1
|
Flannery JC, Tirrell PS, Baumgartner NE, Daniel JM. Neuroestrogens, the hippocampus, and female cognitive aging. Horm Behav 2025; 170:105710. [PMID: 40036999 DOI: 10.1016/j.yhbeh.2025.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Research conducted over the last several decades implicates ovarian estrogens as important modulators of hippocampal function. More recently however, the importance of estrogens synthesized in the brain de novo for hippocampal function has been recognized. These brain-derived neuroestrogens act in the hippocampus to regulate dendritic spine dynamics and synaptic plasticity as well as hippocampus-dependent memory. The current report provides an overview of research conducted in model systems elucidating the actions of neuroestrogens in the hippocampus and the subsequent consequences for cognition. We highlight the relationship between ovarian estrogens and brain-derived estrogens and discuss implications for female cognitive aging of the putative decline in hippocampal levels of neuroestrogens following loss of ovarian function. Finally, we propose a model of menopause in which a short-term period of midlife estradiol treatment changes the trajectory of hippocampal neuroestrogen production long-term, resulting in sustained interactions of neuroestrogens, insulin-like growth factor-1, and estrogen receptor signaling in the hippocampus, interactions that support successful brain and cognitive aging.
Collapse
Affiliation(s)
- Jill C Flannery
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Parker S Tirrell
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Nina E Baumgartner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States of America
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America; Department of Psychology, Tulane University, New Orleans, LA, 70118, United States of America.
| |
Collapse
|
2
|
Kauffman AS. Androgen Inhibition of Reproductive Neuroendocrine Function in Females and Transgender Males. Endocrinology 2024; 165:bqae113. [PMID: 39207217 PMCID: PMC11393496 DOI: 10.1210/endocr/bqae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Ovarian function is controlled by pituitary secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH), which in turn are governed by gonadotropin releasing hormone (GnRH) secreted from the brain. A fundamental principle of reproductive axis regulation is negative feedback signaling by gonadal sex steroids back to the brain to fine-tune GnRH and gonadotropin secretion. Endogenous negative feedback effects can be mimicked by exogenous steroid treatments, including androgens, in both sexes. Indeed, a growing number of clinical and animal studies indicate that high levels of exogenous androgens, in the typically male physiological range, can inhibit LH secretion in females, as occurs in males. However, the mechanisms by which male-level androgens inhibit GnRH and LH secretion still remain poorly understood, and this knowledge gap is particularly pronounced in transgender men (individuals designated female at birth but identifying as male). Indeed, many transgender men take long-term gender-affirming hormone therapy that mimics male-level testosterone levels. The impact of such gender-affirming testosterone on the reproductive axis, both at the ovarian and neuroendocrine level, is a long-understudied area that still requires further investigation. Importantly, the few concepts of androgen actions in females mostly come from studies of polycystic ovary syndrome, which does not recapitulate a similar androgen milieu or a pathophysiology of inhibited LH secretion as occurs in testosterone-treated transgender men. This review summarizes clinical evidence indicating that exogenous androgens can impair neuroendocrine reproductive function in both female individuals and transgender men and highlights emerging experimental data supporting this in recently developed transgender rodent models.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Baumgartner NE, McQuillen SM, Perry SF, Miller S, Maroteaux MJ, Gibbs RB, Daniel JM. History of Previous Midlife Estradiol Treatment Permanently Alters Interactions of Brain Insulin-like Growth Factor-1 Signaling and Hippocampal Estrogen Synthesis to Enhance Cognitive Aging in a Rat Model of Menopause. J Neurosci 2022; 42:7969-7983. [PMID: 36261268 PMCID: PMC9617614 DOI: 10.1523/jneurosci.0588-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Across species, including humans, elevated levels of brain estrogen receptor (ER) α are associated with enhanced cognitive aging, even in the absence of circulating estrogens. In rodents, short-term estrogen treatment, such as that commonly used in the menopausal transition, results in long-term increases in ERα levels in the hippocampus, leading to enhanced memory long after termination of estrogen treatment. However, mechanisms by which increased levels of brain ERα enhances cognitive aging remain unclear. Here we demonstrate in aging female rats that insulin-like growth factor-1 (IGF-1), which can activate ER via ligand-independent mechanisms, requires concomitant synthesis of brain-derived neuroestrogens to phosphorylate ERα via MAPK signaling, ultimately resulting in enhanced memory. In a rat model of menopause involving long-term ovarian hormone deprivation, hippocampal neuroestrogen activity decreases, altering IGF-1 activity and resulting in impaired memory. However, this process is reversed by short-term estradiol treatment. Forty days of estradiol exposure following ovariectomy results in maintenance of neuroestrogen levels that persist beyond the period of hormone treatment, allowing for continued interactions between IGF-1 and neuroestrogen signaling, elevated levels of hippocampal ERα, and ultimately enhanced memory. Collectively, results demonstrate that short-term estradiol use following loss of ovarian function has long-lasting effects on hippocampal function and memory by dynamically regulating cellular mechanisms that promote activity of ERα in the absence of circulating estrogens. Translational impacts of these findings suggest lasting cognitive benefits of short-term estrogen use near menopause and highlight the importance of hippocampal ERα, independent from the role of circulating estrogens, in regulating memory in aging females.SIGNIFICANCE STATEMENT Declines in ovarian hormones following menopause coincide with increased risk of cognitive decline. Because of potential health risks, current recommendations are that menopausal estrogen therapy be limited to a few years. Long-term consequences for the brain and memory of this short-term midlife estrogen therapy are unclear. Here, in a rodent model of menopause, we determined mechanisms by which short-term midlife estrogen exposure can enhance hippocampal function and memory with cognitive benefits and molecular changes enduring long after termination of estrogen exposure. Our model indicates long-lasting benefits of maintaining hippocampal estrogen receptor function in the absence of ongoing estrogen exposure and suggests potential strategies for combating age-related cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | - Matthieu J Maroteaux
- Brain Institute
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261
| | - Jill M Daniel
- Brain Institute
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
4
|
Lacasse JM, Patel S, Bailey A, Peronace V, Brake WG. Progesterone rapidly alters the use of place and response memory during spatial navigation in female rats. Horm Behav 2022; 140:105137. [PMID: 35158200 DOI: 10.1016/j.yhbeh.2022.105137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
Abstract
17β-Estradiol (E2) and progesterone (P) influence place and response memory in female rats in spatial navigation tasks. Use of these memory systems is associated with the hippocampus and the dorsal striatum, respectively. Injections of E2 result in a well-established bias to use place memory, while much less is understood about the role of P. A total of 120 ovariectomized female rats were tested within a dual-solution T-maze task and treated with either low E2 (n = 24), high E2 (10 μg/kg; n = 24), or high E2 in combination with P (500 μg/kg) at three time points before testing: 15 min (n = 24), 1 h (n = 24), and 4 h (n = 24). Given alone, high E2 biases rats to the use of place memory, but this effect is reversed when P is given 1 h or 4 h before testing. This indicates that P may be playing an inhibitory role in the hippocampus during spatial tasks, which is consistent with past findings. Our findings show that P acts rapidly (within an hour) to affect performance during spatial tasks.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Smita Patel
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Alexander Bailey
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Vanessa Peronace
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
5
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Jalabert C, Ma C, Soma KK. Profiling of systemic and brain steroids in male songbirds: Seasonal changes in neurosteroids. J Neuroendocrinol 2021; 33:e12922. [PMID: 33314446 DOI: 10.1111/jne.12922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
Steroids are secreted by the gonads and adrenal glands into the blood to modulate neurophysiology and behaviour. In addition, the brain can metabolise circulating steroids and synthesise steroids de novo. Songbirds show high levels of neurosteroid synthesis. In the present study, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the measurement of 10 steroids in whole blood, plasma and microdissected brain tissue (1-2 mg) of song sparrows. Our assay is highly accurate, precise, specific and sensitive. Moreover, the liquid-liquid extraction is fast, simple and effective. We quantified steroids in the blood and brain of wild male song sparrows in both breeding and non-breeding seasons. As expected, systemic androgen levels were higher in the breeding season than in the non-breeding season. Brain androgens were detectable only in the breeding season; androstenedione and 5α-dihydrotestosterone levels were up to 20-fold higher in specific brain regions than in blood. Oestrogens were not detectable in blood in both seasons. Oestrone and 17β-oestradiol were detectable in brain in the breeding season only (up to 1.4 ng g-1 combined). Progesterone levels in several regions were higher in the non-breeding season than the breeding season, despite the lack of seasonal changes in systemic progesterone. Corticosterone levels in the blood were higher in the breeding season than in the non-breeding season but showed few seasonal differences in the brain. In general, the steroid levels presented here are lower than those in previous reports using immunoassays, because of the higher specificity of mass spectrometry. We conclude that (i) brain steroid levels can differ greatly from circulating steroid levels and (ii) brain steroid levels show region-specific seasonal patterns that are not a simple reflection of circulating steroid levels. This approach using ultrasensitive LC-MS/MS is broadly applicable to other species and allows steroid profiling in microdissected brain regions.
Collapse
Affiliation(s)
- Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chunqi Ma
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Kirshner ZZ, Yao JK, Li J, Long T, Nelson D, Gibbs RB. Impact of estrogen receptor agonists and model of menopause on enzymes involved in brain metabolism, acetyl-CoA production and cholinergic function. Life Sci 2020; 256:117975. [PMID: 32565251 PMCID: PMC7448522 DOI: 10.1016/j.lfs.2020.117975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022]
Abstract
Our goal is to understand how loss of circulating estrogens and estrogen replacement affect brain physiology and function, particularly in brain regions involved in cognitive processes. We recently conducted a large metabolomics study characterizing the effects of rodent models of menopause and treatment with estrogen receptor (ER) agonists on neurochemical targets in hippocampus, frontal cortex, and striatum. Here we characterize effects on levels of several key enzymes involved in glucose utilization and energy production, specifically phosphofructokinase, glyceraldehyde 3-phosphate dehydrogenase, and pyruvate dehydrogenase. We also evaluated effects on levels of β-actin and α-tubulin, choline acetyltransferase (ChAT) activity, and levels of ATP citrate lyase. All experiments were conducted in young adult rats. Experiment 1 compared the effects of ovariectomy (OVX), a model of surgical menopause, and 4-vinylcyclohexene diepoxide (VCD)-treatments, a model of transitional menopause, with tissues collected at proestrus and at diestrus. Experiment 2 used a separate cohort of rats to evaluate the same targets in OVX and VCD-treated rats treated with estradiol or with selective ER agonists. Differences in the expression of metabolic enzymes between cycling animals and models of surgical and transitional menopause were detected. These differences were model-, region- and time- dependent, and were modulated by selective ER agonists. Collectively, the findings demonstrate that loss of ovarian function and ER agonist treatments have differing effects in OVX vs. VCD-treated rats. Differences may help to explain differences in the effects of estrogen treatments on brain function and cognition in women who have experienced surgical vs. transitional menopause.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Jeffrey K Yao
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Junyi Li
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Tao Long
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Doug Nelson
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
8
|
Xie Y, Barbosa ACS, Xu M, Oberly PJ, Ren S, Gibbs RB, Poloyac SM, Song WC, Fan J, Xie W. Hepatic Estrogen Sulfotransferase Distantly Sensitizes Mice to Hemorrhagic Shock-Induced Acute Lung Injury. Endocrinology 2020; 161:5677524. [PMID: 31837219 PMCID: PMC6970454 DOI: 10.1210/endocr/bqz031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
Hemorrhagic shock (HS) is a potential life-threatening condition that may lead to injury to multiple organs, including the lung. The estrogen sulfotransferase (EST, or SULT1E1) is a conjugating enzyme that sulfonates and deactivates estrogens. In this report, we showed that the expression of Est was markedly induced in the liver but not in the lung of female mice subject to HS and resuscitation. Genetic ablation or pharmacological inhibition of Est effectively protected female mice from HS-induced acute lung injury (ALI), including interstitial edema, neutrophil mobilization and infiltration, and inflammation. The pulmonoprotective effect of Est ablation or inhibition was sex-specific, because the HS-induced ALI was not affected in male Est-/- mice. Mechanistically, the pulmonoprotective phenotype in female Est-/- mice was accompanied by increased lung and circulating levels of estrogens, attenuated pulmonary inflammation, and inhibition of neutrophil mobilization from the bone marrow and neutrophil infiltration to the lung, whereas the pulmonoprotective effect was abolished upon ovariectomy, suggesting that the protection was estrogen dependent. The pulmonoprotective effect of Est ablation was also tissue specific, as loss of Est had little effect on HS-induced liver injury. Moreover, transgenic reconstitution of human EST in the liver of global Est-/- mice abolished the pulmonoprotective effect, suggesting that it is the EST in the liver that sensitizes mice to HS-induced ALI. Taken together, our results revealed a sex- and tissue-specific role of EST in HS-induced ALI. Pharmacological inhibition of EST may represent an effective approach to manage HS-induced ALI.
Collapse
Affiliation(s)
- Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Anne Caroline S Barbosa
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Patrick J Oberly
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
- Surgical Research, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Correspondence: Dr. Wen Xie, Center for Pharmacogenetics and Department of 17 Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261. E-mail:
| |
Collapse
|
9
|
Long T, Yao JK, Li J, Kirshner ZZ, Nelson D, Dougherty GG, Gibbs RB. Estradiol and selective estrogen receptor agonists differentially affect brain monoamines and amino acids levels in transitional and surgical menopausal rat models. Mol Cell Endocrinol 2019; 496:110533. [PMID: 31394142 PMCID: PMC6717664 DOI: 10.1016/j.mce.2019.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
Estrogens have many beneficial effects in the brain. Previously, we evaluated the effects of two models of menopause (surgical vs. transitional) on multiple monoaminergic endpoints in different regions of the adult rat brain in comparison with levels in gonadally intact rats. Here we evaluated the effects of estrogen receptor (ER) agonist treatments in these same two models of menopause. Neurochemical endpoints were evaluated in the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) of adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD), after 1- and 6-weeks treatment with 17β-estradiol (E2), or with selective ERα (PPT), ERβ (DPN), or GPR30 (G-1) agonists. Endpoints included serotonin (5-HT) and 5-Hydroxyindoleacetic acid, dopamine (DA), 3,4-Dihydroxyphenylacetic acid and homovanillic acid, norepinephrine (NE) and epinephrine, as well as the amino acids tryptophan (TRP) and tyrosine (TYR). Significant differences between the models were detected. OVX rats were much more sensitive to ER agonist treatments than VCD-treated rats. Significant differences between brain regions also were detected. Within OVX rats, more agonist effects were detected in the HPC than in any other region. One interesting finding was the substantial decrease in TRP and TYR detected in the HPC and FCX in response to agonist treatments, particularly in OVX rats. This is on top of the substantial decreases in TRP and TYR previously reported one week after OVX or VCD-treatments in comparison with gonadally intact controls. Other interesting findings included increases in the levels of 5-HT, DA, and NE in the HPC of OVX rats treated with DPN, increases in DA detected in the FCX of OVX rats treated with any of the ER agonists, and increases in 5-HT and DA detected in the STR of OVX rats treated with E2. Many effects that were observed after 1-week of treatment were no longer observed after 6-weeks of treatment, demonstrating that effects were temporary despite continued agonist treatment. Collectively, the results demonstrate significant differences in the effects of ER agonists on monoaminergic endpoints in OVX vs. VCD-treated rats that also were brain region-specific and time dependent. The fact that agonist treatments had lesser effects in VCD treated rats than in OVX rats may help to explain reports of lesser effects of estrogen replacement on cognitive performance in women that have undergone transitional vs. surgical menopause.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Jeffrey K Yao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Doug Nelson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George G Dougherty
- Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
10
|
Feng Y, Xie Y, Xu M, Li L, Selcer KW, Oberly PJ, Poloyac SM, Wang H, Li C, Dong F, Yu C, Xie W. Hepatic steroid sulfatase critically determines estrogenic activities of conjugated equine estrogens in human cells in vitro and in mice. J Biol Chem 2019; 294:12112-12121. [PMID: 31217279 PMCID: PMC6690699 DOI: 10.1074/jbc.ra119.009181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Indexed: 11/06/2022] Open
Abstract
Conjugated equine estrogens (CEEs), whose brand name is Premarin, are widely used as a hormone-replacement therapy (HRT) drug to manage postmenopausal symptoms in women. Extracted from pregnant mare urine, CEEs are composed of nearly a dozen estrogens existing in an inactive sulfated form. To determine whether the hepatic steroid sulfatase (STS) is a key contributor to the efficacy of CEEs in HRT, we performed estrogen-responsive element (ERE) reporter gene assay, real-time PCR, and UPLC-MS/MS to assess the STS-dependent and inflammation-responsive estrogenic activity of CEEs in HepG2 cells and human primary hepatocytes. Using liver-specific STS-expressing transgenic mice, we also evaluated the effect of STS on the estrogenic activity of CEEs in vivo We observed that CEEs induce activity of the ERE reporter gene in an STS-dependent manner and that genetic or pharmacological inhibition of STS attenuates CEE estrogenic activity. In hepatocytes, inflammation enhanced CEE estrogenic activity by inducing STS gene expression. The inflammation-responsive estrogenic activity of CEEs, in turn, attenuated inflammation through the anti-inflammatory activity of the active estrogens. In vivo, transgenic mice with liver-specific STS expression exhibited markedly increased sensitivity to CEE-induced estrogenic activity in the uterus resulting from increased levels of liver-derived and circulating estrogens. Our results reveal a critical role of hepatic STS in mediating the hormone-replacing activity of CEEs. We propose that caution needs to be applied when Premarin is used in patients with chronic inflammatory liver diseases because such patients may have heightened sensitivity to CEEs due to the inflammatory induction of STS activity.
Collapse
Affiliation(s)
- Ye Feng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Patrick J Oberly
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Chengjiang Li
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fengqin Dong
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
11
|
Estrogen receptors α and β in the central amygdala and the ventromedial nucleus of the hypothalamus: Sociosexual behaviors, fear and arousal in female rats during emotionally challenging events. Behav Brain Res 2019; 367:128-142. [DOI: 10.1016/j.bbr.2019.03.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
|
12
|
Detection of estradiol in rat brain tissues: Contribution of local versus systemic production. Psychoneuroendocrinology 2019; 102:84-94. [PMID: 30529907 DOI: 10.1016/j.psyneuen.2018.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
Abstract
Estrogens play important roles in regulating brain development, brain function, and behavior. Many studies have evaluated these effects using ovariectomized (OVX) rats or mice with different doses of estrogen replacement, assuming that estradiol levels in all regions of the brain are the same as levels achieved in the serum. It is well known, however, that the brain contains all the enzymes necessary to produce estrogens, and that estrogen levels in the brain are determined by both systemic and local production and are region-specific. The present study conducted a detailed analysis of the relationship between systemic levels of 17-β-estradiol (E2) achieved by estrogen replacement and levels achieved in specific regions of the brain. Levels of E2 were measured in both brain and serum in OVX rats treated with different doses of estradiol benzoate (EB) using a novel and recently validated UPLC-MS/MS method. Results confirmed significantly higher levels of E2 in the brain than in serum in brain regions known to contain aromatase (ARO) activity, both in OVX controls and in rats treated with physiological doses of EB. Additional studies compared the level of E2 and testosterone (T) in the brain and serum between testosterone propionate (TP) treated OVX and male. This demonstrated higher levels of E2 in certain brain regions of males than in TP treated OVX females even though T levels in the brain and serum were similar between the two groups. Studies also demonstrated that the differences between serum and brain levels of E2 can be eliminated by letrozole (ARO inhibitor) treatment, which indicates that the differences are due to local ARO activity. Collectively the results provide a detailed analysis of brain region-specific E2 concentrations in OVX, E2-, and T-treated rats and demonstrate the degree to which these concentrations are ARO-dependent.
Collapse
|
13
|
Zhang J, Tang C, Oberly PJ, Minnigh MB, Achilles SL, Poloyac SM. A sensitive and robust UPLC-MS/MS method for quantitation of estrogens and progestogens in human serum. Contraception 2019; 99:244-250. [PMID: 30685285 DOI: 10.1016/j.contraception.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE With the widespread use of sex-steroid hormones in contraceptives and hormone replacement therapy, there is an increasing need for reliable analytical methods. We report the development of a sensitive and robust UPLC-MS/MS method for quantitation of both endogenous and synthetic sex-steroid hormones in human serum. STUDY DESIGN We developed and validated a UPLC-MS/MS method to quantify progestogens (etonogestrel, levonorgestrel, medroxyprogesterone acetate, norethindrone, progesterone) and estrogens (estradiol and ethinyl estradiol) with good accuracy, high sensitivity, and excellent robustness. We then applied the method to the analysis of sex-steroid hormones in serum from 451 clinical research participants. RESULTS Each UPLC-MS/MS analysis was 6.5 min. The lower limits of quantitation (LLOQs) were 25 pg/ml for the progestogens, and 2.5 and 5.0 pg/ml for estradiol and ethinyl estradiol, respectively. When estradiol was analyzed without assessment of progestogens, the LLOQ was reduced to 1 pg/ml. The calibration curves were linear from 25-50,000, 2.5-2000 (1-2000 for estrogens-only analysis) and 5-2000 pg/ml, respectively. Both the accuracy and precision were below±15% not only for routine validation (intraday and interday), but for long-term (>2 years) assay robustness with external controls, thereby, demonstrating the utility of this method for multi-year clinical trial assessments of progestogens and estrogens. We applied the method to quantify sex-steroid levels in 1804 clinical samples. CONCLUSIONS We successfully developed a UPLC-MS/MS method, and overcame the matrix suppression to allow sensitive quantitation of both synthetic and endogenous sex-steroid hormones in human serum. IMPLICATIONS We developed a sensitive and robust UPLC-MS/MS method to accurately measure the levels of sex-steroid hormones in serum. The method overcame matrix interference barriers and achieved excellent long-term stability and reproducibility (≥96.9% accuracy; ≤13.0% relative variability measured with external controls over 2 years), demonstrating its utility in clinical sample analysis.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Chenxiao Tang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Patrick J Oberly
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Margaret B Minnigh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Sharon L Achilles
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Family Planning Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA; Magee-Womens Research Institute, Pittsburgh, PA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
14
|
Long T, Yao JK, Li J, Kirshner ZZ, Nelson D, Dougherty GG, Gibbs RB. Comparison of transitional vs surgical menopause on monoamine and amino acid levels in the rat brain. Mol Cell Endocrinol 2018; 476:139-147. [PMID: 29738870 PMCID: PMC6120792 DOI: 10.1016/j.mce.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Loss of ovarian function has important effects on neurotransmitter production and release with corresponding effects on cognitive performance. To date, there has been little direct comparison of the effects of surgical and transitional menopause on neurotransmitter pathways in the brain. In this study, effects on monoamines, monoamine metabolites, and the amino acids tryptophan (TRP) and tyrosine (TYR) were evaluated in adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD). Tissues from the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) were dissected and analyzed at 1- and 6-weeks following OVX or VCD treatments. Tissues from gonadally intact rats were collected at proestrus and diestrus to represent neurochemical levels during natural states of high and low estrogens. In gonadally intact rats, higher levels of serotonin (5-HT) were detected at proestrus than at diestrus in the FCX. In addition, the ratio of 5-hydroxyindoleacetic acid (5-HIAA)/5HT in the FCX and HPC was lower at proestrus than at diestrus, suggesting an effect on 5-HT turnover in these regions. No other significant differences between proestrus and diestrus were observed. In OVX- and VCD-treated rats, changes were observed which were both brain region- and time point-dependent. In the HPC levels of norepinephrine, 5-HIAA, TRP and TYR were significantly reduced at 1 week, but not 6 weeks, in both OVX and VCD-treated rats relative to proestrus and diestrus. In the FCX, dopamine levels were elevated at 6 weeks after OVX relative to diestrus. A similar trend was observed at 1 week (but not 6 weeks) following VCD treatment. In the STR, norepinephrine levels were elevated at 1 week following OVX, and HVA levels were elevated at 1 week, but not 6 weeks, following VCD treatment, relative to proestrus and diestrus. Collectively, these data provide the first comprehensive analysis comparing the effects of two models of menopause on multiple neuroendocrine endpoints in the brain. These effects likely contribute to effects of surgical and transitional menopause on brain function and cognitive performance that have been reported.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Jeffrey K Yao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Doug Nelson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George G Dougherty
- Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
15
|
Kirshner ZZ, Gibbs RB. Use of the REVERT ® total protein stain as a loading control demonstrates significant benefits over the use of housekeeping proteins when analyzing brain homogenates by Western blot: An analysis of samples representing different gonadal hormone states. Mol Cell Endocrinol 2018; 473:156-165. [PMID: 29396126 PMCID: PMC6045444 DOI: 10.1016/j.mce.2018.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
Abstract
Western blot is routinely used to quantify differences in the levels of target proteins in tissues. Standard methods typically use measurements of housekeeping proteins to control for variations in loading and protein transfer. This is problematic, however, when housekeeping proteins also are affected by experimental conditions such as injury, disease, and/or gonadal hormone manipulations. Our goal was to evaluate an alternative and perhaps superior method for conducting Western blot analysis of brain tissue homogenates from rats with distinct physiologically relevant gonadal hormone states. Tissues were collected from the hippocampus, frontal cortex, and striatum of young adult female rats that either were ovariectomized to model surgical menopause, or were treated with the ovatotoxin 4-vinylcyclohexene diepoxide (VCD) to model transitional menopause. Tissues also were collected from rats with a normal estrous cycle killed at proestrus when estradiol levels are high, and at diestrus when estradiol levels are low. Western blot detection of α-tubulin, β-actin, and GAPDH was performed and were compared for sensitivity and reliability with a fluorescent total protein stain (REVERT®). Results show that the total protein stain was much less variable across samples and had a greater linear range than α-tubulin, β-actin, or GAPDH. The stain was stable and easy to use, and did not interfere with the immunodetection or multiplexed detection of the housekeeping proteins. In addition, we show that normalization of our data to total protein, but not to GAPDH, revealed significant differences in α-tubulin expression in the hippocampus as a function of treatment, and that gel-to-gel consistency in measuring differences between paired samples run on multiple gels was significantly better when data were normalized to total protein than when normalized to GAPDH. These results demonstrate that the REVERT® total protein stain can be used in Western blot analysis of brain tissue homogenates to control for variations in loading and protein transfer, and provides significant advantages over the use of housekeeping proteins for quantifying changes in the levels of multiple target proteins.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Li J, Rao D, Gibbs RB. Effects of Cholinergic Lesions and Cholinesterase Inhibitors on Aromatase and Estrogen Receptor Expression in Different Regions of the Rat Brain. Neuroscience 2018; 384:203-213. [PMID: 29852246 DOI: 10.1016/j.neuroscience.2018.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
Abstract
Cholinergic projections have been shown to interact with estrogens in ways that influence synaptic plasticity and cognitive performance. The mechanisms are not well understood. The goal of this study was to investigate whether cholinergic projections influence brain estrogen production by affecting aromatase (ARO), or influence estrogen signaling by affecting estrogen receptor expression. In the first experiment, ovariectomized rats received intraseptal injection of the selective immunotoxin 192IgG-saporin to destroy cholinergic inputs to the hippocampus. In the second experiment ovariectomized rats received daily intraperitoneal injections of the cholinesterase inhibitors donepezil or galantamine for 1 week. ARO activity and relative levels of ARO, ERα, ERß, and GPR30 mRNAs were quantified in the hippocampus, frontal cortex, amygdala and preoptic area. Results show that the cholinergic lesions effectively removed cholinergic inputs to the hippocampus, but had no significant effect on ARO or on relative levels of ER mRNAs. Likewise, injections of the cholinesterase inhibitors had no effect on ARO or ER expression in most regions of the brain. This suggests that effects of cholinergic inputs on synaptic plasticity and neuronal function are not mediated by effects on local estrogen production or ER expression. One exception was the amygdala where treating with galantamine was associated with a significant increase in ARO activity. The amygdala is a key structure involved in registering fear and anxiety. Hence this finding may be clinically relevant to elderly patients who are treated for memory impairment and who also struggle with fear and anxiety disorders.
Collapse
Affiliation(s)
- Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Di Rao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
17
|
Neural-derived estradiol regulates brain plasticity. J Chem Neuroanat 2018; 89:53-59. [DOI: 10.1016/j.jchemneu.2017.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023]
|