as well as increased susceptibility to various adverse health conditions, including inflammatory disorders, infection, and altered vaccine efficacy. In addition, most studies of micronutrient modulation of immune responses have been done in rodents and humans, thus limiting application to the health and well-being of livestock and companion animals. This exploratory review elucidates the role of vitamins and minerals on immune function and inflammatory responses in animals (pigs, dogs, cats, horses, goats, sheep, and cattle), with reference to rodents and humans.
Collapse
Affiliation(s)
- Allen D Smith
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Kiran S Panickar
- Science & Technology Center, Hills Pet Nutrition Center, Topeka, Kansas 66617, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| |
Collapse
|
19
|
Nejatian N, Häfner AK, Shoghi F, Badenhoop K, Penna-Martinez M. 5-Lipoxygenase (ALOX5): Genetic susceptibility to type 2 diabetes and vitamin D effects on monocytes. J Steroid Biochem Mol Biol 2019; 187:52-57. [PMID: 30521849 DOI: 10.1016/j.jsbmb.2018.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022]
Abstract
The arachidonate 5-lipoxygenase (ALOX5) pathway has been implicated in chronic inflammatory disease which may be influenced by vitamin D due to vitamin D response elements (VDRE). We investigated an ALOX5 polymorphism (rs4987105) in patients with type 2 diabetes (T2D) and the in vitro effects of calcitriol (1,25(OH)2D3) on ALOX5 metabolism in monocytes of T2D patients and healthy controls (HC). 533 T2D and 473 HC were genotyped for the rs4987105 polymorphism. In addition, the 25(OH)D3 and 1,25(OH)2D3 plasma levels were measured in both cohorts. Further C-reactive protein (CRP) was determined in T2D patients. Our results demonstrate, that genotype CC and the allele C of ALOX5 rs4987105 polymorphism were more frequent in T2D compared to HC (OR = 1.44; 95% CI: 1.12-1.84; p < 0.05). Lower levels of both vitamin D metabolites (p < 0.0001 respectively) were found in the CC genotyped T2D patients compared to CC genotyped HC. In addition, CC genotyped T2D patients had higher levels of CRP compared to CT and TT genotyped T2D patients, (p < 0.01). In order to evaluate the impact of calcitriol in primary isolated monocytes, we isolated monocytes of 20 T2D patients and 20 HC. The cells were treated with 1,25(OH)2D3 and interleukin-1beta (IL-1β) for 24 h. The following genes were analysed for expression changes: ALOX5, leukotriene A4 hydrolase (LTA4H), leukotriene B4 receptor type 1 (LTB4R1) and CD14. Treatment with IL-1β+1,25(OH)2D3 increased ALOX5, LTA4H and LTB4R1 and CD14 mRNA in both T2D patients and HC (p < 0.0001, respectively). In addition, IL-1β+1,25(OH)2D3 treatment led to higher ALOX5, LTA4H and CD14 mRNA levels in T2D patients compared to HC (p < 0.001, p < 0.05, p ≤ 0.05, respectively). In conclusion, ALOX5 rs4987105 allele C confers susceptibility to T2D, lower vitamin D metabolites and higher CRP levels complement this association. Additionally, IL-1β+1,25(OH)2D3 treatment on, ALOX5, LTA4H and CD14 mRNA indicate a diabetes specific modulation. These findings identify a novel pathway in T2D potentially amenable for individualized therapeutic targeting.
Collapse
Affiliation(s)
- Nojan Nejatian
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, Goethe University Hospital, Frankfurt am Main, Germany.
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Frankfurt am Main, Germany
| | - Firouzeh Shoghi
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, Goethe University Hospital, Frankfurt am Main, Germany
| | - Klaus Badenhoop
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, Goethe University Hospital, Frankfurt am Main, Germany
| | - Marissa Penna-Martinez
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Durgarao Y, Manjrekar PA, Adhikari P, Chakrapani M, Rukmini MS. Comprehensive Review on Diabetes Associated Cardiovascular Complications - The Vitamin D Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:139-153. [PMID: 30648528 DOI: 10.2174/1871529x19666190114155302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D, a steroid hormone is primarily known for its role in calcium and bone mineral homeostasis. Over the years, vitamin D has been implicated in various non-skeletal diseases. The extraskeletal phenomenon can be attributed to the presence of vitamin D receptors (VDRs) in almost all cells and identification of 1-α hydroxylase in extrarenal tissues. The vitamin D deficiency (VDD) pandemic was globally reported with increasing evidence and paralleled the prevalence of diabetes, obesity and cardiovascular diseases (CVDs). A dependent link was proposed between hypovitaminosis D glycemic status, insulin resistance and also the other major factors associated with type 2 diabetes leading to CVDs. Insulin resistance plays a central role in both type 2 diabetes and insulin resistance syndrome. These 2 disorders are associated with distinct etiologies including hypertension, atherogenic dyslipidemia, and significant vascular abnormalities that could lead to endothelial dysfunction. Evidence from randomised clinical trials and meta-analysis, however, yielded conflicting results. This review summarizes the role of vitamin D in the regulation of glucose homeostasis with an emphasis on insulin resistance, blood pressure, dyslipidaemia, endothelial dysfunction and related cardiovascular diseases and also underline the plausible mechanisms for all the documented effects.
Collapse
Affiliation(s)
- Y Durgarao
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Poornima A Manjrekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Prabha Adhikari
- Department of Internal Medicine, Yenepoya University, Mangalore, Karnataka, India
| | - M Chakrapani
- Department of Internal Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - M S Rukmini
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
21
|
Zhao Y, Guo Y, Jiang Y, Zhu X, Zhang X. Vitamin D suppresses macrophage infiltration by down-regulation of TREM-1 in diabetic nephropathy rats. Mol Cell Endocrinol 2018; 473:44-52. [PMID: 29331667 DOI: 10.1016/j.mce.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 01/30/2023]
Abstract
This study intends to investigate the effect of active vitamin D (VD) on the expression of triggering receptor expressed on myeloid cells-1 (TREM-1) in the renal tissues of diabetic nephropathy (DN) rats and to explore the impact of TREM-1 on macrophage adhesion and migration. We find that the expressions of TREM-1 and CD68 protein are higher in DN rats compared with rats in the normal control group and that these changes are decreased in the DN + VD group. In vitro, the capacity for macrophage adhesion and migration and the expression of TREM-1 are increased under high-glucose conditions, but VD inhibits this progress. TREM-1 siRNA decreases high-glucose-induced macrophage adhesion and migration, whereas over-expression of TREM-1 inhibits its action. However, VD cannot suppress high glucose-induced TREM-1 expression and macrophage adhesion and migration when TREM-1 is over-expressed. These results demonstrate that VD can suppress macrophage adhesion and migration by reducing the expression of TREM-1.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Yinfeng Guo
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Yuteng Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Xiaodong Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
22
|
Bothou C, Alexopoulos A, Dermitzaki E, Kleanthous K, Papadimitriou A, Mastorakos G, Papadimitriou DT. Successful Treatment of Severe Atopic Dermatitis with Calcitriol and Paricalcitol in an 8-Year-Old Girl. Case Rep Pediatr 2018; 2018:9643543. [PMID: 30034905 PMCID: PMC6035840 DOI: 10.1155/2018/9643543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease affecting children and adolescence. The traditional therapeutic options for AD, including emollients topically and immune modulatory agents systemically focusing on reducing skin inflammation and restoring the function of the epidermal barrier, are proven ineffective in many cases. Several studies have linked vitamin D supplementation with either a decreased risk to develop AD or a clinical improvement of the symptoms of AD patients. In this report, we present a girl with severe AD who under adequate supplementation with cholecalciferol was treated with calcitriol and subsequently with paricalcitol. She had significant improvement-almost healing of her skin lesions within 2 months, a result sustained for more than 3 years now. Because of hypercalciuria as a side effect from calcitriol therapy, treatment was continued with paricalcitol, a vitamin D analogue used in secondary hyperparathyroidism in chronic kidney disease. Calcitriol therapy may be considered as a safe and efficacious treatment option for patients with severe AD, particularly for those with refractory AD, under monitoring for possible side effects. Treatment with paricalcitol resolves hypercalciuria, is safe, and should be further investigated as an alternative treatment of atopic dermatitis and possibly other diseases of autoimmune origin.
Collapse
Affiliation(s)
- Christina Bothou
- Division of Endocrinology, Diabetes and Metabolism, Medical Department 1, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Alexis Alexopoulos
- Pediatric Dermatology Clinic, 1st Department of Pediatrics, Aghia Sofia Children's Hospital, University of Athens, Athens, Greece
| | - Eleni Dermitzaki
- Department of Pediatric, Adolescent Endocrinology & Diabetes, Athens Medical Center, Athens, Greece
| | - Kleanthis Kleanthous
- Division of Pediatric Endocrinology, 3rd Department of Pediatrics, Attikon University Hospital, Haidari, Athens, Greece
| | - Anastasios Papadimitriou
- Division of Pediatric Endocrinology, 3rd Department of Pediatrics, Attikon University Hospital, Haidari, Athens, Greece
| | - George Mastorakos
- Endocrine Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, University of Athens, Athens, Greece
| | | |
Collapse
|
23
|
Alizadeh S, Mirshafiey A, Djalali M, Alvandi E, Mohammadzadeh Honarvar N, Javanbakht MH. Vitamin D3 Induces Gene Expression of Ox-LDL Scavenger Receptors in Streptozotocin-Induced Diabetic Rat Aortas: New Insight into the Role of Vitamin D in Diabetic Atherosclerosis. Rep Biochem Mol Biol 2018; 6:170-177. [PMID: 29766000 PMCID: PMC5941119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/03/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Several lines of evidence suggest that oxidized LDL (Ox-LDL) scavenger receptors play a crucial role in the genesis and progression of diabetic atherosclerosis. This study aimed to elucidate the effect of vitamin D3 on gene expression of lectin-like oxidized LDL receptor-1 (LOX-1), scavenger receptor-A (SR-A), Cluster of Differentiation 36 (CD36), and Cluster of Differentiation 68 (CD68) as the main Ox-LDL receptors in streptozotocin (STZ)-induced diabetic rat aortas. METHODS Eighteen Sprague-Dawley rats were randomly divided into three groups of six rats each. Two rats died during the study so five rats from each group were analyzed at the study's end. Diabetes was induced in overnight starved rats in two of the groups by intraperitoneal injections of 60 mg/kg of STZ. The vitamin D3/diabetic group then received weekly intraperitoneal injections of 5000 IU/kg of vitamin D3 dissolved in cottonseed oil for four weeks, diabetic controls received cottonseed oil, and healthy controls received sterile saline weekly for the same period. At the end of the four-week study period the animals were killed and the aortas were collected to examine the mRNA expression using real-time polymerase chain reaction (RT-PCR). RESULTS SR-A and CD36 mRNA expression were significantly greater in the vitamin D3/diabetic rats than in both the diabetic control and healthy control rats. CD68 and LOX-1 expression were greater in the vitamin D3/diabetic rats than in the diabetic control and healthy control rats, respectively. CONCLUSION Vitamin D3 may increase the risk of diabetic atherosclerosis by inducing scavenger receptors expression.
Collapse
Affiliation(s)
- Shahab Alizadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Ehsan Alvandi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
24
|
Riek AE, Oh J, Darwech I, Worthy V, Lin X, Ostlund RE, Zhang RM, Bernal-Mizrachi C. Vitamin D 3 supplementation decreases a unique circulating monocyte cholesterol pool in patients with type 2 diabetes. J Steroid Biochem Mol Biol 2018; 177:187-192. [PMID: 28941998 PMCID: PMC5826751 DOI: 10.1016/j.jsbmb.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 01/05/2023]
Abstract
Cross-sectional studies indicate consistent associations between low 25(OH)D concentration and increased risk of cardiovascular disease (CVD), but results of randomized control trials (RCTs) are mixed. However, the majority of the RCTs do not focus on type 2 diabetics, potentially obscuring the effects of vitamin D in this population. In vitro 1,25(OH)2D3 downregulates macrophage cholesterol deposition, but the in vivo effects are unknown. To explore potential mechanisms of the effects of vitamin D on CVD risk in patients with type 2 diabetes, we isolated monocytes in a subset of 26 patients from our RCT of diabetics with baseline serum 25(OH)D <25ng/mL randomized to vitamin D3 4000 IU/day or placebo for 4 months. Upon enrollment, the mean 25(OH)D level was 17ng/mL, which increased to 36ng/mL after vitamin D and remained unchanged in the placebo group. Before randomization, groups demonstrated similar mean hemoglobin A1c and plasma lipids levels, none of which was significantly altered by vitamin D supplementation. Moreover, assessment of oxidized LDL uptake in monocytes cultured in the patient's own serum before vs. after treatment resulted in >50% reduction in the vitamin D group with no change in the placebo group. This was mediated through suppression of endoplasmic reticulum stress and scavenger receptor CD36 protein expression. The reduction in monocyte cholesterol uptake was reflected in a 19% decrease in total monocyte cholesterol content. Interestingly, cross-sectional analysis of circulating monocytes from vitamin D-deficient vs. sufficient diabetic patients revealed 8-fold higher cholesteryl ester content, confirming the capacity of these monocytes to uptake and carry cholesterol in the circulation. This study identifies a unique circulating cholesterol pool within monocytes that is modulated by vitamin D and has the potential to contribute to CVD in type 2 diabetes.
Collapse
Affiliation(s)
- Amy E Riek
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA.
| | - Jisu Oh
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA.
| | - Isra Darwech
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA.
| | - Veronica Worthy
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA.
| | - Xiaobo Lin
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA.
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA.
| | - Rong M Zhang
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA.
| | - Carlos Bernal-Mizrachi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA; Division of Endocrinology at Saint Louis VA Medical Center, 915 N Grant Blvd, Saint Louis, MO, 63106, USA.
| |
Collapse
|
25
|
Oh J, Riek AE, Zhang RM, Williams SAS, Darwech I, Bernal-Mizrachi C. Deletion of JNK2 prevents vitamin-D-deficiency-induced hypertension and atherosclerosis in mice. J Steroid Biochem Mol Biol 2018; 177:179-186. [PMID: 28951226 PMCID: PMC5826746 DOI: 10.1016/j.jsbmb.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The c-Jun N-terminal kinase 2 (JNK2) signaling pathway contributes to inflammation and plays a key role in the development of obesity-induced insulin resistance and cardiovascular disease. Macrophages are key cells implicated in these metabolic abnormalities. Active vitamin D downregulates macrophage JNK activation, suppressing oxidized LDL cholesterol uptake and foam cell formation and promoting an anti-inflammatory phenotype. To determine whether deletion of JNK2 prevents high blood pressure and atherosclerosis known to be induced by vitamin D deficiency in mice, we generated mice with knockout of JNK2 in a background susceptible to diet-induced atherosclerosis (LDLR-/-). JNK2-/- LDLR-/- and LDLR-/- control mice were fed vitamin D-deficient chow for 8 weeks followed by vitamin D-deficient high fat diet (HFD) for 10 weeks and assessed before and after HFD. There was no difference in fasting glucose, cholesterol, triglycerides, or free fatty acid levels. However, JNK2-/- mice, despite vitamin D-deficient diet, had 20-30mmHg lower systolic (SBP) and diastolic (DBP) blood pressure before HFD compared to control mice fed vitamin D-deficient diets, with persistent SBP differences after HFD. Moreover, deletion of JNK2 reduced HFD-induced atherosclerosis by 30% in the proximal aorta when compared to control mice fed vitamin D-deficient diets. We have previously shown that peritoneal macrophages obtained from LDLR-/- mice fed vitamin D-deficient HFD diets have higher foam cell formation compared to those from mice on vitamin D-sufficient HFD. The increased total cellular cholesterol and modified cholesterol uptake in macrophages from mice on vitamin D-deficient HFD were blunted by deletion of JNK2. These data suggest that JNK2 signaling activation is necessary for the atherosclerosis and hypertension induced by vitamin D deficiency.
Collapse
Affiliation(s)
- Jisu Oh
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Amy E Riek
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Rong M Zhang
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Samantha A S Williams
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Isra Darwech
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Carlos Bernal-Mizrachi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA; Division of Endocrinology, Metabolism, and Lipid Research, Department of Cell Biology and Physiology, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA; Division of Endocrinology, Saint Louis VA Medical Center, 915 N Grant Blvd, Saint Louis, MO 63106, USA.
| |
Collapse
|
26
|
Chen X, Wu W, Wang L, Shi Y, Shen F, Gu X, Jia Z. Association Between 25-Hydroxyvitamin D and Epicardial Adipose Tissue in Chinese Non-Obese Patients with Type 2 Diabetes. Med Sci Monit 2017; 23:4304-4311. [PMID: 28877159 PMCID: PMC5598744 DOI: 10.12659/msm.904755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Epicardial adipose tissue (EAT) is recognized as a useful indicator for type 2 diabetes mellitus (T2DM) and obesity. However, studies on the association between vitamin D status and EAT thickness in type 2 diabetes (T2D) are limited. In this study, we aimed to evaluate the association of vitamin D (Calcifediol) status and EAT thickness (EATT) in Chinese non-obese patients with T2D. Material/Methods A cross-sectional study was performed among 167 non-obese T2D Chinese patients and 82 non-diabetic patients, who are age- and gender-matched during the winter months. EATT was evaluated by two-dimensional transthoracic echocardiography. Serum 25-hydroxyvitamin D [25(OH)D, Calcifediol] was examined in the diabetic patients and in the control group. Results The concentration of 25(OH)D was 32.00 nmol/l (19.30–53.70 nmol/l) among diabetic patients. Most (93.4%) of the diabetic patients had hypovitaminosis D. We confirmed a clear negative association between 25(OH)D level and EATT in non-obese T2D patients (p=0.01). EATT was significantly correlated with 25(OH)D level (p=0.001) and HOMA-IR (p=0.001). Results of multivariate logistic regression analysis demonstrated increased EATT, which was remarkably associated with 25(OH)D levels (p=0.039), systolic blood pressure (SBP) (p=0.013), HOMA-IR (p=0.030), and waist circumference (p<0.001) in T2D patients after adjusting for the confounding factors. Conclusions Increased EATT was found in Chinese non-obese T2D patients. 25(OH)D and HOMA-IR were independently associated with increased EATT after adjusting for multiple confounders.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Wenjun Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Luyin Wang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yujuan Shi
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Feixia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xuemei Gu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Zhijun Jia
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
27
|
Abstract
Since 2006, type 1 diabetes in Finland has plateaued and then decreased after the authorities' decision to fortify dietary milk products with cholecalciferol. The role of vitamin D in innate and adaptive immunity is critical. A statistical error in the estimation of the recommended dietary allowance (RDA) for vitamin D was recently discovered; in a correct analysis of the data used by the Institute of Medicine, it was found that 8895 IU/d was needed for 97.5% of individuals to achieve values ≥50 nmol/L. Another study confirmed that 6201 IU/d was needed to achieve 75 nmol/L and 9122 IU/d was needed to reach 100 nmol/L. The largest meta-analysis ever conducted of studies published between 1966 and 2013 showed that 25-hydroxyvitamin D levels <75 nmol/L may be too low for safety and associated with higher all-cause mortality, demolishing the previously presumed U-shape curve of mortality associated with vitamin D levels. Since all-disease mortality is reduced to 1.0 with serum vitamin D levels ≥100 nmol/L, we call public health authorities to consider designating as the RDA at least three-fourths of the levels proposed by the Endocrine Society Expert Committee as safe upper tolerable daily intake doses. This could lead to a recommendation of 1000 IU for children <1 year on enriched formula and 1500 IU for breastfed children older than 6 months, 3000 IU for children >1 year of age, and around 8000 IU for young adults and thereafter. Actions are urgently needed to protect the global population from vitamin D deficiency.
Collapse
Affiliation(s)
- Dimitrios T. Papadimitriou
- Third Department of Pediatrics, Division of Pediatric Endocrinology, Attikon University Hospital, University of Athens School of Medicine, Athens, Greece
- Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, Athens, Greece
| |
Collapse
|
28
|
Carbone F, Satta N, Burger F, Roth A, Lenglet S, Pagano S, Lescuyer P, Bertolotto M, Spinella G, Pane B, Palombo D, Pende A, Dallegri F, Mach F, Vuilleumier N, Montecucco F. Vitamin D receptor is expressed within human carotid plaques and correlates with pro-inflammatory M1 macrophages. Vascul Pharmacol 2016; 85:57-65. [PMID: 27555526 DOI: 10.1016/j.vph.2016.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/17/2016] [Accepted: 08/14/2016] [Indexed: 11/25/2022]
Abstract
The role of Vitamin D system in cardiovascular diseases remains controversial. Here, we investigated whether intraplaque levels of vitamin D receptor (VDR) predicted major adverse cardiovascular events (MACEs) at 18month-follow-up and correlated with macrophage subsets in 164 patients undergoing endarterectomy for carotid stenosis. In human carotid plaque portions upstream and downstream the blood flow, VDR, lipid, collagen, as well as macrophage subsets were determined. Human primary monocytes were then differentiated in vitro to M1 and M2 macrophages and treated with 1,25(OH)2D3. Intraplaque VDR positively correlated with total and M1 macrophages. According to the result of ROC curve analysis, downstream portions of plaques having high VDR expression were characterized by increased M1 macrophages. Kaplan-Meier analysis showed that the risk of MACEs was greater in patients having low downstream VDR levels (8.2% vs. 1.3%; p=0.005). Cox proportional hazard regression analyses confirmed that MACE risk decreased with increasing downstream VDR (adjusted HR 0.78 [95% CI 0.62-0.98]; p=0.032). In vitro, VDR expression was prevalent in M1, but not M2. Incubation of M1 macrophages with 1,25(OH)2D3, increased VDR expression and suppressed toll-like receptor 4 expression. These results suggest that low intraplaque VDR expression predict MACEs in patients with carotid stenosis potentially involving M1 macrophages.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Nathalie Satta
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Sébastien Lenglet
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Pierre Lescuyer
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Giovanni Spinella
- Vascular and Endovascular Surgery Unit, Department of Surgery, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16100 Genoa, Italy
| | - Bianca Pane
- Vascular and Endovascular Surgery Unit, Department of Surgery, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16100 Genoa, Italy
| | - Domenico Palombo
- Vascular and Endovascular Surgery Unit, Department of Surgery, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16100 Genoa, Italy
| | - Aldo Pende
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino - IST, Largo Benzi 10, 16100 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino - IST, Largo Benzi 10, 16100 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino - IST, Largo Benzi 10, 16100 Genoa, Italy
| |
Collapse
|
29
|
Mehmood ZTNH, Papandreou D. An Updated Mini Review of Vitamin D and Obesity: Adipogenesis and Inflammation State. Open Access Maced J Med Sci 2016; 4:526-532. [PMID: 27703587 PMCID: PMC5042647 DOI: 10.3889/oamjms.2016.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022] Open
Abstract
Vitamin D related research continues to expand and theorise regarding its involvement in obesity, as both hypovitaminosis D and obesity strike in pandemic proportions. Vitamin D plays an important role in immune system through Vitamin D Receptors (VDR), which are transcription factors located abundantly in the body. Due to this characteristic, it is potentially linked to obesity, which is a state of inflammation involving the release of cytokines from adipose tissue, and exerting stress on other organs in a state of positive energy balance. Research trials in the past couple of years and systematic reviews from SCOPUS and MEDLINE will be discussed. The role of Vitamin D throughout the lifespan (from fetal imprinting until older age), and in various other obesity mediated chronic conditions shall be highlighted. Various mechanisms attributed to the inverse relationship of Vitamin D and obesity are discussed with research gaps identified, particularly the role of adipokines, epigenetics, calcium and type of adipose tissue.
Collapse
Affiliation(s)
| | - Dimitrios Papandreou
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
Miyashita M, Koga K, Izumi G, Sue F, Makabe T, Taguchi A, Nagai M, Urata Y, Takamura M, Harada M, Hirata T, Hirota Y, Wada-Hiraike O, Fujii T, Osuga Y. Effects of 1,25-Dihydroxy Vitamin D3 on Endometriosis. J Clin Endocrinol Metab 2016; 101:2371-9. [PMID: 27035829 DOI: 10.1210/jc.2016-1515] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT Endometriosis is an estrogen-dependent, chronic inflammatory disease. Recent studies have shown that vitamin D (VD) is an effective modulator of the immune system and plays an important role in controlling many inflammatory diseases. OBJECTIVE The objective of the study was to clarify the in vitro effects of 1,25-dihydroxy vitamin D3 (1,25[OH]2D3) on human endometriotic stromal cells (ESCs) and to determine the serum levels of VD in endometriosis patients. DESIGN, PATIENTS, AND MAIN OUTCOME MEASURES ESCs were isolated from ovarian endometrioma and cultured with 1,25(OH)2D3. Gene expression of IL-8, cyclooxygenase-2, microsomal prostaglandin E synthase-1, microsomal prostaglandin E synthase-2, cytosolic prostaglandin E synthase, 15-hydroxyprostaglandin dehydrogenase, matrix metalloproteinase (MMP)-2, and MMP-9 was examined using quantitative RT-PCR. The production of IL-8 and prostaglandin E2 was measured using an ELISA and an enzyme immunoassay. Viable cell number was assessed using a cell-counting assay, and DNA synthesis was assessed using the bromodeoxyuridine incorporation assay. Apoptosis was assessed using flow cytometry. The expression of inhibitory-κBα protein was detected using Western blotting. The serum levels of 25-hydroxyvitamin D3 and 1,25(OH)2D3 were measured by a RIA. RESULTS In vitro studies showed that 1,25(OH)2D3 significantly reduced IL-1β- or TNF-α-induced inflammatory responses, such as IL-8 expression and prostaglandin activity. 1,25(OH)2D3 also reduced viable ESC numbers and DNA synthesis but did not affect apoptosis. MMP-2 and MMP-9 expressions were reduced by 1,25(OH)2D3. 1,25(OH)2D3 inhibited nuclear factor-κB activation. The serum 25-hydroxyvitamin D3 levels were significantly lower in women with severe endometriosis than in the controls and women with mild endometriosis. Serum 1,25(OH)2D3 levels were not different between groups. CONCLUSIONS VD modulates inflammation and proliferation in endometriotic cells, and a lower VD status is associated with endometriosis. Taken together, VD supplementation could be a novel therapeutic strategy for managing endometriosis.
Collapse
Affiliation(s)
- Mariko Miyashita
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Gentaro Izumi
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Fusako Sue
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Makabe
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Miwako Nagai
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Masashi Takamura
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
31
|
Liu MQ, Chen Z, Chen LX. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin 2016; 37:425-43. [PMID: 26838072 DOI: 10.1038/aps.2015.145] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum is a principal organelle responsible for folding, post-translational modifications and transport of secretory, luminal and membrane proteins, thus palys an important rale in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is a condition that is accelerated by accumulation of unfolded/misfolded proteins after endoplasmic reticulum environment disturbance, triggered by a variety of physiological and pathological factors, such as nutrient deprivation, altered glycosylation, calcium depletion, oxidative stress, DNA damage and energy disturbance, etc. ERS may initiate the unfolded protein response (UPR) to restore cellular homeostasis or lead to apoptosis. Numerous studies have clarified the link between ERS and cardiovascular diseases. This review focuses on ERS-associated molecular mechanisms that participate in physiological and pathophysiological processes of heart and blood vessels. In addition, a number of drugs that regulate ERS was introduced, which may be used to treat cardiovascular diseases. This review may open new avenues for studying the pathogenesis of cardiovascular diseases and discovering novel drugs targeting ERS.
Collapse
|
32
|
Han X, Li L, Yang J, King G, Xiao Z, Quarles LD. Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2 D in macrophages. FEBS Lett 2016; 590:53-67. [PMID: 26762170 PMCID: PMC5079529 DOI: 10.1002/1873-3468.12040] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/19/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Mechanisms underlying the association between fibroblastic growth factor 23 (FGF-23) and inflammation are uncertain. We found that FGF-23 was markedly up-regulated in LPS/INF-γ-induced proinflammatory M1 macrophages and Hyp mouse-derived peritoneal macrophages, but not in IL-4-induced M2 anti-inflammatory macrophages. NF-КB and JAK/STAT1 pathways mediated the increased transcription of FGF-23 in response to M1 polarization. FGF-23 stimulated TNF-α, but not IL-6, expression in M0 macrophages and suppressed Arginase-1 expression in M2 macrophages through FGFR-mediated mechanisms. 1,25(OH)2 D stimulated Arginase-1 expression and inhibited FGF-23 stimulation of TNF-α. FGF-23 has proinflammatory paracrine functions and counter-regulatory actions to 1,25(OH)2 D on innate immune responses.
Collapse
MESH Headings
- Animals
- Arginase/antagonists & inhibitors
- Arginase/chemistry
- Arginase/genetics
- Arginase/metabolism
- Calcitriol/metabolism
- Cells, Cultured
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/antagonists & inhibitors
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation/drug effects
- Genes, Reporter/drug effects
- HEK293 Cells
- Humans
- Immunity, Innate/drug effects
- Macrophage Activation/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Paracrine Communication/drug effects
- Promoter Regions, Genetic/drug effects
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- RAW 264.7 Cells
- Receptor, Fibroblast Growth Factor, Type 1/agonists
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Calcitriol/agonists
- Receptors, Calcitriol/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Xiaobin Han
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Linqiang Li
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jiancheng Yang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
33
|
Inflammation in diabetes and cardiovascular disease. Cardiovasc Endocrinol 2015. [DOI: 10.1097/xce.0000000000000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Oh J, Riek AE, Darwech I, Funai K, Shao J, Chin K, Sierra OL, Carmeliet G, Ostlund RE, Bernal-Mizrachi C. Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep 2015; 10:1872-86. [PMID: 25801026 DOI: 10.1016/j.celrep.2015.02.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/27/2015] [Accepted: 02/13/2015] [Indexed: 02/09/2023] Open
Abstract
Intense effort has been devoted to understanding predisposition to chronic systemic inflammation because it contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR) in mice (KODMAC) is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver as well as increasing cytokine secretion and hepatic glucose production. Moreover, VDR deletion increases atherosclerosis by enabling lipid-laden M2 monocytes to adhere, migrate, and carry cholesterol into the atherosclerotic plaque and by increasing macrophage cholesterol uptake and esterification. Increased foam cell formation results from lack of VDR-SERCA2b interaction, causing SERCA dysfunction, activation of ER stress-CaMKII-JNKp-PPARγ signaling, and induction of the scavenger receptors CD36 and SR-A1. Bone marrow transplant of VDR-expressing cells into KODMAC mice improved insulin sensitivity, suppressed atherosclerosis, and decreased foam cell formation. The immunomodulatory effects of vitamin D in macrophages are thus critical in diet-induced insulin resistance and atherosclerosis in mice.
Collapse
|
35
|
The Role of Vitamin D in Diabetes and Cardiovascular Disease: An Updated Review of the Literature. DISEASE MARKERS 2015; 2015:580474. [PMID: 26576069 PMCID: PMC4630385 DOI: 10.1155/2015/580474] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Abstract
The dietary reference values for Vitamin D were set primarily considering its role in bone health, but with the discovery of Vitamin D receptors throughout body tissues, new links with other health conditions are now studied, such as for diabetes and cardiovascular diseases (CVD). This paper shall analyze and examine all new research studies carried out, especially in 2013–2015 regarding diabetes mellitus (DM) and cardiovascular diseases (CVD). Vast research has been carried out to establish strong relationship between Vitamin D serum levels, supplementation, diabetes, and CVD. However, the results from researches identified in this paper are disputable. Benefits of Vitamin D adequate levels were recognized from gestational period until later in disease development such as diabetes and/or CVD, but since not all studies are in agreement further investigation is suggested. Researches conducting large randomized controlled trials, exploring range of supplement doses, with variable baseline serum Vitamin D levels, and inclusion of array of associated parameters, are still required to conduct large-scale analysis and draw conclusion as a risk factor. Until then it is possible to conclude that maintenance of serum Vitamin D levels holds advantageous aspects in diabetic and cardiovascular conditions, and people should strive to attain them.
Collapse
|
36
|
Weyland PG, Grant WB, Howie-Esquivel J. Does sufficient evidence exist to support a causal association between vitamin D status and cardiovascular disease risk? An assessment using Hill's criteria for causality. Nutrients 2014; 6:3403-30. [PMID: 25184368 PMCID: PMC4179168 DOI: 10.3390/nu6093403] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Serum 25-hydroxyvitamin D (25(OH)D) levels have been found to be inversely associated with both prevalent and incident cardiovascular disease (CVD) risk factors; dyslipidemia, hypertension and diabetes mellitus. This review looks for evidence of a causal association between low 25(OH)D levels and increased CVD risk. We evaluated journal articles in light of Hill's criteria for causality in a biological system. The results of our assessment are as follows. Strength of association: many randomized controlled trials (RCTs), prospective and cross-sectional studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Consistency of observed association: most studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors in various populations, locations and circumstances. Temporality of association: many RCTs and prospective studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Biological gradient (dose-response curve): most studies assessing 25(OH)D levels and CVD risk found an inverse association exhibiting a linear biological gradient. Plausibility of biology: several plausible cellular-level causative mechanisms and biological pathways may lead from a low 25(OH)D level to increased risk for CVD with mediators, such as dyslipidemia, hypertension and diabetes mellitus. Experimental evidence: some well-designed RCTs found increased CVD risk factors with decreasing 25(OH)D levels. Analogy: the association between serum 25(OH)D levels and CVD risk is analogous to that between 25(OH)D levels and the risk of overall cancer, periodontal disease, multiple sclerosis and breast cancer. CONCLUSION all relevant Hill criteria for a causal association in a biological system are satisfied to indicate a low 25(OH)D level as a CVD risk factor.
Collapse
Affiliation(s)
- Patricia G Weyland
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco (UCSF), #2 Koret Way Box 0610, San Francisco, CA 94143, USA.
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA.
| | - Jill Howie-Esquivel
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco (UCSF), #2 Koret Way Box 0610, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Wöbke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol 2014; 5:244. [PMID: 25071589 PMCID: PMC4078458 DOI: 10.3389/fphys.2014.00244] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Changes in vitamin D serum levels have been associated with inflammatory diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and transcriptome-wide studies indicate that vitamin D signaling modulates many inflammatory responses on several levels. This includes (i) the regulation of the expression of genes which generate pro-inflammatory mediators, such as cyclooxygenases or 5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which regulate the expression of inflammatory genes and (iii) the activation of signaling cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets various tissues and cell types, a number of which belong to the immune system, such as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to individual responses of each cell type. One hallmark of these specific vitamin D effects is the cell-type specific regulation of genes involved in the regulation of inflammatory processes and the interplay between vitamin D signaling and other signaling cascades involved in inflammation. An important task in the near future will be the elucidation of the regulatory mechanisms that are involved in the regulation of inflammatory responses by vitamin D on the molecular level by the use of techniques such as chromatin immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq.
Collapse
Affiliation(s)
- Thea K Wöbke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Bernd L Sorg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| |
Collapse
|