1
|
Shan W, Ding J, Xu J, Du Q, Chen C, Liao Q, Yang X, Lou J, Jin Z, Chen M, Xie R. Estrogen regulates duodenal glucose absorption by affecting estrogen receptor-α on glucose transporters. Mol Cell Endocrinol 2023:112028. [PMID: 37769868 DOI: 10.1016/j.mce.2023.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms of estrogen in glucose metabolism are well established; however, its role in glucose absorption remains unclear. In this study, we investigated the effects of estrogen on glucose absorption in humans, mice, and SCBN intestinal epithelial cells. We first observed a correlation between estrogen and blood glucose in young women and found that glucose tolerance was significantly less in the premenstrual phase than in the preovulatory phase. Similarly, with decreased serum estradiol levels in ovariectomized mice, estrogen receptors alpha (ERα) and beta (ERβ) in the duodenum were reduced, and weight and abdominal fat increased significantly. The expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) and glucose absorption in the duodenum decreased significantly. Estrogen significantly upregulated SGLT1 and GLUT2 expression in SCBN cells. Silencing of ERα, but not ERβ, reversed this trend, suggesting that ERα may be key to estrogen-regulating glucose transporters. A mechanistic study revealed that downstream, estrogen regulates the protein kinase C (PKC) pathway. Overall, our findings indicate that estrogen promotes glucose absorption, and estrogen and ERα deficiency can inhibit SGLT1 and GLUT2 expression through the PKC signaling pathway, thereby reducing glucose absorption.
Collapse
Affiliation(s)
- Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
2
|
Lamri A, De Paoli M, De Souza R, Werstuck G, Anand S, Pigeyre M. Insight into genetic, biological, and environmental determinants of sexual-dimorphism in type 2 diabetes and glucose-related traits. Front Cardiovasc Med 2022; 9:964743. [PMID: 36505380 PMCID: PMC9729955 DOI: 10.3389/fcvm.2022.964743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing evidence that sex and gender differences play an important role in risk and pathophysiology of type 2 diabetes (T2D). Men develop T2D earlier than women, even though there is more obesity in young women than men. This difference in T2D prevalence is attenuated after the menopause. However, not all women are equally protected against T2D before the menopause, and gestational diabetes represents an important risk factor for future T2D. Biological mechanisms underlying sex and gender differences on T2D physiopathology are not yet fully understood. Sex hormones affect behavior and biological changes, and can have implications on lifestyle; thus, both sex-specific environmental and biological risk factors interact within a complex network to explain the differences in T2D risk and physiopathology in men and women. In addition, lifetime hormone fluctuations and body changes due to reproductive factors are generally more dramatic in women than men (ovarian cycle, pregnancy, and menopause). Progress in genetic studies and rodent models have significantly advanced our understanding of the biological pathways involved in the physiopathology of T2D. However, evidence of the sex-specific effects on genetic factors involved in T2D is still limited, and this gap of knowledge is even more important when investigating sex-specific differences during the life course. In this narrative review, we will focus on the current state of knowledge on the sex-specific effects of genetic factors associated with T2D over a lifetime, as well as the biological effects of these different hormonal stages on T2D risk. We will also discuss how biological insights from rodent models complement the genetic insights into the sex-dimorphism effects on T2D. Finally, we will suggest future directions to cover the knowledge gaps.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada
| | - Monica De Paoli
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Russell De Souza
- Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton, ON, Canada
| | - Sonia Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Marie Pigeyre
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Population Health Research Institute (PHRI), Hamilton, ON, Canada,*Correspondence: Marie Pigeyre
| |
Collapse
|
3
|
Molina-Molina E, Furtado GE, Jones JG, Portincasa P, Vieira-Pedrosa A, Teixeira AM, Barros MP, Bachi ALL, Sardão VA. The advantages of physical exercise as a preventive strategy against NAFLD in postmenopausal women. Eur J Clin Invest 2022; 52:e13731. [PMID: 34890043 DOI: 10.1111/eci.13731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The prevalence and severity of nonalcoholic fatty liver disease (NAFLD) increase in women after menopause. This narrative review discusses the causes and consequences of NAFLD in postmenopausal women and describes how physical activity can contribute to its prevention. METHODS The authors followed the narrative review method to perform a critical and objective analysis of the current knowledge on the topic. The Medical Subject Heading keywords 'physical exercise', 'menopause', 'hormone replacement therapy', 'estradiol' and 'NAFLD' were used to establish a conceptual framework. The databases used to collect relevant references included Medline and specialized high-impact journals. RESULTS Higher visceral adiposity, higher rate of lipolysis in adipose tissue after oestrogen drop and changes in the expression of housekeeping proteins involved in hepatic lipid management are observed in women after menopause, contributing to NAFLD. Excessive liver steatosis leads to hepatic insulin resistance, oxidative stress and inflammation, accelerating NAFLD progression. Physical activity brings beneficial effects against several postmenopausal-associated complications, including NAFLD progression. Aerobic and resistance exercises partially counteract alterations induced by metabolic syndrome in sedentary postmenopausal women, impacting NAFLD progression and severity. CONCLUSIONS With the increased global obesity epidemic in developing countries, NAFLD is becoming a severe problem with increased prevalence in women after menopause. Evidence shows that physical activity may delay NAFLD development and severity in postmenopausal women, although the prescription of age-appropriate physical activity programmes is advisable to assure the health benefits.
Collapse
Affiliation(s)
- Emilio Molina-Molina
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Guilherme Eustaquio Furtado
- Health Sciences Research Unit: Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Ana Vieira-Pedrosa
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Maria Teixeira
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Marcelo Paes Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luís Lacerda Bachi
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, São Paulo, Brazil
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Estrogen Impairs Adipose Tissue Expansion and Cardiometabolic Profile in Obese-Diabetic Female Rats. Int J Mol Sci 2021; 22:ijms222413573. [PMID: 34948369 PMCID: PMC8705713 DOI: 10.3390/ijms222413573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
It has been reported that 17β-estradiol (E2) can exert beneficial effects against the development of obesity, providing women with a healthier metabolic profile and conferring cardiovascular protection. However, a growing body of evidence questions this role in the context of obesity and diabetes. We focus on the adipose tissue–heart axis to address the question of whether E2 can have metabolically detrimental effects in an obese-diabetic rat model. Female Zucker Diabetic Fatty rats were used: LEAN, fa/+; SHAM, sham-operated fa/fa; OVA, ovariectomized fa/fa, and OVA+E2, ovariectomized and E2 treated fa/fa. The secretory expression profile, tissue expansion parameters and composition of visceral adipose tissue, as well as systemic and cardiac parameters related to insulin resistance, fibrosis, and inflammation were analyzed. Ovariectomy induced an attenuation of both diabetic condition and metabolic dysfunction of adipose tissue and cardiac muscle in fa/fa rats, suggesting that E2, in the context of diabetes and obesity, loses its cardioprotective role and could even contribute to greater metabolic alterations. Adipose tissue from OVA rats showed a healthier hyperplastic expansion pattern, which could help maintain tissue function, increase adiponectin expression, and decrease pro-inflammatory adipokines. These findings should be taken into account when considering hormone replacement therapy for obese-diabetic women.
Collapse
|
5
|
Chen X, Xie J, Tan Q, Li H, Lu J, Zhang X. Genistein improves systemic metabolism and enhances cold resistance by promoting adipose tissue beiging. Biochem Biophys Res Commun 2021; 558:154-160. [PMID: 33915329 DOI: 10.1016/j.bbrc.2021.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Genistein, a naturally occurring phytoestrogen and a member of the large class of compounds known as isoflavones, exerts protective effects in several diseases. Recent studies indicate that genistein plays a critical role in controlling body weight, obesity-associated insulin resistance, and metabolic disorders, but its target organs in reversing obesity and related pathological conditions remain unclear. In this study, we showed that mice supplemented with 0.2% genistein in a high-fat diet for 12 weeks showed enhanced metabolic homeostasis, including reduced obesity, improved glucose uptake and insulin sensitivity, and alleviated hepatic steatosis. We also observed a beiging phenomenon in the white adipose tissue and reversal of brown adipose tissue whitening in these mice. These changes led to enhanced resistance to cold stress. Altogether, our data suggest that the improved metabolic profile in mice treated with genistein is likely a result of enhanced adipose tissue function.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pediatrics, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China; Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| | - Juanyu Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| | - Qingqing Tan
- Department of Biology, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Huan Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| | - Jun Lu
- Department of Pediatrics, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China.
| | - Xingxing Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| |
Collapse
|
6
|
Rocha DS, Kucharski LC. Is the beta estradiol receptor receiving enough attention for its metabolic importance in postmenopause? Horm Mol Biol Clin Investig 2021; 42:329-340. [PMID: 34704691 DOI: 10.1515/hmbci-2020-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/16/2021] [Indexed: 11/15/2022]
Abstract
The relationship between menopause and the development of metabolic diseases is well established. In postmenopause women, there is an expansion of visceral white adipose tissue (WATv), which highly contributes to the rise of circulating lipids. Meanwhile, muscle glucose uptake decreases and hepatic glucose production increases. Consequently, in the pancreas, lipotoxicity and glycotoxicity lead to deficient insulin production. These factors initiate an energy imbalance and enhance the probability of developing cardiovascular and metabolic diseases. Although the activation of estradiol receptors (ER) has been shown to be beneficial for the WAT stock pattern, leading to the insulin-sensitive phenotype, authors have described the risk of these receptors' activation, contributing to neoplasia development. The selective activation of beta-type ER (ERβ) seems to be a promising strategy in the treatment of energy imbalance, acting on several tissues of metabolic importance and allowing an intervention with less risk for the development of estrogen-dependent neoplasia. However, the literature on the risks and benefits of selective ERβ activation still needs to increase. In this review, several aspects related to ERβ were considered, such as its physiological role in tissues of energy importance, beneficial effects, and risks of its stimulation during menopause. PubMed, SciELO, Cochrane, and Medline/Bireme databases were used in this study.
Collapse
Affiliation(s)
- Débora Santos Rocha
- Physiology Department, Federal University of Rio Grande do Sul, Sarmento Leite, 500, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Physiology Department, Federal University of Rio Grande do Sul, Sarmento Leite, 500, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Lim DW, Jeon H, Kim M, Yoon M, Jung J, Kwon S, Cho S, Um MY. Standardized rice bran extract improves hepatic steatosis in HepG2 cells and ovariectomized rats. Nutr Res Pract 2020; 14:568-579. [PMID: 33282120 PMCID: PMC7683207 DOI: 10.4162/nrp.2020.14.6.568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUD/OBJECTIVES Hepatic steatosis is the most common liver disorder, particularly in postmenopausal women. This study investigated the protective effects of standardized rice bran extract (RBS) on ovariectomized (OVX)-induced hepatic steatosis in rats. MATERIALS/METHODS HepG2 cells were incubated with 200 µM oleic acid to induce lipid accumulation with or without RBS and γ-oryzanol. OVX rats were separated into three groups and fed a normal diet (ND) or the ND containing 17β-estradiol (E2; 10 µg/kg) and RBS (500 mg/kg) for 16 weeks. RESULTS RBS supplementation improved serum triglyceride and free fatty acid levels in OVX rats. Histological analysis showed that RBS significantly attenuated hepatic fat accumulation and decreased hepatic lipid, total cholesterol, and triglyceride levels. Additionally, RBS suppressed the estrogen deficiency-induced upregulation of lipogenic genes, such as sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1, fatty acid synthase, glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1. CONCLUSIONS RBS and γ-oryzanol effectively reduced lipid accumulation in a HepG2 cell hepatic steatosis model. RBS improves OVX-induced hepatic steatosis by regulating the SREBP1-mediated activation of lipogenic genes, suggesting the benefits of RBS in preventing fatty liver in postmenopausal women.
Collapse
Affiliation(s)
- Dong Wook Lim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyejin Jeon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Minji Kim
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Jonghoon Jung
- Technical Assistance Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Sangoh Kwon
- S&D Research and Development Institute, Cheongju 28156, Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea.,Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| |
Collapse
|
8
|
De Paoli M, Werstuck GH. Role of Estrogen in Type 1 and Type 2 Diabetes Mellitus: A Review of Clinical and Preclinical Data. Can J Diabetes 2020; 44:448-452. [DOI: 10.1016/j.jcjd.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/17/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
9
|
González-Granillo M, Savva C, Li X, Ghosh Laskar M, Angelin B, Gustafsson JÅ, Korach-André M. Selective estrogen receptor (ER)β activation provokes a redistribution of fat mass and modifies hepatic triglyceride composition in obese male mice. Mol Cell Endocrinol 2020; 502:110672. [PMID: 31811898 DOI: 10.1016/j.mce.2019.110672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Estrogen exerts its action through the binding to two major receptors, estrogen receptor (ER)α and β. Recently, the beneficial role of selective ERβ activation in the regulation of metabolic homeostasis in obesity has been demonstrated, but its importance is still controversial. However, no data are available regarding possible gender differences in response to pharmaceutical activation of ERβ. Male mice were fed a control diet (CD) or a high fat diet (HFD) before being treated with the ERβ selective ligand, 4-(2-(3-5-dimethylisoxazol-4-yl)-1H-indol-3yl)phenol (DIP) in the same conditions as in our recently published paper in female mice. Magnetic resonance imaging and spectroscopy were performed repeatedly in vivo after 6 weeks of diet and after 2 weeks of DIP. Adipose tissue distribution and hepatic triglycerides composition were quantified. HFD-treated males showed a feminization of their fat distribution towards more subcutaneous fat depots and increase total fat content and visceral adipose tissue showed clear browning sites after DIP. Hepatic lipid composition was modified by DIP, with less saturated and more unsaturated lipids and an improved insulin sensitivity. Finally, brown adipose tissue size expended after DIP, due to an increase of the size of the lipid droplets. Our data demonstrate that selective activation of ERβ exerts a tissue-specific and sex-dependent response to metabolic adaptation to overfeeding. Most importantly, together with our previously published results in females, the current findings support the concept that sex should be considered in the future development of obesity-moderating drugs.
Collapse
Affiliation(s)
- Marcela González-Granillo
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christina Savva
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Xidan Li
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Moumita Ghosh Laskar
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition Huddinge, Karolinska Institutet, Sweden
| | - Marion Korach-André
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
10
|
Zhu Z, Zhang Y, Bai R, Yang R, Shan Z, Ma C, Yang J, Sun D. Association of Genetic Polymorphisms in MicroRNAs With Type 2 Diabetes Mellitus in a Chinese Population. Front Endocrinol (Lausanne) 2020; 11:587561. [PMID: 33628196 PMCID: PMC7897684 DOI: 10.3389/fendo.2020.587561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNA) involved in the insulin signaling pathways deeply affect the pathogenesis of T2DM. The aim of this study was to assess the association between single nucleotide polymorphisms (SNP) of the related miRNAs (let-7f rs10877887, let-7a-1 rs13293512, miR-133a-1 rs8089787, miR-133a-2 rs13040413, and miR-27a rs895819) and susceptibility to type 2 diabetes mellitus (T2DM), and its possible mechanisms. METHODS Five SNPs in miRNAs (let-7f rs10877887, let-7a-1 rs13293512, miR-133a-1 rs8089787, miR-133a-2 rs13040413, and miR-27a rs895819) involved in the insulin signaling pathways were selected and genotyped in a case-control study that enrolled 371 T2DM patients and 381 non-diabetic controls. The individual SNP association analyses, interaction analyses of SNP-SNP, SNP-environmental factors were performed. The effect the risk-associated polymorphism on regulating its mature miRNA expression was also evaluated. RESULTS In overall analyses, miR-133a-2 rs13040413 and let-7a-1 rs13293512 were related to the susceptibility to T2DM. In stratified analyses, miR-133a-2 rs13040413, let-7a-1 rs13293512 and miR-27a rs895819 showed associations with T2DM in the age ≥ 60 years subgroup. Moreover, let-7a-1 rs13293512 and miR-27a rs895819 showed associations with T2DM in male subgroup. In SNP-environmental factors interaction analyses, there were interaction effects of miR-133a-2 rs13040413 with dyslipidemia, let-7a-1 rs13293512 with smoking, and let-7a-1 rs13293512 with dyslipidemia on T2DM. In SNP-SNP interaction analyses, there were also interaction effects of miR-133a-1 rs8089787 with let-7a-1 rs13293512, and miR-133a-1 rs8089787 with let-7f rs10877887 on T2DM. Furthermore, for miR-133a-2 rs13040413, the variant T allele showed a trend toward decreased miR-133a expression in comparison with the wild C allele. For let-7a-1 rs13293512, the variant C allele expressed a lower let-7a compared to the wild T allele. CONCLUSION MiRNAs polymorphisms involved in the insulin signaling pathways and the interaction effects of SNP-SNP, SNP-environmental factors were related to T2DM susceptibility in a Chinese population.
Collapse
Affiliation(s)
- Zaihan Zhu
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanfen Zhang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruocen Bai
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ru Yang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Dandan Sun, ; Jun Yang,
| | - Dandan Sun
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Dandan Sun, ; Jun Yang,
| |
Collapse
|
11
|
Kawakami M, Yokota-Nakagi N, Takamata A, Morimoto K. Endurance running exercise is an effective alternative to estradiol replacement for restoring hyperglycemia through TBC1D1/GLUT4 pathway in skeletal muscle of ovariectomized rats. J Physiol Sci 2019; 69:1029-1040. [PMID: 31782092 PMCID: PMC10717071 DOI: 10.1007/s12576-019-00723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/20/2019] [Indexed: 01/24/2023]
Abstract
Menopause is a risk factor for impaired glucose metabolism. Alternative treatment of estrogen for postmenopausal women is required. The present study was designed to investigate the effects of 5-week endurance running exercise (Ex) by treadmill on hyperglycemia and signal pathway components mediating glucose transport in ovariectomized (OVX) placebo-treated rats, compared with 4-week 17β-estradiol (E2) replacement or pair-feeding (PF) to the E2 group. Ex improved the hyperglycemia and insulin resistance index in OVX rats as much as E2 or PF did. However, Ex had no effect on body weight gain in the OVX rats. Moreover, Ex enhanced the levels of GLUT4 and phospho-TBC1D1 proteins in the gastrocnemius of the OVX rats, but E2 or PF did not. Instead, the E2 increased the Akt2/AS160 expression and activation in the OVX rats. This study suggests that endurance Ex training restored hyperglycemia through the TBC1D1/GLUT4 pathway in muscle by an alternative mechanism to E2 replacement.
Collapse
Affiliation(s)
- Mizuho Kawakami
- Department of Environmental Health, Faculty of Human Life and Environment, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan
| | - Naoko Yokota-Nakagi
- Department of Environmental Health, Faculty of Human Life and Environment, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan
| | - Akira Takamata
- Department of Environmental Health, Faculty of Human Life and Environment, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Faculty of Human Life and Environment, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan.
| |
Collapse
|
12
|
Genistein ameliorated obesity accompanied with adipose tissue browning and attenuation of hepatic lipogenesis in ovariectomized rats with high-fat diet. J Nutr Biochem 2019; 67:111-122. [DOI: 10.1016/j.jnutbio.2019.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
|
13
|
In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients 2019; 11:nu11030530. [PMID: 30823474 PMCID: PMC6470730 DOI: 10.3390/nu11030530] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023] Open
Abstract
About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic effects of flavonoids as well as the mechanisms of their actions.
Collapse
|
14
|
Rockwood S, Mason D, Lord R, Lamar P, Prozialeck W, Al-Nakkash L. Genistein diet improves body weight, serum glucose and triglyceride levels in both male and female ob/ob mice. Diabetes Metab Syndr Obes 2019; 12:2011-2021. [PMID: 31686880 PMCID: PMC6783398 DOI: 10.2147/dmso.s216312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Diabetic obesity in the leptin-deficient ob/ob mouse is associated with weight gain, and hyperglycemia, along with hyperinsulinemia. We have previously examined the effects of genistein (a naturally occurring isoflavone found in soy) on metabolic disturbances in the ob/ob mouse and demonstrated beneficial effects of genistein (600 mg genistein/kg diet, for 4-weeks) on T3 production and corticosterone status. The goal of this study was to examine whether dietary genistein could prevent, or at least lessen, the typical phenotype in this murine model of diabetic-obesity, and to assess potential sex-differences. PATIENTS AND METHODS The ob/ob mice (male and female) aged 4-5 weeks were randomly assigned to one of two diets for a period of 4-weeks: standard rodent diet, or genistein-containing diet (600 mg genistein/kg diet). Comparisons were made to a lean control group. RESULTS Genistein diet significantly reduced body weight by 12% in females and 9% in males. Genistein significantly lowered serum glucose levels by 18% in females and 43% in males, yet had no effect on serum insulin. Genistein diet significantly lowered serum triglyceride levels in both ob/ob male and female mice returning them to lean levels. In females only, genistein significantly reduced serum pancreatic polypeptide levels by 56% and increased serum GIP levels 2.3-fold. Genistein had sex-dependent effects on hepatic steatosis: in females, genistein further increased the % fat area and the fat droplet diameter 2.6-fold, along with additionally increasing hepatic TBARS. CONCLUSION The results from this study indicate interesting beneficial effects of genistein diet for both male and female ob/ob mice.
Collapse
Affiliation(s)
- Schuyler Rockwood
- Arizona College of Osteopathic Medicine, Midwestern University
, Glendale, AZ, USA
| | - Daniel Mason
- Arizona College of Osteopathic Medicine, Midwestern University
, Glendale, AZ, USA
| | - Ryan Lord
- Arizona College of Osteopathic Medicine, Midwestern University
, Glendale, AZ, USA
| | - Peter Lamar
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Walter Prozialeck
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- Correspondence: Layla Al-Nakkash Department of Physiology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ85308, USATel +1 623 572 3719Fax +1 623 572 3673 Email
| |
Collapse
|
15
|
Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Deng M. A Possible Mechanism: Genistein Improves Metabolism and Induces White Fat Browning Through Modulating Hypothalamic Expression of Ucn3, Depp, and Stc1. Front Endocrinol (Lausanne) 2019; 10:478. [PMID: 31379744 PMCID: PMC6646519 DOI: 10.3389/fendo.2019.00478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Bioactive food components have gained growing attention in recent years. Multiple studies demonstrated that genistein had beneficial effects on metabolism. However, the exact mechanism by which genistein improves metabolism remains unclear, especially the central regulation. This study was designed to evaluate whether addition of genistein to the high-fat diet could counter metabolic disorders and whether these alterations were associated with gene expression in hypothalamus. C57BL/6 mice were fed either a high-fat diet (HF), high-fat diet with genistein (0.25 g/kg diet) (HFG) or a normal control diet (CON) for 8 weeks. Body weight was assessed during the study. After 8-week intervention, content of inguinal subcutaneous adipose tissue (SAT), perirenal visceral adipose tissue (VAT) and brown adipose tissue (BAT) were weighed. Glucose tolerance test, the serum levels of insulin and lipid were assessed. The mRNA of browning marker was detected in the white fat. The hypothalamus was collected for whole transcriptome sequencing and reverse transcription quantitative PCR validation. The results demonstrated that mice fed HFG diet had lower body weight and SAT mass, decrease levels of low-density lipoprotein cholesterol and free fatty acids, higher browning marker of Ucp1 and Cidea in WAT and an improvement in glucose tolerance and insulin sensitivity compared with those in HF group. Transcriptome sequencing showed that there were three differentially expressed genes in hypothalamus among the three groups, including Ucn3, Depp, and Stc1, which were significantly correlated with the browning markers in WAT and insulin sensitivity. Thus, regulating gene expressions in hypothalamus is a potential mechanism for genistein improving metabolism and inducing WAT browning, which may provide a novel target for the precaution and treatment of T2DM.
Collapse
|
16
|
Ofosu WA, Mohamed D, Corcoran O, Ojo OO. The Role of Oestrogen Receptor Beta (ERβ) in the Aetiology and Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2019; 15:100-104. [PMID: 29357808 DOI: 10.2174/1573399814666180119141836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Challenges facing the treatment of type 2 diabetes necessitate the search for agents which act via alternative pathways to provide better therapeutic outcomes. Recently, an increasing body of evidence implicates the activation of oestrogen receptors (ERα and ERβ) in the development and treatment of underlying conditions in type 2 diabetes. This article summarizes available evidence for the involvement of oestrogen receptors in insulin secretion, insulin resistance as well as glucose uptake and highlights the potential of ERβ as a therapeutic target. BACKGROUND Recent studies indicate an association between the activation of each of the isoforms of ER and recent findings indicate that ERβ shows promise as a potential target for antidiabetic drugs. In vitro and in vivo studies in receptor knockout mice indicate beneficial actions of selective agonists of ERβ receptor and underscore its therapeutic potential. CONCLUSION Studies are needed to further elucidate the exact mechanism underlying the role of ERβ activation as a therapeutic approach in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Wendy Amy Ofosu
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Dahir Mohamed
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Olivia Corcoran
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Opeolu Oyejide Ojo
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
17
|
Kim YJ, Kim HJ, Ok HM, Jeong HY, Lee WJ, Weaver C, Kwon O. Effect and interactions of Pueraria-Rehmannia and aerobic exercise on metabolic inflexibility and insulin resistance in ovariectomized rats fed with a high-fat diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
18
|
Sengelaub DR, Xu XM. Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury. Neural Regen Res 2018; 13:971-976. [PMID: 29926818 PMCID: PMC6022470 DOI: 10.4103/1673-5374.233434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. The majority of treatment strategies after SCI have concentrated on the damaged spinal cord, for example working to reduce lesion size or spread, or encouraging regrowth of severed descending axonal projections through the lesion, hoping to re-establish synaptic connectivity with caudal targets. In our work, we have focused on a novel target for treatment after SCI, surviving spinal motoneurons and their target musculature, with the hope of developing effective treatments to preserve or restore lost function following SCI. We previously demonstrated that motoneurons, and the muscles they innervate, show pronounced atrophy after SCI. Importantly, SCI-induced atrophy of motoneuron dendrites can be attenuated by treatment with gonadal hormones, testosterone and its active metabolites, estradiol and dihydrotestosterone. Similarly, SCI-induced reductions in muscle fiber cross-sectional areas can be prevented by treatment with androgens. Together, these findings suggest that regressive changes in motoneuron and muscle morphology seen after SCI can be ameliorated by treatment with gonadal hormones, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Sengelaub DR, Han Q, Liu NK, Maczuga MA, Szalavari V, Valencia SA, Xu XM. Protective Effects of Estradiol and Dihydrotestosterone following Spinal Cord Injury. J Neurotrauma 2018; 35:825-841. [PMID: 29132243 PMCID: PMC5863086 DOI: 10.1089/neu.2017.5329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. We previously demonstrated that motoneurons and the muscles they innervate show pronounced atrophy after SCI, and these changes are prevented by treatment with testosterone. Here, we assessed whether the testosterone active metabolites estradiol and dihydrotestosterone have similar protective effects after SCI. Young adult female rats received either sham or T9 spinal cord contusion injuries and were treated with estradiol, dihydrotestosterone, both, or nothing via Silastic capsules. Basso-Beattie-Bresnahan locomotor testing was performed weekly and voiding behavior was assessed at 3 weeks post-injury. Four weeks after SCI, lesion volume and tissue sparing, quadriceps muscle fiber cross-sectional area, and motoneuron dendritic morphology were assessed. Spontaneous locomotor behavior improved after SCI, but hormone treatments had no effect. Voiding behavior was disrupted after SCI, but was significantly improved by treatment with either estradiol or dihydrotestosterone; combined treatment was maximally effective. Treatment with estradiol reduced lesion volume, but dihydrotestosterone alone and estradiol combined with dihydrotestosterone were ineffective. SCI-induced decreases in motoneuron dendritic length were attenuated by all hormone treatments. SCI-induced reductions in muscle fiber cross-sectional areas were prevented by treatment with either dihydrotestosterone or estradiol combined with dihydrotestosterone, but estradiol treatment was ineffective. These findings suggest that deficits in micturition and regressive changes in motoneuron and muscle morphology seen after SCI are ameliorated by treatment with estradiol or dihydrotestosterone, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.
Collapse
Affiliation(s)
- Dale R. Sengelaub
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Qi Han
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nai-Kui Liu
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A. Maczuga
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Violetta Szalavari
- Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
20
|
Wang L, Niu YM, Wu SS, Zhang C, Zhou L, Zuo HX, Wang P. A Study on the Association Between Polymorphisms in the Cytochrome P450 Family 17 Subfamily A Member 1 Gene Region and Type 2 Diabetes Mellitus in Han Chinese. Front Endocrinol (Lausanne) 2018; 9:323. [PMID: 29942286 PMCID: PMC6004380 DOI: 10.3389/fendo.2018.00323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cytochrome P450 family 17 subfamily A member 1 (CYP17A1) gene encodes a key enzyme in the synthesis and metabolism of steroid hormones and has been associated with various factors, such as hypertension, insulin resistance, and polycystic ovary syndrome. However, whether the gene was associated with type 2 diabetes mellitus (T2DM) has not been reported yet. Therefore, we sought to investigate whether CYP17A1 was associated with T2DM and related traits among Han Chinese. METHODS Three tagging single nucleotide polymorphisms (rs1004467, rs17115149, and rs12413409), in the CYP17A1 gene region were selected and genotyped in a case-control study that included 440 diabetes and 1,320 control subjects. Effects of genetic loci were studied using univariate unconditional logistic regression and multivariate logistic regression analysis adjusted for age, sex, family history, body mass index, smoking, and drinking. Bioinformatics analysis was also conducted using the GEO DataSets and PROMO database to gain hints of possible mechanism. RESULTS Rs17115149 and rs12413409 polymorphisms were significantly associated with the risk of T2DM, even after adjusting for age, sex, family history, body mass index, smoking, and drinking. In stratified analyses, rs1004467 and rs12413409 showed significant association with T2DM in the older age group (≥65 years) and, in the case of rs12413409, the risk of T2DM was significant in men but not in women. Rs17115149 had significant association with T2DM in the hypertension subgroup, and rs12413409 in the non-hypertension subgroup. Moreover, rs12413409 showed significant association with plasma glucose levels in the recessive model (P = 0.020) among subjects not taking hypoglycemic measures. Bioinformatics analysis revealed significantly higher CYP17A1 gene expression in T2DM patients compared to healthy controls. Finally, the mutant T allele of the rs17115149 polymorphism allowed binding to the RBP-Jkappa transcription factor. CONCLUSION This is the first report to identify that variants rs1004467, rs17115149, and rs12413409 of CYP17A1, are related to plasma glucose levels and T2DM among Han Chinese. Our results suggest that CYP17A1 might constitute a risk gene for progression to T2DM.
Collapse
Affiliation(s)
- Long Wang
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Ming Niu
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Yu-Ming Niu, ; Shi-Shi Wu,
| | - Shi-Shi Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Yu-Ming Niu, ; Shi-Shi Wu,
| | - Chao Zhang
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Zhou
- Research Center for Medicine and Social Development, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hong-Xia Zuo
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Wang
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
21
|
Huang G, Xu J, Lefever DE, Glenn TC, Nagy T, Guo TL. Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis. Toxicol Appl Pharmacol 2017; 332:138-148. [PMID: 28412308 PMCID: PMC5592136 DOI: 10.1016/j.taap.2017.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/25/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Although studies have linked soy phytoestrogen 4,7,4-trihydroxyisoflavone genistein (GEN) to reduced type 1 diabetes (T1D) risk, the mechanism of dietary GEN on T1D remains unknown. In our studies, adult non-obese diabetic (NOD) mouse model was employed to investigate the effects of GEN exposure on blood glucose level (BGL), glucose tolerance, gut microbiome, and immune responses. Adult male and female NOD mice were fed with either soy-based or casein-based diet, and received GEN at 20mg/kg body weight by gavage daily. The BGL and immune responses (represented by serum antibodies, cytokines and chemokines, and histopathology) were monitored, while the fecal gut microbiome was sequenced for 16S ribosomal RNA to reveal any alterations in gut microbial communities. A significantly reduced BGL was found in NOD males fed with soy-based diet on day 98 after initial dosing, and an improved glucose tolerance was observed on both diets. In addition, an anti-inflammatory response (suggested by reduced IgG2b and cytokine/chemokine levels, and alterations in the microbial taxonomy) was accompanied by an altered β-diversity in gut microbial species. Among the NOD females exposed to GEN, a later onset of T1D was observed. However, the profiles of gut microbiome, antibodies and cytokines/chemokines were all indicative of pro-inflammation. This study demonstrated an association among GEN exposure, gut microbiome alteration, and immune homeostasis in NOD males. Although the mechanisms underlying the protective effects of GEN in NOD mice need to be explored further, the current study suggested a GEN-induced sex-specific effect in inflammatory status and gut microbiome.
Collapse
Affiliation(s)
- Guannan Huang
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Daniel E Lefever
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Travis C Glenn
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States.
| |
Collapse
|
22
|
Gheller BJF, Riddle ES, Lem MR, Thalacker-Mercer AE. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males. Annu Rev Nutr 2017; 36:129-56. [PMID: 27431365 DOI: 10.1146/annurev-nutr-071715-050901] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.
Collapse
Affiliation(s)
- Brandon J F Gheller
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853;
| | - Emily S Riddle
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853;
| | - Melinda R Lem
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853;
| | | |
Collapse
|
23
|
Novel oestrogen receptor β-selective ligand reduces obesity and depressive-like behaviour in ovariectomized mice. Sci Rep 2017; 7:4663. [PMID: 28680060 PMCID: PMC5498485 DOI: 10.1038/s41598-017-04946-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Hormonal changes due to menopause can cause various health problems including weight gain and depressive symptoms. Multiple lines of evidence indicate that oestrogen receptors (ERs) play a major role in postmenopausal obesity and depression. However, little is known regarding the ER subtype-specific effects on obesity and depressive symptoms. To delineate potential effects of ERβ activation in postmenopausal women, we investigated the effects of a novel oestrogen receptor β-selective ligand (C-1) in ovariectomized mice. Uterine weight, depressive behaviour, and weight gain were examined in sham-operated control mice and ovariectomized mice administered placebo, C-1, or 17β-oestradiol (E2). Administration of C-1 or E2 reduced body weight gain and depressive-like behaviour in ovariectomized mice, as assessed by the forced swim test. In addition, administration of E2 to ovariectomized mice increased uterine weight, but administration of C-1 did not result in a significant increase in uterine weight. These results suggest that the selective activation of ERβ in ovariectomized mice may have protective effects against obesity and depressive-like behaviour without causing an increase in uterine weight. The present findings raise the possibility of the application of ERβ-ligands such as C-1 as a novel treatment for obesity and depression in postmenopausal women.
Collapse
|
24
|
Gasmi S, Rouabhi R, Kebieche M, Boussekine S, Salmi A, Toualbia N, Taib C, Bouteraa Z, Chenikher H, Henine S, Djabri B. Effects of Deltamethrin on striatum and hippocampus mitochondrial integrity and the protective role of Quercetin in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16440-16457. [PMID: 28551743 DOI: 10.1007/s11356-017-9218-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
The present work is to evaluate the neurotoxicity induced by pyrethroid insecticide "Deltamethrin" at 0.32 mg/kg/day in two main regions of the Wistar rat brain (hippocampus and striatum) and the protective effects of Quercetin at 10 mg/kg/day on this toxicity after 90 days of exposure. The assay of brain parameters showed that Deltamethrin caused a significant increase of mitochondrial metabolite level (proteins, lipids, and carbohydrates) and enzyme activity (glutathione S-transferase and superoxide dismutase); a decreased amount of mitochondrial glutathione level and catalase and glutathione peroxidase activities; and an increase of malondialdehyde (MDA) acid levels of the two regions. Furthermore, mitochondrial functional testing in the brains of treated rats exhibited a significant increase in permeability followed by a mitochondrial swelling. Instead, a statistically significant decrease in mitochondrial respiration (O2 consumption) was recorded in the striatum and hippocampus. Our study showed that the pesticide caused a significant increase of the cytochrome c amount correlated with activation of neuronal apoptosis mechanisms by the significant increase of caspase-3 of hippocampus and striatum. In particular, the results of behavioral tests (open field, classic maze tests of sucrose, and Morris water maze) have significant changes, namely bad behavior of the treated rats, affecting the level of anxiety, learning, and memory, and general motor activity has mainly been shown in treated rats. In addition, the histological cuts clearly confirm cerebral necrosis in the hippocampus and the striatum caused by the pesticide. They allow us to consider the necrotic areas, black spots, reduction, and denaturation of these brain regions in the treated rats. On the other hand, we have studied the protective effects against the neurotoxicity of Deltamethrin (DLM). In this context, after the gavage of Quercetin at the dose of 10 mg/kg/day, we have noticed an improvement in the entire parameters: mitochondrial enzyme, metabolic, histological, and behavioral parameters. This confirmed the improvement of preventive and curative effect of Quercetin against free radicals induced by the DLM.
Collapse
Affiliation(s)
- Salim Gasmi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Rachid Rouabhi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria.
| | | | - Samira Boussekine
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Aya Salmi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Nadjiba Toualbia
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Chahinez Taib
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Zina Bouteraa
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Hajer Chenikher
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Sara Henine
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Belgacem Djabri
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| |
Collapse
|
25
|
Grayson BE, Gutierrez-Aguilar R, Sorrell JE, Matter EK, Adams MR, Howles P, Karns R, Seeley RJ, Sandoval DA. Bariatric surgery emphasizes biological sex differences in rodent hepatic lipid handling. Biol Sex Differ 2017; 8:4. [PMID: 28149499 PMCID: PMC5273842 DOI: 10.1186/s13293-017-0126-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Eighty percent of patients who receive bariatric surgery are women, yet the majority of preclinical studies are in male rodents. Because sex differences drive hepatic gene expression and overall lipid metabolism, we sought to determine whether sex differences were also apparent in these endpoints in response to bariatric surgery. Methods Two cohorts of age-matched virgin male and female Long-Evans rats were placed on a high fat diet for 3 weeks and then received either Sham or vertical sleeve gastrectomy (VSG), a surgery which resects 80% of the stomach with no intestinal rearrangement. Results Each sex exhibited significantly decreased body weight due to a reduction in fat mass relative to Sham controls (p < 0.05). Microarray and follow-up qPCR on liver revealed striking sex differences in gene expression after VSG that reflected a down-regulation of hepatic lipid metabolism and an up-regulation of hepatic inflammatory pathways in females vs. males after VSG. While the males had a significant reduction in hepatic lipids after VSG, there was no reduction in females. Ad lib-fed and fasting circulating triglycerides, and postprandial chylomicron production were significantly lower in VSG relative to Sham animals of both sexes (p < 0.01). However, hepatic VLDL production, highest in sham-operated females, was significantly reduced by VSG in females but not males. Conclusions Taken together, although both males and females lose weight and improve plasma lipids, there are large-scale sex differences in hepatic gene expression and consequently hepatic lipid metabolism after VSG. Electronic supplementary material The online version of this article (doi:10.1186/s13293-017-0126-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS USA
| | - Ruth Gutierrez-Aguilar
- Divsion de Investigacion, Facultad de Medicina, Universidad Nacional Autónoma de México and Laboratorio de Enfermedades Metabólicas Obesidad y Diabetes, Hospital Infantil de México "Federico Gómez", Mexico, Mexico
| | - Joyce E Sorrell
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Emily K Matter
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Michelle R Adams
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio USA
| | - Philip Howles
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio USA
| | - Rebekah Karns
- Bioinformatics Core, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 USA
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 USA
| |
Collapse
|
26
|
Parajuli P, Pandey RP, Huyen Nguyen TT, Shrestha B, Yamaguchi T, Sohng JK. Biosynthesis of natural and non-natural genistein glycosides. RSC Adv 2017. [DOI: 10.1039/c6ra28145a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Biosynthesis of various genistein glycopyranoside scaffolds using versatile GTs and SOMTs. Each compound was structurally characterized and biological activity assay was carried out.
Collapse
Affiliation(s)
- Prakash Parajuli
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| | - Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| |
Collapse
|
27
|
Kübeck R, Bonet-Ripoll C, Hoffmann C, Walker A, Müller VM, Schüppel VL, Lagkouvardos I, Scholz B, Engel KH, Daniel H, Schmitt-Kopplin P, Haller D, Clavel T, Klingenspor M. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab 2016; 5:1162-1174. [PMID: 27900259 PMCID: PMC5123202 DOI: 10.1016/j.molmet.2016.10.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Objective Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. Methods GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. Results GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes) as a characteristic feature of normal SPF mice fed lard. Conclusions In conclusion, our study identified dietary cholesterol as a candidate ingredient affecting the crosstalk between gut microbiota and host metabolism. Cholesterol-based but not plant sterol-based high-fat diet protects germfree (GF) mice from diet-induced obesity (DIO). DIO resistant GF mice show preferential carbohydrate oxidation, higher energy expenditure and energy and fat excretion. DIO resistance in GF mice is accompanied by increased steroid hormone levels but decreased bile acid levels in the cecum. Substrate oxidation and fat excretion in DIO resistant GF mice is linked to decreased hepatic Cyp7a1 and Nr1h4 expression.
Collapse
Key Words
- ANOVA, analysis of variance
- Abcg5, ATP-binding cassette sub-family G member 5
- Abcg8, ATP-binding cassette sub-family G member 8
- Actb, beta actin
- Akr1d1, aldo-keto-reductase family member 1
- BMR, basal metabolic rate
- CA, cholic acid
- CD, control diet
- CDCA, chenodeoxycholic acid
- CIDEA, cell death inducing DFFA-like effector
- COX4, cytochrome c oxidase subunit 4
- Cyp27a1, cholesterol 27 alpha-hydroxylase
- Cyp7a1, cholesterol 7 alpha-hydroxylase
- DCA, deoxycholic acid
- DEE, daily energy expenditure
- DIO, diet-induced obesity
- Dhcr7, 7-dehydrocholesterol reductase
- Diet-induced obesity resistance
- Eef2, eukaryotic elongation factor 2
- Energy balance
- FT-ICR-MS, Fourier transform-Ion Cyclotron Resonance-Mass Spectrometry
- FT-IR, Fourier transform-infrared spectroscopy
- GF, germfree
- GUSB, beta-glucuronidase
- Germfree
- HDCA, hyodeoxycholic acid
- HP, heat production
- High-fat diet
- Hmgcr, 3-hydroxy-3-methylglutaryl Coenzyme A reductase
- Hmgcs, 3-hydroxy-3-methylglutaryl Coenzyme A synthase 1
- Hprt1, hypoxanthine guanine phosphoribosyl transferase
- Hsd11b1, hydroxysteroid (11-β) dehydrogenase 1
- Hsp90, heat shock protein 90
- LHFD, high-fat diet based on lard
- Ldlr, low density lipoprotein receptor
- MCA, muricholic acid
- Nr1h2, nuclear receptor subfamily 1, group H, member 2 (liver X receptor β)
- Nr1h3, nuclear receptor subfamily 1, group H, member 3 (liver X receptor α)
- Nr1h4, nuclear receptor subfamily 1, group H, member 4 (farnesoid X receptor α)
- PHFD, high-fat diet based on palm oil
- PRDM16, PR domain containing 16
- SPF, specific pathogen free
- Srebf1, sterol regulatory element binding transcription factor 1
- TCA, taurocholic acid
- TMCA, Tauromuricholic acid
- Tf2b, transcription factor II B
- UCP1, uncoupling protein 1
- UDCA, ursodeoxycholic acid
- UPLC-TOF-MS, ultraperformance liquid chromatography-time of flight-mass spectrometry
- qPCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Raphaela Kübeck
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Catalina Bonet-Ripoll
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Christina Hoffmann
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Veronika Maria Müller
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Nutritional Physiology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Valentina Luise Schüppel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Nutrition and Immunology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Birgit Scholz
- Chair of General Food Technology, Technische Universität München, Alte Akademie 10, 85354 Freising, Germany
| | - Karl-Heinz Engel
- Chair of General Food Technology, Technische Universität München, Alte Akademie 10, 85354 Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising, Germany
| | - Dirk Haller
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Nutrition and Immunology, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Thomas Clavel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Martin Klingenspor
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair of Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
28
|
Sex-Dependent Effects of Dietary Genistein on Echocardiographic Profile and Cardiac GLUT4 Signaling in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1796357. [PMID: 27471542 PMCID: PMC4947657 DOI: 10.1155/2016/1796357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 01/13/2023]
Abstract
This study aimed to determine whether genistein diet resulted in changes in cardiac function, using echocardiography, and expression of key proteins involved in glucose uptake by the myocardium. Intact male and female C57BL/6J mice (aged 4–6 weeks) were fed either 600 mg genistein/kg diet (600 G) or 0 mg genistein/kg diet (0 G) for 4 weeks. Echocardiography data revealed sex-dependent differences in the absence of genistein: compared to females, hearts from males exhibited increased systolic left ventricle internal dimension (LVIDs), producing a decrease in function, expressed as fractional shortening (FS). Genistein diet also induced echocardiographic changes in function: in female hearts, 600G induced a 1.5-fold (P < 0.05) increase in LVIDs, resulting in a significant decrease in FS and whole heart surface area when compared to controls (fed 0 G). Genistein diet increased cardiac GLUT4 protein expression in both males (1.51-fold, P < 0.05) and females (1.76-fold, P < 0.05). However, no effects on the expression of notable intracellular signaling glucose uptake-regulated proteins were observed. Our data indicate that consumption of genistein diet for 4 weeks induces echocardiographic changes in indices of systolic function in females and has beneficial effects on cardiac GLUT4 protein expression in both males and females.
Collapse
|
29
|
Lee KY, Kim JR, Choi HC. Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC through autophagy induction. Vascul Pharmacol 2016; 81:75-82. [PMID: 26924458 DOI: 10.1016/j.vph.2016.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/18/2015] [Accepted: 02/22/2016] [Indexed: 01/18/2023]
Abstract
Genistein, the primary isoflavone from soy products, enhances antioxidant enzyme activities and inhibits tyrosine kinase. However, the mechanisms underlying genistein-induced autophagy are not yet completely understood. Autophagy refers to a regulated cellular process for the lysosomal-dependent turnover of organelles and proteins. During starvation or nutrient deficiency, autophagy provides an endogenous mechanism for prolonging survival. Here, we investigated whether genistein exerts autophagic effects through the activation of LKB1-AMPK signaling in VSMCs. Genistein dose- and time-dependently increased the phosphorylation of LKB1 and AMPK in VSMCs. LKB1 and AMPK induced autophagy through the downregulation of mTOR in VSMCs. Genistein-induced autophagy was inhibited in dominant-negative AMPK-transfected cells, whereas it was accelerated in cells transfected with the constitutively active form of AMPK. Increased autophagosome activity was confirmed by a concentration-dependent increase in LC3-II formation on Western blots and by increased perinuclear LC3-II puncta in genistein-treated VSMCs. Furthermore, genistein-induced autophagy attenuated adriamycin-induced SA-b-gal staining. These results suggest that genistein-dependent autophagy diminishes VSMC senescence and genistein may attenuate the VSMC senescence via an LKB1-AMPK-dependent mechanism.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Animals
- Autophagy/drug effects
- Cells, Cultured
- Cellular Senescence/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Enzyme Activation
- Enzyme Activators/pharmacology
- Genistein/pharmacology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/enzymology
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Macrolides/pharmacology
- Microtubule-Associated Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Kyung Young Lee
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Daegu 42415, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Daegu 42415, Republic of Korea.
| |
Collapse
|
30
|
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 2015; 12:60. [PMID: 26705405 PMCID: PMC4690284 DOI: 10.1186/s12986-015-0057-7] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Background Natural food products have been used for combating human diseases for thousands of years. Naturally occurring flavonoids including flavones, flavonols, flavanones, flavonols, isoflavones and anthocyanidins have been proposed as effective supplements for management and prevention of diabetes and its long-term complications based on in vitro and animal models. Aim To summarize the roles of dietary flavonoids in diabetes management and their molecular mechanisms. Findings Tremendous studies have found that flavonoids originated from foods could improve glucose metabolism, lipid profile, regulating the hormones and enzymes in human body, further protecting human being from diseases like obesity, diabetes and their complications. Conclusion In the current review, we summarize recent progress in understanding the biological action, mechanism and therapeutic potential of the dietary flavonoids and its subsequent clinical outcomes in the field of drug discovery in management of diabetes mellitus.
Collapse
Affiliation(s)
- Ramachandran Vinayagam
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, Guangdong 519085 China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, Guangdong 519085 China
| |
Collapse
|