1
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
2
|
Zhang H, Zhang L, Zhao X, Ma Y, Sun D, Bai Y, Liu W, Liang X, Liang H. Folic Acid Prevents High-Fat Diet-Induced Postpartum Weight Retention in Rats, Which Is Associated with a Reduction in Endoplasmic Reticulum Stress-Mediated Hepatic Lipogenesis. Nutrients 2024; 16:4377. [PMID: 39770997 PMCID: PMC11676124 DOI: 10.3390/nu16244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies. For many years, folic acid supplementation has been widely used in periconceptional women due to its role in preventing fetal neural tube defects. However, whether folic acid supplementation prior to and throughout pregnancy exerts preventive effects on PPWR remains uncertain. This study aims to investigate the preventive effect of folic acid on PPWR in rats and further explore the underlying mechanisms. METHODS In this study, pregnant rats were administered one of the dietary schedules: control diet (CON), high-fat diet (HF), control diet combined with folic acid (FA) and high-fat diet combined with folic acid (HF + FA). RESULTS We discovered that folic acid supplementation inhibited high-fat diet-induced elevations in body weight, visceral fat weight, liver weight, hepatic lipid levels and serum lipid levels at 1 week post-weaning (PW). Western blot analysis showed that folic acid supplementation inhibited the expression of endoplasmic reticulum (ER) stress-specific proteins including GRP78, PERK, eIF2α, IRE1α, XBP1 and ATF6, subsequently decreasing the expression of proteins related to lipid synthesis including SREBP-1c, ACC1 and FAS. CONCLUSIONS In conclusion, folic acid supplementation prior to and throughout pregnancy exerts preventive effects on high-fat diet-induced PPWR in rats, and the mechanism is associated with the inhibition of ER stress-mediated lipogenesis signaling pathways in the liver. Folic acid supplementation may serve as a potential strategy for preventing PPWR. In the future, the effectiveness of folic acid in PPWR prevention can be further verified by population studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (L.Z.); (X.Z.); (Y.M.); (D.S.); (Y.B.); (W.L.); (X.L.)
| |
Collapse
|
3
|
Folahan JT, Fakir S, Barabutis N. Endothelial Unfolded Protein Response-Mediated Cytoskeletal Effects. Cell Biochem Funct 2024; 42:e70007. [PMID: 39449673 PMCID: PMC11528298 DOI: 10.1002/cbf.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The endothelial semipermeable monolayers ensure tissue homeostasis, are subjected to a plethora of stimuli, and their function depends on cytoskeletal integrity and remodeling. The permeability of those membranes can fluctuate to maintain organ homeostasis. In cases of severe injury, inflammation or disease, barrier hyperpermeability can cause irreparable damage of endothelium-dependent issues, and eventually death. Elucidation of the signaling regulating cytoskeletal structure and barrier integrity promotes the development of targeted pharmacotherapies towards disorders related to the impaired endothelium (e.g., acute respiratory distress syndrome, sepsis). Recent reports investigate the role of unfolded protein response in barrier function. Herein we review the cytoskeletal components, the unfolded protein response function; and their interrelations on health and disorder. Moreover, we emphasize on unfolded protein response modulators, since they ameliorate illness related to endothelial leak.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
4
|
Wen Y, Yi F, Zhang J, Wang Y, Zhao C, Zhao B, Wang J. Uncovering the protective mechanism of baicalin in treatment of fatty liver based on network pharmacology and cell model of NAFLD. Int Immunopharmacol 2024; 141:112954. [PMID: 39153306 DOI: 10.1016/j.intimp.2024.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Excessive nonesterified fatty acids (NEFA) impair cellular metabolism and will induce fatty liver formation in dairy cows during the periparturient. Baicalin, an active flavonoid, has great potential efficacy in alleviating lipid accumulation and ameliorating the development of fatty liver disease. Nevertheless, its mechanism remains unclear. Here, the potential mechanism of baicalin on system levels was explored using network pharmacology and in vitro experiments. Firstly, the target of baicalin and fatty liver disease was predicted, and then the protein-protein interaction (PPI) network was constructed. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) (q-value) pathway enrichment is performed through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server. Finally, the results of the network analysis of the in vitro treatment of bovine hepatocytes by NEFA were confirmed. The results showed that 33 relevant targets of baicalin in the treatment of liver fatty were predicted by network pharmacology, and the top 20 relevant pathways were extracted by KEGG database. Baicalin treatment can reduce triglyceride (TAG) content and lipid droplet accumulation in NEFA-treated bovine hepatocytes, and the mechanism is related to inhibiting lipid synthesis and promoting lipid oxidation. The alleviating effect of baicalin on fatty liver may be related to the up-regulation of solute vector family member 4 (SLC2A4), Down-regulated AKT serine/threonine kinase 1 (AKT1), Peroxisome proliferator-activated receptor gamma (PPARG), Epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF), Interleukin 6 (IL-6) were associated. These results suggested that baicalin may modulate key inflammatory markers, and lipogenesis processes to prevent fatty liver development in dairy cows.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fanxuan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Wang D, Zhang D, Zhu Z, Zhang Y, Wan Y, Chen H, Liu J, Ma L. Fagopyrum dibotrys extract improves nonalcoholic fatty liver disease via inhibition of lipogenesis and endoplasmic reticulum stress in high-fat diet-fed mice. BMC Res Notes 2024; 17:310. [PMID: 39415220 PMCID: PMC11484369 DOI: 10.1186/s13104-024-06962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, presenting a treatment challenge due to limited options. Endoplasmic reticulum (ER) stress and associated lipid metabolism disorders are main causes of NAFLD, making it important to inhibit ER stress for effective treatment. Fagopyrum dibotrys has hypolipidemic, anti-inflammatory and hepatoprotective properties, showing promise in treating NAFLD. However, its effects on ER stress in NAFLD remain unclear. This study used a high-fat diet (HFD) to establish NAFLD mouse models and supplemented with Fagopyrum dibotrys extract (FDE) to evaluate its therapeutic effect and underlying mechanisms. RESULTS We showed that FDE supplementation reduced the severity of hepatic steatosis and lowered triglycerides (TG) and total cholesterol (TC) levels in NAFLD mice. At the molecular level, FDE supplementation reduced hepatic lipid deposition by downregulating lipogenic markers (SREBP-1c, SCD1) and upregulating fatty acid oxidase CPT1α expression. Additionally, FDE treatment inhibited the overexpression of ER stress markers (GRP78, CHOP, and P-EIF2α) in NAFLD mice livers, and blocked the activation of the PERK-EIF2α-CHOP pathway, demonstrating its role in maintaining ER homeostasis. Considering that activation of the PERK pathway could exacerbate lipid deposition, our findings suggest that FDE has a protective effect against hepatic steatosis in NAFLD mice by attenuating ER stress, and the potential mechanism is through inhibiting the PERK pathway.
Collapse
Affiliation(s)
- Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Dan Zhang
- Department of Gastroenterology, Dali Prefecture People's Hospital (The Third Affiliated Hospital of Dali University), Dali, 671003, Yunnan, China
| | - Ziyun Zhu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yini Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Ying Wan
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Yang W, Tian Y, Yang M, Mauck J, Loor JJ, Jia B, Wang S, Fan W, Li Z, Zhang B, Xu C. β-sitosterol alleviates high fatty acid-induced lipid accumulation in calf hepatocytes by regulating cholesterol metabolism. J Steroid Biochem Mol Biol 2024; 243:106543. [PMID: 38740074 DOI: 10.1016/j.jsbmb.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
A significant reduction in plasma concentration of cholesterol during early lactation is a common occurrence in high-yielding dairy cows. An insufficient synthesis of cholesterol in the liver has been linked to lipid accumulation caused by high concentrations of fatty acids during negative energy balance (NEB). As ruminant diets do not provide quantitative amounts of cholesterol for absorption, phytosterols such as β-sitosterol may serve to mitigate the shortfall in cholesterol within the liver during NEB. To gain mechanistic insights, primary hepatocytes were isolated from healthy female 1-day old calves for in vitro studies with or without 1.2 mM fatty acids (FA) to induce metabolic stress. Furthermore, hepatocytes were treated with 50 μM β-sitosterol with or without FA. Data were analyzed by one-way ANOVA with subsequent Bonferroni correction. Results revealed that calf hepatocytes treated with FA had greater content of non-esterified fatty acids (NEFA) and triacylglycerol (TAG), and greater mRNA and protein abundance of the lipid synthesis-related SREBF1 and FASN. In contrast, mRNA and protein of CPT1A (fatty acid oxidation) and the cholesterol metabolism-related targets SREBF2, HMGCR, ACAT2, APOA1, ABCA1 and ABCG5 was lower. Content of the antioxidant-related glutathione (GSH) and activities of superoxide dismutase (SOD) also was lower. Compared with FA challenge alone, 50 μM β-sitosterol led to greater mRNA and protein abundance of SREBF2, HMGCR, ACAT2 and ABCG5, and greater content of GSH and activity of SOD. In contrast, compared with the FA group, the mRNA and protein abundance of SREBF1 and ACC1 and the content of TAG and NEFA in the β-sitosterol + FA group were lower. Overall, β-sitosterol can promote cholesterol metabolism and reduce oxidative stress while reducing lipid accumulation in hepatocytes challenged with high concentrations of fatty acids.
Collapse
Affiliation(s)
- Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Tian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingmao Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China
| | - John Mauck
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J Loor
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Bin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 163005, China
| | - Shuang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wenwen Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhendong Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Guo H, Wan H, Lou W, Khan RU, You J, Huang B, Hao S, Li G, Dai S. Deoxynivalenol and T-2 toxin cause liver damage and egg quality degradation through endoplasmic reticulum stress in summer laying hens. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1387-1396. [PMID: 38607562 DOI: 10.1007/s00484-024-02674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/08/2023] [Accepted: 03/01/2024] [Indexed: 04/13/2024]
Abstract
The present study aimed to find whether low doses of mixed mycotoxins would affect egg quality in laying hens, and to explore the oxidative stress induced liver damage through endoplasmic reticulum during summer stress. A total of 96 Jinghong laying hens, 36 wks of age, were divided into four treatments, with eight repetitions per treatment and three hens per repetition. All the hens were raised in summer (average temperature: 31.3 ± 0.5℃; average humidity: 85.5 ± 0.2%) for 28d. One treatment was fed a basal diet as control (CON), and the other three treatments were fed the same diets containing 3.0 mg/kg deoxynivalenol (DON), 0.5 mg/kg T-2 toxin (T-2), and 1.5 mg/kg DON + 0.25 mg/kg T-2 toxin (Mix). Albumen height and Haugh unit were decreased (P < 0.05) in the Mix group on day 14 and 28. The activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase were decreased (P < 0.05) in the DON, T-2, and Mix groups. The alkaline phosphatase level in DON, T-2, and Mix groups was significantly increased (P < 0.05). The level of interleukin-1β, interferon-γ, and tumor necrosis factor-α in the Mix group were higher (P < 0.05) than CON, DON, and T-2 groups. Mix group upregulated the mRNA expressions of protein kinase RNA-like ER kinase, activating transcription factor4, IL-1β, nuclear factor-κ-gene binding, and nuclear respiratory factor 2 in the liver (P < 0.05). The results showed that low doses of DON and T-2 toxin could cause oxidative stress in the liver, but DON and T-2 toxin have a cumulative effect on virulence, which can reduce egg quality and cause endoplasmic reticulum stress in the liver.
Collapse
Affiliation(s)
- Haoneng Guo
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Hongyan Wan
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
| | - Wenfang Lou
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Jinming You
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Bo Huang
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, People's Republic of China
| | - Shu Hao
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, People's Republic of China
| | - Guanhong Li
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Nutritional Feed Development, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang, 332005, People's Republic of China.
- Jiujiang Bozheng Institute of Biotechnology Industry, Jiujiang, 332005, People's Republic of China.
| |
Collapse
|
8
|
Mohammadpour-Asl S, Roshan-Milani B, Roshan-Milani S, Saboory E, Ghobadian B, Chodari L. Endoplasmic reticulum stress PERK-ATF4-CHOP pathway is involved in non-alcoholic fatty liver disease in type 1 diabetic rats: The rescue effect of treatment exercise and insulin-like growth factor I. Heliyon 2024; 10:e27225. [PMID: 38468961 PMCID: PMC10926145 DOI: 10.1016/j.heliyon.2024.e27225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Endoplasmic Reticulum Stress (ERS) is a key factor in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) in diabetes. The current study aimed to examine the effects of exercise and IGF-I on ERS markers in liver tissue. Rats were divided into five groups (n = 8 per group), including control (CON), diabetes (DIA), diabetes + exercise (DIA + EX), diabetes + IGF-I (DIA + IGF-I), and diabetes + exercise + IGF-I (DIA + EX + IGF-I). Type 1 diabetes was induced by an I.P. injection of streptozotocin (60 mg/kg). After 30 days of treatment with exercise or IGF-I alone or in combination, liver tissue was assessed for caspase 12, 8, and CHOP protein levels, and expression of ERS markers (ATF-6, PERK, IRE-1A) and lipid metabolism-involved genes (FAS, FXR, SREBP-1c) by western immunoblotting. In addition, for the evaluation of histopathological changes in the liver, Hematoxylin - Eosin and Masson's Trichrome staining were done. Compared to the control group, diabetes significantly caused liver fibrosis, induced ERS, increased caspase 12 and 8 levels in the liver, and changed expression levels of genes associated with lipid metabolism, including FAS, FXR, and SREBP-1c. Treatment with either exercise or IGF-I reduced fibrosis levels suppressed ER stress markers and apoptosis, and improved expression of genes associated with lipid metabolism. In addition, simultaneous treatment with exercise and IGF-I showed a synergistic effect compared to DIA + E and DIA + IGF-I. The results suggest that IGF-1 and exercise reduced liver fibrosis possibly by reducing ERS, creating adaptive ER stress status, and improving protein folding.
Collapse
Affiliation(s)
- Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Roshan-Milani
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Department of Addiction Studies, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bijan Ghobadian
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Kour S, Sharma N, Guttula PK, Gupta MK, dos Santos MV, Bacic G, Macesic N, Pathak AK, Son YO. Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period. Anim Biosci 2024; 37:522-535. [PMID: 38271975 PMCID: PMC10915197 DOI: 10.5713/ab.23.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. METHODS Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. RESULTS The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. CONCLUSION Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, UT of J&K 181 102,
India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, UT of J&K 181 102,
India
| | - Praveen Kumar Guttula
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008,
India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008,
India
| | - Marcos Veiga dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, SP 13635-900,
Brazil
| | - Goran Bacic
- Clinic for Reproduction and Theriogenology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 100 00,
Croatia
| | - Nino Macesic
- Clinic for Reproduction and Theriogenology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 100 00,
Croatia
| | - Anand Kumar Pathak
- Division of Animal Nutrition, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, UT of J&K 181 102,
India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756,
Korea
| |
Collapse
|
10
|
Jin R, Juventus Aweya J, Lin R, Weng W, Shang J, Wang D, Fan Y, Yang S. The bioactive peptide VLATSGPG regulates the abnormal lipid accumulation and inflammation induced by free fatty acids in HepG2 cells via the PERK signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
11
|
Huang Y, Kong Y, Shen B, Li B, Loor JJ, Tan P, Wei B, Mei L, Zhang Z, Zhao C, Zhu X, Qi S, Wang J. Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia. J Dairy Sci 2023; 106:3692-3705. [PMID: 37028962 DOI: 10.3168/jds.2022-22812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 04/08/2023]
Abstract
Subclinical hyperketonemia (SCHK) is the major metabolic disease observed during the transition period in dairy goats, and is characterized by high plasma levels of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). However, no prior study has comprehensively assessed metabolomic profiles of dairy goats with SCHK. Plasma samples were collected within 1 h after kidding from SCHK goats (BHB concentration >0.8 mM, n = 7) and clinically healthy goats (BHB concentration <0.8 mM, n = 7) with similar body condition score (2.75 ± 0.15, mean ± standard error of the mean) and parity (primiparous). A combination of targeted and untargeted mass spectrometric approaches was employed for analyzing the various changes in the plasma lipidome and metabolome. Statistical analyses were performed using the GraphPad Prism 8.0, SIMCA-P software (version 14.1), and R packages (version 4.1.3). Plasma aminotransferase, nonesterified fatty acids, and BHB concentrations were greater in the SCHK group, but plasma glucose concentrations were lower. A total of 156 metabolites and 466 lipids were identified. The analysis of untargeted metabolomics data by principal component analysis and orthogonal partial least squares discriminant analysis revealed a separation between SCHK and clinically healthy goats. According to the screening criteria (unpaired t-test, P < 0.05), 30 differentially altered metabolites and 115 differentially altered lipids were detected. Pathway enrichment analysis identified citrate cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine metabolism as significantly altered pathways. A greater concentration of plasma isocitric acid and cis-aconitic acid levels was observed in SCHK goats. In addition, AA such as lysine and isoleucine were greater, whereas alanine and phenylacetylglycine were lower in SCHK dairy goats. Dairy goats with SCHK also exhibited greater oleic acid, acylcarnitine, and phosphatidylcholine and lower choline and sphingomyelins. Acylcarnitines, oleic acid, and tridecanoic acid displayed positive correlations with several lipid species. Alanine, hippuric acid, and histidinyl-phenylalanine were negatively correlated with several lipids. Overall, altered metabolites in SCHK dairy goats indicated a more severe degree of negative energy balance. Data also indicated an imbalance in the tricarboxylic acid (TCA) cycle, lipid metabolism, and AA metabolism. The findings provide a more comprehensive understanding of the pathogenesis of SCHK in dairy goats.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linshan Mei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zixin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Abo-Zaid OA, Moawed FS, Ismail ES, Ahmed ESA. β-Sitosterol mitigates hepatocyte apoptosis by inhibiting endoplasmic reticulum stress in thioacetamide-induced hepatic injury in γ-irradiated rats. Food Chem Toxicol 2023; 172:113602. [PMID: 36610474 DOI: 10.1016/j.fct.2023.113602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The endoplasmic reticulum (ER) controls many biological functions besides maintaining the function of liver cells. Various studies reported the role of the ER stress and UPR signaling pathway in various liver diseases via triggering hepatocytes apoptosis. This study aims to investigate the suppressive effect of β-sitosterol (βS) on apoptosis associated with liver injury and ER stress. METHODS Liver damage in rats was induced by TAA (150 mg/kg I.P twice a week/3 weeks) and γ-irradiation (single dose 3.5 Gy) and treated with βS (20 mg/kg daily for 30 days). Serum aminotransferase activity, lipid profile and lipid metabolic factors were measured beside liver oxidative stress and inflammatory markers. Moreover, the hepatic expression of ER stress markers (inositol-requiring enzyme 1 alpha (IRE1α), X-box-binding protein 1 (XBP1) and CCAAT/enhancer binding protein homologous protein (CHOP) and apoptotic markers were detected together with histopathological examination. RESULTS βS diminished the aminotransferase activity, the oxidative stress markers as well as the inflammatory mediators. Furthermore, βS lowered the circulating TG and TC and the hepatic lipotoxicity via the suppression of lipogenesis (Srebp-1c) and improved the β-oxidation (Pparα and Cpt1a) together with the mitochondrial biogenesis (Pgc-1 α). Moreover, the upregulated levels of ER stress markers were reduced upon treatment with βS, which consequently attenuated hepatic apoptosis. CONCLUSION βS relieves hepatic injury, ameliorates mitochondrial biogenesis, and reduces lipotoxicity and apoptosis via inhibition of CHOP and ER stress response.
Collapse
Affiliation(s)
- Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med. Benha University, Egypt.
| | - Fatma Sm Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Effat Soliman Ismail
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med. Benha University, Egypt.
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
13
|
Yan Y, Huang J, Huan C, Li L, Li C. Non-Esterified Fatty Acid Induces ER Stress-Mediated Apoptosis via ROS/MAPK Signaling Pathway in Bovine Mammary Epithelial Cells. Metabolites 2022; 12:metabo12090803. [PMID: 36144207 PMCID: PMC9500666 DOI: 10.3390/metabo12090803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Elevated concentrations of non-esterified fatty acid (NEFA) induced by negative energy balance (NEB) during the transition period of dairy cows is known to be toxic for multiple bovine cell types. However, the effect of NEFA in bovine mammary epithelial cells (BMECs) remains unclear. The present study aimed to explore the role and molecular mechanism of NEFA in endoplasmic reticulum (ER) stress and the subsequent apoptosis in BMECs. The results showed that NEFA increased ER stress and activated the three unfolded protein response (UPR) signaling sub-pathways by upregulating the expression of GRP78, HSP70, XBP1, ATF6, phosphor-PERK, and phosphor-IRE1α. We also found that NEFA dose-dependently induced apoptosis in BMECs, as indicated by flow cytometry analysis and increased apoptotic gene expression. RNA-seq analysis revealed that NEFA induced apoptosis in BMECs, probably via the ATF4-CHOP axis. Mechanistically, our data showed that NEFA increased reactive oxygen species (ROS) levels, resulting in the activation of the MAPK signaling pathway. Moreover, quercetin, a well-known antioxidant, was found to alleviate ER stress-mediated apoptosis in NEFA-treated BMECs. Collectively, our results suggest that NEFA induces ER stress-mediated apoptosis, probably via the ROS/MAPK signaling pathway, as quercetin has been shown to alleviate ER stress-mediated apoptosis in NEFA-treated BMECs.
Collapse
Affiliation(s)
- Yexiao Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Junpeng Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengmin Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Correspondence:
| |
Collapse
|
14
|
Wang J, Ding L, Wang K, Huang R, Yu W, Yan B, Wang H, Zhang C, Yang Z, Liu Z. Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113772. [PMID: 35714484 DOI: 10.1016/j.ecoenv.2022.113772] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of the most toxic environmental pollutants. Quercetin (Que) is a kind of natural flavonoid with neuroprotective, antioxidant, and free-radical scavenging pharmacological activities. However, whether Que has the protective effect of on Cd-induced rat hepatocyte injury is unclear. This study aimed to determine the protective effect of Que on Cd-induced hepatotoxicity in vivo and in vitro. For in vivo, 36 4-week-old male SD rats were randomly divided into six groups and were treated with CdCl2 (2 mg/kg b.w.) and/or Que (50 or 100 mg/kg b.w.). Four weeks later, the rats were sacrificed and livers were collected. The levels of alanine aminotransferase, aspartate aminotransferase, glutathione, malondialdehyde, catalase, and superoxide dismutase were measured. Liver histopathological sections were made, and TUNEL method was performed to detect cell apoptosis. The mRNA and protein expression levels of endoplasmic reticulum stress (ERS) signaling pathway-related factors and apoptosis-related factors were detected. For in vitro, BRL-3A rat cells were treated with CdCl2 (12.5 μM) and/or Que (5 μM Que). The mRNA and protein expression levels of ERS signaling pathway-related factors and apoptosis-related factors were detected. Results showed that Cd led to liver injury, disorder of hepatocyte morphology and structure, decreased BRL-3A cells viabilities, increased oxidative damage. The mRNA and protein expression levels of ERS related factors GRP78, PERK, eIF2α, ATF4, CHOP, IRE1α, XBP1, and ATF6 increased. The mRNA and protein levels of apoptosis related factors Caspase12, Caspase3, and Bax increased, whereas Bcl2 decreased. It indicated that cadmium could activate PERK-eIF2α-ATF4-CHOP, IRE1α-XBP1, and ATF6-CHOP ERS-related signal pathways and lead to apoptosis. Moreover, Que can improve the vitality of hepatocytes, and effectively reduce hepatocytes damage, and reduce oxidative damage by Cd. As a result, the mRNA and protein expression levels of ERS related factors were reduced and hepatocyte apoptosis related factors decreased. Therefore, Que can be used as an effective component in daily diet to prevent Cd toxicity.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China.
| | - Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, PR China
| |
Collapse
|
15
|
Fang Z, Gao W, Jiang Q, Loor JJ, Zhao C, Du X, Zhang M, Song Y, Wang Z, Liu G, Li X, Lei L. Targeting IRE1α and PERK in the endoplasmic reticulum stress pathway attenuates fatty acid-induced insulin resistance in bovine hepatocytes. J Dairy Sci 2022; 105:6895-6908. [PMID: 35840398 DOI: 10.3168/jds.2021-21754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress can be induced by various stimuli and triggers the unfolded protein response to activate intracellular signaling pathways that are mediated by 3 ER-resident sensors: inositol requiring protein-1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor-6 (ATF6). In nonruminants, ER stress plays a critical role in hepatic insulin resistance. However, whether ER stress plays a role in nonesterified fatty acid (NEFA)-induced hepatic insulin resistance in dairy cows is still unknown. Experiments were conducted using primary bovine hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h. Treatment with NEFA elevated abundance of phosphorylated IRE1α and PERK, and cleavage of ATF6, along with the ER stress-associated genes XBP1, ATF4, and DNAJC3, resulting in both linear and quadratic effects. Furthermore, ER Tracker red staining and transmission electron microscopy results indicated that ER was dilated and degranulated in response to NEFA treatment, suggesting that ER stress was induced by NEFA treatment in bovine hepatocytes. Second, to assess the effect of ER stress on NEFA-induced insulin resistance, hepatocytes were treated with different concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 5 h with or without tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress). Here, NEFA induced insulin resistance by increasing the abundance of insulin receptor substrate-1 (IRS1) phosphorylation at the inhibitory residue Ser 307 (S307) and decreasing the abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in a dose-dependent manner. This was accompanied by upregulation of an abundance of gluconeogenic genes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-Pase)]. These detrimental effects of NEFA on insulin signaling could be reversed with TUDCA treatment, indicating a mechanistic link between ER stress and NEFA-induced insulin resistance. In a third experiment, pGPU6/GFP/Neo vectors containing short hairpin RNA targeting IRE1α were used to silence IRE1α transcription, and GSK2656157 (PERK phosphorylation inhibitor) and 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF; an inhibitor of ATF6) were used to block PERK and ATF6 branches, respectively. Notably, the silencing of the IRE1α branch improved NEFA-induced insulin resistance by decreasing phosphorylation of IRS1 (S307) and increasing phosphorylation of AKT and GSK3β, and reducing PEPCK and G6-Pase mRNA abundance, which was likely dependent on IRE1α kinase activity. Similarly, blockage of the PERK branch increased phosphorylation of AKT and GSK3β, and reduced PEPCK and G6-Pase mRNA abundance, but had no effect on phosphorylation of IRS1 (S307). However, results showed that inhibition of the ATF6 branch had no effects on phosphorylation of IRS1, AKT, and GSK3β, and instead found increasing PEPCK and G6-Pase mRNA abundance. Taken together, data in the present study found that impeding IRE1α and PERK signaling might aid in relieving hepatic insulin resistance. However, the more detailed mechanisms of how IRE1α and PERK signaling contribute to hepatic insulin resistance in dairy cows remain to be determined.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chenchen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Min Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
16
|
FGF21 Reduces Lipid Accumulation in Bovine Hepatocytes by Enhancing Lipid Oxidation and Reducing Lipogenesis via AMPK Signaling. Animals (Basel) 2022; 12:ani12070939. [PMID: 35405926 PMCID: PMC8996872 DOI: 10.3390/ani12070939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
During the periparturient period, dairy cows suffer drastic metabolic stress because of plasma increased non-esterified fatty acids (NEFAs) that stem from a negative energy balance. Fibroblast growth factor 21 (FGF21) is a hepatokine that activates the AMP-activated protein kinase (AMPK) signaling pathway to maintain intracellular energy balance and tissue integrity via the promotion of catabolism and the inhibition of anabolic regulation. FGF21 treatment caused a 50% reduction in triglyceride (TG) content in liver in dairy cows. However, it is not clear whether FGF21 regulates lipid metabolism in bovine liver. The purpose of this study was to evaluate the influence of FGF21 on lipid metabolism via AMPK signaling in bovine hepatocytes. The hepatocytes isolated from calves were treated with different concentrations of FGF21 or co-treated with AMPK inhibitor (BML-275). Herein, the study showed that FGF21 significantly reduced TG content in a dose–response manner and promoted very-low-density lipoprotein (VLDL) secretion via an up-regulation of the proteins (ApoB 100, ApoE and MTTP) involved in VLDL secretion. Otherwise, the genes associated with lipid transport (LDLR and CD36) and lipid oxidation (PPARGC1A, ACOX1 and CPT1A), were up-regulated following FGF21 treatment. Moreover, FGF21 treatment inhibited lipogenesis via SREBF1, ACACA, FASN and ACLY inhibition. After being co-treated with the AMPK inhibitor, FGF21-induced changes were reversed in some genes. In conclusion, these results indicate that FGF21 adaptively regulates energy metabolism for a negative impact on lipogenesis, strengthens lipid oxidation, and inhibited lipid transportation via AMPK signaling in bovine hepatocytes. The present data suggest the possibility that FGF21 has potential value in alleviating perinatal metabolic diseases in dairy cows, and specific research in vivo should be studied in more detail.
Collapse
|
17
|
Yan B, Chen L, Wang Y, Zhang J, Zhao H, Hua Q, Pei S, Yue Z, Liang H, Zhang H. Preventive Effect of Apple Polyphenol Extract on High-Fat Diet-Induced Hepatic Steatosis in Mice through Alleviating Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3172-3180. [PMID: 35227062 DOI: 10.1021/acs.jafc.1c07733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, the protective effect of apple polyphenol extract (APE) on hepatic steatosis was investigated. Thirty-two C57BL/6J mice were assigned randomly to control group, hepatic steatosis group, lovastatin group, and APE group. After 8 weeks of intervention, APE supplementation markedly decreased the body weight gain, liver weight, liver index, epididymal adipose weight, epididymal adipose index, serum, and hepatic lipid levels. Hematoxylin and eosin staining revealed that APE supplementation alleviated histopathological changes of hepatic steatosis. Western blot revealed that APE downregulated the protein levels of GRP78, IRE1α, p-IRE1α, XBP1, PERK, p-PERK, p-eIF2α, ATF6, PPAR-γ, SREBP-1c, FAS, and ACC1. In conclusion, this study found that APE inhibited IRE1α-XBP1, PERK-eIF2α, and ATF6 signaling pathways to alleviate endoplasmic reticulum stress, thereby improving HFD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Bei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lei Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qinglian Hua
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shengjie Pei
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zihang Yue
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
18
|
NEFA Promotes Autophagosome Formation through Modulating PERK Signaling Pathway in Bovine Hepatocytes. Animals (Basel) 2021; 11:ani11123400. [PMID: 34944177 PMCID: PMC8697899 DOI: 10.3390/ani11123400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
During the perinatal period, the abnormally high plasma non-esterified fatty acids (NEFA) concentration caused by the negative energy balance (NEB) can impose a significant metabolic stress on the liver of dairy cows. Endoplasmic reticulum (ER) stress is an important adaptive response that can serve to maintain cell homeostasis in the event of stress. The protein kinase R-like endoplasmic reticulum kinase (PERK) pathway is the most rapidly activated cascade when ER stress occurs in cells and has an important impact on the regulation of hepatic lipid metabolism and autophagy modulation. However, it is unknown whether NEFA can affect autophagy through modulating the PERK pathway, under NEB conditions. In this study, we provide evidence that NEFA treatment markedly increased lipid accumulation, the phosphorylation level of PERK and eukaryotic initiation factor 2α (eIF2α), and the expression of glucose-regulated protein 78 (Grp78), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). More importantly, NEFA treatment can cause a substantial increase in the protein levels of autophagy-related gene 7 (ATG7), Beclin-1 (BECN1), sequestosome-1 (p62), and microtubule-associated protein 1 light chain 3 (LC3)-II, and in the number of autophagosomes in primary bovine hepatocytes. The addition of GSK2656157 (PERK phosphorylation inhibitor) can significantly inhibit the effect of NEFA on autophagy and can further increase lipid accumulation. Overall, our results indicate that NEFA could promote autophagy via the PERK pathway in bovine hepatocytes. These findings provide novel evidence about the potential role of the PERK signaling pathway in maintaining bovine hepatocyte homeostasis.
Collapse
|
19
|
Guo Y, Yang C, Guo R, Huang R, Su Y, Wang S, Kong Y, Wang J, Tan C, Mo C, Wu C, Zhao B. CHOP Regulates Endoplasmic Reticulum Stress-Mediated Hepatoxicity Induced by Monocrotaline. Front Pharmacol 2021; 12:685895. [PMID: 34108882 PMCID: PMC8181757 DOI: 10.3389/fphar.2021.685895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Monocrotaline (MCT), a pyrrolizidine alkaloid, is the major toxin in Crotalaria, which causes cell apoptosis in humans and animals. It has been reported that the liver is a vulnerable target of MCT. However, the exact molecular mechanism of the interaction between endoplasmic reticulum (ER) stress and liver injury induced by MCT is still unclear. In this study, the cytotoxicity of MCT on primary rat hepatocytes was analyzed by a CCK-8 assay and Annexin V-FITC/PI assay. Protein expression was detected by western blotting and immunofluorescence staining. As a result, MCT significantly decreased the cell viability and mediated the apoptosis of primary rat hepatocytes. Meanwhile, MCT could also induce ER stress in hepatocytes, indicated by the expression of ER stress-related proteins, including GRP78, p-IRE1α, ATF6, p-eIF2α, ATF4, and CHOP. Pretreatment with 4-PBA, an inhibitor of ER stress, or knockdown of CHOP by siRNA could partly enhance cell viability and relieve the apoptosis. Our findings indicate that ER stress is involved in the hepatotoxicity induced by MCT, and CHOP plays an important role in this process.
Collapse
Affiliation(s)
- Yazhou Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Chen Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Rong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Ruijie Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Yongxia Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Chengjian Tan
- Department of Biotechnology, Guizhou Minzu University, Guiyang, China
| | - Chonghui Mo
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Chenchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, China
| |
Collapse
|