1
|
Guo D, Liu C, Zhu H, Cheng Y, Guo Y, Yao W, Jiang J, Qian H. Advanced insights into mushroom polysaccharides: Extraction methods, structure-activity, prebiotic properties, and health-promoting effects. Int J Biol Macromol 2025; 308:142319. [PMID: 40132710 DOI: 10.1016/j.ijbiomac.2025.142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Mushroom-derived polysaccharides, especially β-glucans, have attracted considerable attention because of their various biological regulatory functions. Advanced extraction technologies, including ultrasonic-assisted, microwave-assisted, enzyme-assisted, ultrasonic-microwave synergistic, subcritical water, and aqueous two-phase extractions, are extensively utilized to optimize the efficient recovery of biologically active compounds from mushrooms, progressively supplanting conventional methods. In addition, mushroom polysaccharides are acknowledged as "important biological response modifiers." Beyond their diverse bioactivities, including anticancer, immunomodulatory, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemia, anti-lipidemic, and antioxidant effects, increasing interest has been directed towards their prebiotic potential, especially regarding their ability to influence gut microbiota. This review presents a comprehensive summary of the extraction and purification methods, biological properties, structure-function relationships, and mechanisms of mushroom polysaccharides, highlighting the latest advancements in the field from 2019 to 2024. Additionally, this review discusses the key findings and limitations associated with the structure-function correlation. While most studies focus on β-glucans or their extracts, α-glucans and chitin have gained increasing attention. The prebiotic potential is associated with α-glucans and chitin, with chitin recognized for its substantial antimicrobial and wound-healing properties. This review systematically identifies current research gaps and proposes avenues for future investigation into the therapeutic potential of mushroom polysaccharides. However, further research is required to comprehensively understand their full therapeutic potential.
Collapse
Affiliation(s)
- Dongdong Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yang J, Karunarathna SC, Patabendige N, Tarafder E, Lou D, Zhou Y, Hapuarachchi K. Unveiling the Bioactive Compounds and Therapeutic Potential of Russula: A Comprehensive Review. J Fungi (Basel) 2025; 11:341. [PMID: 40422676 DOI: 10.3390/jof11050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/28/2025] Open
Abstract
Russula, a genus of Basidiomycetes with considerable taxonomic diversity, holds significant potential in both traditional and modern medicinal practices. This comprehensive review explores the bioactive compounds identified in various Russula species, detailing their characterization, structural elucidation, and classification. The medicinal properties of these fungi are examined, with a focus on their antioxidant, anti-inflammatory, and immunomodulatory effects, supported by both historical usage and contemporary preclinical pharmacological research. The review also highlights emerging biotechnological applications including environmental remediation, antimicrobial agents, and functional food development. Safety and toxicological considerations are evaluated to provide a balanced perspective on the medicinal use of Russula. The review concludes by summarizing the key findings and emphasizing the importance of Russula in both traditional medicine and future clinically validated innovations.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nimesha Patabendige
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Dengji Lou
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Yuanqing Zhou
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Kalani Hapuarachchi
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Cedro PÉP, Mendes TPS, Miranda ACA, Morbeck LLB, Santana RA, Nascimento Junior BBDO, Valasques Júnior GL. β(1,3) β(1,6) glucogalactan from Rhizopus microsporus var. oligosporus: extraction, characterization, antioxidant and α-amylase inhibitory activities. AN ACAD BRAS CIENC 2024; 96:e20230073. [PMID: 38896737 DOI: 10.1590/0001-3765202420230073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 10/08/2023] [Indexed: 06/21/2024] Open
Abstract
In this study, the Box-Behnken experimental planning was used to optimize the extraction of polysaccharides from the cell wall of Rhizopus microspore var. oligosporus, with analysis of the quantitative effects of parameters pH, temperature and extraction time for polysaccharide yield. The optimal conditions for extraction were determined by the regression equation and evaluation of the response surface graphs, which indicated: pH 13, temperature of 120ºC and time of 60 min, with maximum yield around 18.5%. Fourier transform infrared spectroscopy analysis indicated typical polysaccharide signals. Nuclear magnetic resonance spectroscopy and monosaccharide analysis indicated a β(1,3) β(1,6) glucogalactan. The polysaccharide exhibited an average molecular weight of 120 kDa and a polymerization degree of 741. Antioxidant assays in vitro revealed the potential of polysaccharide in elimination of ABTS+ radical and hydroxyl radicals. EC50 values for free radical elimination were 7.69 and 17.8 mg/mL, for ABTS+ and hydroxyls, respectively. The polysaccharides showed potential for α-amylase inhibition with an EC50 of 1.66 mg/mL. The results suggest that β(1,3) β(1,6) glucogalactan from Rhizopus microsporus var. oligosporus can be used in biotechnological applications.
Collapse
Affiliation(s)
- Pâmala Évelin P Cedro
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciência e Tecnologia, Av. José Moreira Sobrinho, s/n, Jequiezinho, 45205-490 Jequié, BA, Brazil
| | - Tátilla P S Mendes
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciência e Tecnologia, Av. José Moreira Sobrinho, s/n, Jequiezinho, 45205-490 Jequié, BA, Brazil
| | - Alana C A Miranda
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciência e Tecnologia, Av. José Moreira Sobrinho, s/n, Jequiezinho, 45205-490 Jequié, BA, Brazil
| | - Lorena L B Morbeck
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Rua Hormindo Barros, 58, Candeias, 45029-094 Vitória da Conquista, BA, Brazil
| | - Romário A Santana
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciência e Tecnologia, Av. José Moreira Sobrinho, s/n, Jequiezinho, 45205-490 Jequié, BA, Brazil
| | - Baraquizio B DO Nascimento Junior
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciência e Tecnologia, Av. José Moreira Sobrinho, s/n, Jequiezinho, 45205-490 Jequié, BA, Brazil
| | - Gildomar L Valasques Júnior
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciência e Tecnologia, Av. José Moreira Sobrinho, s/n, Jequiezinho, 45205-490 Jequié, BA, Brazil
| |
Collapse
|
4
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Tesvichian S, Sangtanoo P, Srimongkol P, Saisavoey T, Buakeaw A, Puthong S, Thitiprasert S, Mekboonsonglarp W, Liangsakul J, Sopon A, Prawatborisut M, Reamtong O, Karnchanatat A. Sulfated polysaccharides from Caulerpa lentillifera: Optimizing the process of extraction, structural characteristics, antioxidant capabilities, and anti-glycation properties. Heliyon 2024; 10:e24444. [PMID: 38293411 PMCID: PMC10826829 DOI: 10.1016/j.heliyon.2024.e24444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead β-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.
Collapse
Affiliation(s)
- Suphaporn Tesvichian
- Program in Biotechnology, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jatupol Liangsakul
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anek Sopon
- Aquatic Resources Research Institute, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Mongkhol Prawatborisut
- Bruker Switzerland AG, 175, South Sathorn Road, 10th Floor, Sathorn City Tower, Thungmahamek, Sathorn, Bangkok, 10120, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Li Y, Zhang C, Feng L, Shen Q, Liu F, Jiang X, Pang B. Application of natural polysaccharides and their novel dosage forms in gynecological cancers: therapeutic implications from the diversity potential of natural compounds. Front Pharmacol 2023; 14:1195104. [PMID: 37383719 PMCID: PMC10293794 DOI: 10.3389/fphar.2023.1195104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is one of the most lethal diseases. Globally, the number of cancers is nearly 10 million per year. Gynecological cancers (for instance, ovarian, cervical, and endometrial), relying on hidden diseases, misdiagnoses, and high recurrence rates, have seriously affected women's health. Traditional chemotherapy, hormone therapy, targeted therapy, and immunotherapy effectively improve the prognosis of gynecological cancer patients. However, with the emergence of adverse reactions and drug resistance, leading to the occurrence of complications and poor compliance of patients, we have to focus on the new treatment direction of gynecological cancers. Because of the potential effects of natural drugs in regulating immune function, protecting against oxidative damage, and improving the energy metabolism of the body, natural compounds represented by polysaccharides have also attracted extensive attention in recent years. More and more studies have shown that polysaccharides are effective in the treatment of various tumors and in reducing the burden of metastasis. In this review, we focus on the positive role of natural polysaccharides in the treatment of gynecologic cancer, the molecular mechanisms, and the available evidence, and discuss the potential use of new dosage forms derived from polysaccharides in gynecologic cancer. This study covers the most comprehensive discussion on applying natural polysaccharides and their novel preparations in gynecological cancers. By providing complete and valuable sources of information, we hope to promote more effective treatment solutions for clinical diagnosis and treatment of gynecological cancers.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- International Medical Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
El-Gendi H, Abu-Serie MM, Kamoun EA, Saleh AK, El-Fakharany EM. Statistical optimization and characterization of fucose-rich polysaccharides extracted from pumpkin (Cucurbita maxima) along with antioxidant and antiviral activities. Int J Biol Macromol 2023; 232:123372. [PMID: 36706886 DOI: 10.1016/j.ijbiomac.2023.123372] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Biologically active phytochemicals from pumpkin reveal versatile medical applications, though little is known about their antiviral activity. The fucose-rich polysaccharide extraction conditions were optimized through Box-Behnken design and purified by column chromatography. The purified fucose-rich polysaccharide was characterized through SEM, FT-IR, 1H NMR, XRD, TGA, and GS-MS. The analysis results revealed an irregular and porous surface of the purified polysaccharide with high fucose, rhamnose, galactose, and glucose contents. The tested fucose-rich polysaccharides revealed significant antioxidant and anti-inflammatory activity at very low concentrations. The purified fucose-rich polysaccharides exerted a broad-spectrum antiviral activity against both DNA and RNA viruses, accompanied by high safety toward normal cells, where the maximum safe doses (EC100) were estimated to be about 3-3.9 mg/mL for both Vero and PBMC cell lines. Treatment of HCV, ADV7, HSV1, and HIV viruses with the purified polysaccharides showed a potent dose-dependent inhibitory activity with IC50 values of 95.475, 20.96, 5.213, and 461.75 μg/mL, respectively. This activity was hypothesized to be through inhibiting the viral entry in HCV infection and inhibiting the reverse transcriptase activity in HIV. The current study firstly reported the antioxidant, anti-inflammatory, and antiviral activities of Cucurbita maxima fucose-rich polysaccharide against several viral infections.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Application (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, Giza, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| |
Collapse
|
8
|
Nguyen TP, Phan HN, Do TD, Do GD, Ngo LH, Do HDK, Nguyen KT. Polysaccharide and ethanol extracts of Anoectochilus formosanus Hayata: Antioxidant, wound-healing, antibacterial, and cytotoxic activities. Heliyon 2023; 9:e13559. [PMID: 36873493 PMCID: PMC9981919 DOI: 10.1016/j.heliyon.2023.e13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Polysaccharide and alcohol extracts of Anoectochilus formosanus Hayata have attracted great attention as they exhibit noteworthy properties such as prebiotic and anti-hyperglycemic effects. However, the antioxidant and wound-healing activities of the polysaccharide extract as well as the antibacterial and cytotoxic effects of the ethanol extracts have not been thoroughly uncovered. Therefore, our study investigated these bioactivities of the two extracts prepared from Anoectochilus formosanus to broaden understandings of medical benefits of the plant. Methods The monosaccharide composition was analyzed by HPAEC-PAD. The antioxidant and wound-healing activities of the polysaccharide extract were evaluated by ABTS and scratch assays, respectively. The broth dilution method was used to determine the antibacterial ability of the ethanol extract. Additionally, the cytotoxic and mechanistic effects of this extract against hepatocellular carcinoma HUH-7 cells was assessed by MTT assay, qRT-PCR and Western blotting methods. Results The polysaccharide extract possessed an effective free radical scavenging ability in an ABTS assay (IC50 = 44.92 μg/ml). The extract also ameliorated wound recovery in a fibroblast scratch assay. Meanwhile, the ethanol extract was able to inhibit the growth of Staphylococcus aureus (MIC = 2500 μg/ml), Bacillus cereus (MIC = 2500 μg/ml), Escherichia coli (MIC = 2500 μg/ml), and Pseudomonas aeruginosa (MIC = 1250 μg/ml). Additionally, it repressed the viability of HUH-7 cells (IC50 = 53.44 μg/ml), possibly through upregulating the expression of caspase 3 (CASP3), CASP8, and CASP9 at both mRNA and protein levels. Conclusion The polysaccharide extract of A. formosanus exhibited the antioxidant and wound-healing properties whereas the ethanol extract showed the antibacterial activity and cytotoxicity against HUH-7 cells. These findings specify notable biological effects of the two extracts which could be of potential use in human healthcare.
Collapse
Affiliation(s)
- Thi-Phuong Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Viet Nam
| | - Han N. Phan
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Viet Nam
| | - Thang Duc Do
- Department of Plantcell Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Giap Dang Do
- Department of Plantcell Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Long Hoang Ngo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Viet Nam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Viet Nam
| | - Khoa Thi Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Viet Nam
| |
Collapse
|
9
|
Sun Y, He H, Wang Q, Yang X, Jiang S, Wang D. A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities. Polymers (Basel) 2022; 14:polym14204454. [PMID: 36298031 PMCID: PMC9609814 DOI: 10.3390/polym14204454] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Because of their distinctive flavor and exceptional nutritional and medicinal value, they have been a frequent visitor to people’s dining tables and have become a hot star in the healthcare, pharmaceutical, and cosmetics industries. Edible fungal polysaccharides (EFPs) are an essential nutrient for edible fungi to exert bioactivity. They have attracted much attention because of their antioxidant, immunomodulatory, antitumor, hypoglycemic, and hypolipidemic bioactivities. As a result, EFPs have demonstrated outstanding potential over the past few decades in various disciplines, including molecular biology, immunology, biotechnology, and pharmaceutical chemistry. However, the complexity of EFPs and the significant impact of mushroom variety and extraction techniques on their bioactivities prevents a complete investigation of their biological features. Therefore, the authors of this paper thoroughly reviewed the comparison of different extraction methods of EFPs and their advantages and disadvantages. In addition, the molecular weight, monosaccharide composition, and glycosidic bond type and backbone structure of EFPs are described in detail. Moreover, the in vitro and in vivo bioactivities of EFPs extracted by different methods and their potential regulatory mechanisms are summarized. These provide a valuable reference for improving the extraction process of EFPs and their production and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
- Correspondence:
| | - Huaqi He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Qian Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengjuan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Daobing Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
10
|
Zhang X, Liu J, Wang X, Hu H, Zhang Y, Liu T, Zhao H. Structure characterization and antioxidant activity of carboxymethylated polysaccharide from
Pholiota nameko. J Food Biochem 2022; 46:e14121. [DOI: 10.1111/jfbc.14121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Xi Wang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hewen Hu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Yanrong Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Tingting Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hui Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| |
Collapse
|
11
|
Vibrational Spectroscopy-Based Chemometrics Analysis of Clinacanthus nutans Extracts after Postharvest Processing and Extract Effects on Cardiac C-Kit Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1967593. [PMID: 35251203 PMCID: PMC8890836 DOI: 10.1155/2022/1967593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Chemical constituents in plants can be greatly affected by postharvest processing, and it is important to identify the factors that lead to significant changes in chemistry and bioactivity. In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to analyze extracts of Clinacanthus nutan (C. nutans) leaves generated using different parameters (solvent polarities, solid-liquid ratios, ultrasonic durations, and cycles of extraction). In addition, the effects of these extracts on the viability of cardiac c-kit cells (CCs) were tested. The IR spectra were processed using SIMCA-P software. PCA results of all tested parameter sets were within acceptable values. Solvent polarity was identified as the most influential factor to observe the differences in chemical profile and activities of C. nutans extracts. Ideal extraction conditions were identified, for two sample groups (G1 and G2), as they showed optimal total phenolic content (TPC) yield of 44.66 ± 0.83 mg GAE/g dw and 45.99 ± 0.29 mg GAE/g dw and CC viability of 171.81 ± 4.06% and 147.53 ± 6.80%, respectively. Validation tools such as CV-ANOVA (p < 0.05) and permutation (R2 and Q2 plots were well intercepted to each other) have further affirmed the significance and reliability of the partial least square (PLS) model of solvent polarity employed in extraction. Hence, these approaches help optimize postharvest processes that encourage positive TPC and CCs results in C. nutans extracts.
Collapse
|
12
|
Liu Y, Hu H, Cai M, Liang X, Wu X, Wang A, Chen X, Li X, Xiao C, Huang L, Xie Y, Wu Q. Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics. Gene 2022; 808:145996. [PMID: 34634440 DOI: 10.1016/j.gene.2021.145996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 01/27/2023]
Abstract
Russula griseocarnosa is a well-known ectomycorrhizal mushroom, which is mainly distributed in the Southern China. Although several scholars have attempted to isolate and cultivate fungal strains, no accurate method for culture of artificial fruiting bodies has been presented owing to difficulties associated with mycelium growth on artificial media. Herein, we sequenced R. griseocarnosa genome using the second- and third-generation sequencing technologies, followed by de novo assembly of high-throughput sequencing reads, and GeneMark-ES, BLAST, CAZy, and other databases were utilized for functional gene annotation. We also constructed a phylogenetic tree using different species of fungi, and also conducted comparative genomics analysis of R. griseocarnosa against its four representative species. In addition, we evaluated the accuracy of one already sequenced genome of R. griseocarnosa based on the internal transcribed spacer (ITS) sequencing of that type of species. The assembly process resulted in identification of 230 scaffolds with a total genome size of 50.67 Mbp. The gene prediction showed that R. griseocarnosa genome included 14,229 coding sequences (CDs). In addition, 470 RNAs were predicted with 155 transfer RNAs (tRNAs), 49 ribosomal RNAs (rRNAs), 41 small noncoding RNAs (sRNAs), 42 small nuclear RNAs (snRNAs), and 183 microRNAs (miRNAs). The predicted protein sequences of R. griseocarnosa were analyzed to indicate the existence of carbohydrate-active enzymes (CAZymes), and the results revealed that 153 genes encoded CAZymes, which were distributed in 58 CAZyme families. These enzymes included 78 glycoside hydrolases (GHs), 34 glycosyl transferases (GTs), 30 auxiliary activities (AAs), 2 carbohydrate esterases (CEs), 8 carbohydrate-binding modules (CBMs), and only one polysaccharide lyase (PL). Compared with other fungi, R. griseocarnosa had fewer CAZymes, and the number and distribution of CAZymes were similar to other mycorrhizal fungi, such as Tricholoma matsutake and Suillus luteus. Well-defined effector proteins that were associated with mycorrhiza-induced small-secreted proteins (MiSSPs) were not found in R. griseocarnosa, which indicated that there may be some special effector proteins to interact with host plants in R. griseocarnosa. The genome of R. griseocarnosa may provide new insights into the energy metabolism of ectomycorrhizal (ECM) fungi, a reference to study ecosystem and evolutionary diversification of R. griseocarnosa, as well as promoting the study of artificial domestication.
Collapse
Affiliation(s)
- Yuanchao Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoxian Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ao Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longhua Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Qingping Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
13
|
Response Surface Methodology (RSM)-Based Optimization of Ultrasound-Assisted Extraction of Sennoside A, Sennoside B, Aloe-Emodin, Emodin, and Chrysophanol from Senna alexandrina (Aerial Parts): HPLC-UV and Antioxidant Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010298. [PMID: 35011528 PMCID: PMC8746307 DOI: 10.3390/molecules27010298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022]
Abstract
In this study, ultrasound-assisted extraction conditions were optimized to maximize the yields of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol from S. alexandrina (aerial parts). The three UAE factors, extraction temperature (S1), extraction time (S2), and liquid to solid ratio (S3), were optimized using response surface methodology (RSM). A Box–Behnken design was used for experimental design and phytoconstituent analysis was performed using high-performance liquid chromatography-UV. The optimal extraction conditions were found to be a 64.2 °C extraction temperature, 52.1 min extraction time, and 25.2 mL/g liquid to solid ratio. The experimental values of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol (2.237, 12.792, 2.457, 0.261, and 1.529%, respectively) agreed with those predicted (2.152, 12.031, 2.331, 0.214, and 1.411%, respectively) by RSM models, thus demonstrating the appropriateness of the model used and the accomplishment of RSM in optimizing the extraction conditions. Excellent antioxidant properties were exhibited by S. alexandrina methanol extract obtained using the optimized extraction conditions with a DPPH assay (IC50 = 59.7 ± 1.93, µg/mL) and ABTS method (47.2 ± 1.40, µg/mL) compared to standard ascorbic acid.
Collapse
|
14
|
Khatua S, Paloi S, Acharya K. An untold story of a novel mushroom from tribal cuisine: an ethno-medicinal, taxonomic and pharmacological approach. Food Funct 2021; 12:4679-4695. [PMID: 33928983 DOI: 10.1039/d1fo00533b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
India showcases an array of fascinating and rare mushrooms that grow exclusively in the wilderness of West Bengal. Thus, the state has always been our prime choice to document myco-diversity and associated indigenous knowledge. Fortuitously, a recent expedition gifted us a violet-coloured Russuloid macrofungus, called "Jam Patra", that plays an integral part in the food security of local ethnic groups. However, the species has not received the much-needed attention among city dwellers and remains abandoned, motivating us to carry a thorough investigation. To our surprise, extensive analyses on morphological features and nrITS based phylogenetic estimation pointed the novelty of the taxon, as justified herein. Extending this research, a water-soluble polysaccharide-rich fraction was isolated to determine therapeutic prospects. Chemical characterization revealed that the backbone of the polymers, organized in triple-helical form, predominantly consisted of β-glucan accompanied by a lower extent of galactose, mannose and xylose. Subsequently, the effective antioxidant activity was noted in terms of radical scavenging, reducing power and chelating ability with EC50 of 305-2726 μg ml-1. Further, the macromolecules triggered murine macrophages to proliferate, phagocytose, release NO, produce intracellular ROS and change morphodynamics. A significant alleviation in the expression of TLR-2, TLR-4, NF-κB, COX-2, TNF-α, Iκ-Bα, IFN-γ, IL-10 and iNOS was also observed explaining the definite immune-stimulatory activity and supporting traditional consumption of "Jam Patra" as a health-promoting food. Altogether, the study introduces a species in the world's myco-diversity and tribal food list opening doors of various opportunities in functional food and nature-based drug development arenas, which are currently in trend.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | | | | |
Collapse
|
15
|
Optimization of dynamic maceration of Clausena anisata (Willd.) Hook. f. ex Benth. leaves to maximize trans-anethole content. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractTrans-anethole possesses several biological and pharmacological effects. It is also used as masking agent in household products and as a flavoring agent in food. Clausena anisata (Willd.) Hook. f. ex Benth. leaves are reported as a source of trans-anethole that makes their anise-like odor. This work sought to optimize the dynamic maceration of C. anisata leaves to maximize the trans-anethole content. The circumscribed central composite experimental design was applied to investigate the effects of extraction temperature and time on extraction yield, trans-anethole content in the extract, and trans-anethole content in the plant raw material. The results showed that the extraction yield was high when C. anisata leaves were extracted over a long extraction time, while the extraction temperature had a lesser effect on the extraction yield. Trans-anethole content in the extract and plant raw material determined using a linear, specific, precise, and accurate HPLC method was high when a medium extraction temperature with a short extraction time was used. The optimal condition that maximized trans-anethole content involved an extraction temperature of 61.8 °C and an extraction time of 12.9 min, respectively. The percentage error of the prediction conducted by computer software was low, suggesting that the prediction was highly accurate. In conclusion, the optimal condition of dynamic maceration obtained from this work could be used as a guide for maximizing trans-anethole content from C. anisata leaves.
Collapse
|
16
|
Wang F, Kong LM, Xie YY, Wang C, Wang XL, Wang YB, Fu LL, Zhou T. Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. J Food Biochem 2021; 45:e13661. [PMID: 33595138 DOI: 10.1111/jfbc.13661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
The degraded polysaccharides from Porphyra yezoensis (DPPY) prepared using the H2 O2 -Vc method under optimized conditions were isolated and purified by DEAE Cellulose-52, and Sephadex G-100, providing four pure components, namely, DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5. Their relative molecular weights were measured to be 10.8, 10.7, 18.7, and 35.5 kDa, respectively. GC-MS analysis revealed that all the four fractions were mainly composed of galactose, together with a small portion of glucose, mannose, xylose, and rhamnose. Structural analysis revealed that the purified polysaccharides mainly possess a backbone of (1 → 3)-β-D-galactose (1 → 4)-3,6-anhydro-α-L-galactopyranose (G-A) units and (1 → 3)-β-D-galactose (1 → 4)-α-L-galactose-6-sulfate (G-L6S) units. They were found to promote the proliferation of RAW264.7 macrophages and enhance phagocytosis of the RAW264.7 cells. Antioxidant assays indicated that DPPY-0.5 possessed the most potent reducing power and free radical scavenging ability among the four purified polysaccharides. High sulfate content and proper molecular weight of these fractions are favorable to their immunomodulatory and antioxidant activities. PRACTICAL APPLICATIONS: Porphyra yezoensis, common economic red algae widely distributed in East Asian countries, contains a high content of polysaccharides with a variety of biological activities. However, P. yezoensis polysaccharide (PPY) has not been well utilized due to the relatively low biological activities and lack of understanding of its structure-activity relationship. Thus, it is necessary to improve the bioactivities and elucidate the structure-activity relationship of this polysaccharide for its practical use. In the present work, four purified fractions (DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5) were isolated from the degraded P. yezoensis polysaccharide, and were investigated for their antioxidant and immunoregulatory activities. The results of the present work will lay a foundation for the application of the degraded P. yezoensis polysaccharide in the food industry as a functional food ingredient.
Collapse
Affiliation(s)
- Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Li-Min Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Chong Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Xiao-Ling Wang
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, P.R. China
| | - Yan-Bo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Ling-Lin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
17
|
Leong YK, Yang FC, Chang JS. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr Polym 2021; 251:117006. [DOI: 10.1016/j.carbpol.2020.117006] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
|
18
|
Lu Y, Wu Y, Chen X, Yang X, Xiao H. Water extract of shepherd's purse prevents high-fructose induced-liver injury by regulating glucolipid metabolism and gut microbiota. Food Chem 2020; 342:128536. [PMID: 33189481 DOI: 10.1016/j.foodchem.2020.128536] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Shepherd's purse as a wild vegetable is getting more and more attention on health benefits. Water extract of shepherd's purse (WESP) was prepared and analyzed for the chemical constituents. The mice were fed high-fructose (HF) diet and treated with WESP at 50, 100 and 200 mg/kg·bw for 8 weeks. The HF-fed mice receiving WESP exhibited the inhibitions against abnormal weight gain, hepatic fat accumulation and lipid metabolic by down-regulating FAS and ACC expressions. WESP also significantly alleviated hyperglycemia, oxidative stress, and inflammatory response by regulating of NF-κB pathway. Moreover, WESP dose-dependently increased the acetic, propionic, and butyric acids levels in HF-fed mice. Furthermore, WESP significantly alleviated the HF-induced gut dysbiosis by reducing the ratio of Firmicutes to Bacteroidetes and increasing the abundance of potential beneficial bacteria. Our findings indicate that WESP may be an effective dietary supplement for preventing the liver damage.
Collapse
Affiliation(s)
- Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Yingmei Wu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xuefeng Chen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
19
|
Sun Y, Zhang M, Fang Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Abd Razak DL, Jamaluddin A, Abd Rashid NY, Sani NA, Abdul Manan M. Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity. J 2020; 3:329-342. [DOI: 10.3390/j3030026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cosmeceutical formulations containing naturally derived active ingredients are currently preferred by consumers worldwide. Mushrooms are one of the potential sources for cosmeceutical ingredients but relevant research is still lacking. In this study, hot- and cold-water extractions were performed on four locally-cultivated mushrooms—Pleurotus ostreatus, Ganoderma lucidum, Auricularia polytricha and Schizophyllum commune—with the aim to assess the cosmeceutical potential of these mushroom fruitbody extracts. Total phenolics, polysaccharide and glucan content were determined. Antioxidant property of the mushroom extracts was assessed by determining the DPPH radical scavenging, ferric-reducing (FRAP) and superoxide anion (SOA) scavenging activity. Anti-hyaluronidase activity was used as an indicator for the anti-aging and anti-inflammatory property, while anti-tyrosinase activity was evaluated to assess the anti-pigmentation or whitening property of these extracts. Our results showed that total polysaccharide content of P. ostreatus extracts was the highest (235.8–253.6 mg GE/g extract), while extracts from G. lucidum contained the lowest glucan (10.12–10.67%). Cold-water extract from S. commune exhibited substantial tyrosinase inhibition activity (98.15%) and SOA scavenging activity (94.82%). The greatest hyaluronidase activity was exhibited by G. lucidum hot-water extract, with the value of 72.78%. The findings from the correlation analyses suggest that the cosmeceutical properties of these mushrooms can be attributed mainly to the combination of different types of compound such as polysaccharides and phenolics. Overall, cold-water extract of S. commune and hot-water extract of G. lucidum showed the best results and may be further investigated.
Collapse
|
21
|
Response Surface Methodology Optimization of Microwave-Assisted Polysaccharide Extraction from Algerian Jujube (Zizyphus lotus L.) Pulp and Peel. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Yu F, Liang JF, Song J, Wang SK, Lu JK. Bacterial Community Selection of Russula griseocarnosa Mycosphere Soil. Front Microbiol 2020; 11:347. [PMID: 32269551 PMCID: PMC7109302 DOI: 10.3389/fmicb.2020.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
Russula griseocarnosa is a wild, ectomycorrhizal, edible, and medicinal fungus with high economic value in southern China. R. griseocarnosa fruiting bodies cannot be artificially cultivated. To better understand the effects of abiotic and biotic factors on R. griseocarnosa growth, the physicochemical properties of R. griseocarnosa and its associated bacterial communities were investigated in two soil types (mycosphere and bulk soil) from Fujian, Guangdong, and Guangxi Provinces. The results revealed that the diversity, community structure, and functional characteristics of the dominant mycosphere bacteria in all geographical locations were similar. Soil pH and available nitrogen (AN) are the major factors influencing the mycosphere-soil bacterial communities' structure. The diversity of soil bacteria is decreased in R. griseocarnosa mycosphere when compared with the bulk soil. Burkholderia-Paraburkholderia, Mycobacterium, Roseiarcus, Sorangium, Acidobacterium, and Singulisphaera may also be mycorrhiza helper bacteria (MHB) of R. griseocarnosa. The functional traits related to the two-component system, bacterial secretion system, tyrosine metabolism, biosynthesis of unsaturated fatty acids, and metabolism of cofactors and vitamins were more abundant in R. griseocarnosa mycosphere soil. The mycosphere soil bacteria of R. griseocarnosa play a key role in R. griseocarnosa growth. Application of management strategies, such as N fertilizer and microbial fertilizer containing MHB, may promote the conservation, propagation promotion, and sustainable utilization of R. griseocarnosa.
Collapse
Affiliation(s)
| | - Jun-Feng Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | | | | | | |
Collapse
|
23
|
Duarte Trujillo AS, Jiménez Forero JA, Pineda Insuasti JA, González Trujillo CA, García Juarez M. Extracción de sustancias bioactivas de <i>Pleurotus ostreatus</i> (Pleurotaceae) por maceración dinámica. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.72409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La extracción de compuestos bioactivos de Pleurotus ostreatus por maceración dinámica, es un proceso sencillo y económico, que normalmente presenta baja eficiencia. El objetivo de este trabajo fue evaluar el proceso de extracción para determinar qué tratamiento permite la mayor eficiencia, analizando la influencia de los factores de estudio: concentración de etanol (50 %, 80 %, 95 %) y relación sólido/solvente (1:10, 1:20, 1:30). Se maceraron 5 g de polvo fúngico en etanol acuoso durante 90 minutos, a 150 rpm, 25 °C y tamaño de partícula de 0,5 a 1,0 mm. Se trataron los datos mediante estadística paramétrica con un nivel de confianza del 95 %. Los resultados revelaron que la mayor eficiencia de extracción total (40,9 %) en base seca se obtuvo con etanol al 50 % y una relación sólido/solvente de 1:30. Por componentes se encontró que, el etanol al 50 % con una relación de 1:20 permitió la máxima eficiencia para carbohidratos totales (17,9 %) y polisacáridos (17,2 %), mientras que con una relación de 1:30 se obtuvo la máxima eficiencia para azúcares reductores (0,91 %) y polifenoles (0,23 %). Por otro lado, el etanol al 95 % y la relación 1:30 permitió la máxima eficiencia para proteínas (29,4 %). La extracción de beta-glucanos no fue significativa. La eficiencia de la extracción está muy influenciada por los parámetros de operación, principalmente por la concentración de etanol; en particular, la de 50 % resultó más favorable para la obtención de la mayoría de sustancias bioactivas con potencial nutracéutico.
Collapse
|
24
|
Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum. Saudi J Biol Sci 2019; 26:2079-2084. [PMID: 31889798 PMCID: PMC6923458 DOI: 10.1016/j.sjbs.2019.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, ultrasound-assisted extraction of flavonoid from Crinum asiaticum was studied through response surface methodology (RSM) to gain the best extraction process of flavonoid and enhance the extraction rate of flavonoid. In the following RSM experiment, we selected the corresponding data of every factor as the center point through the single-factor experiments, then the experimental data was subjected to multiple regression analysis. According to the statistical analysis results, the results were consistent with the polynomial regression model, the determination coefficient (R2) was 0.9769. The best conditions for maximum flavonoid yield were 60% ethanol concentration, 64 °C for extraction temperature, 1:28 (v/w) solid-to-liquid ratio with extraction time for 47 min. The best response of flavonoid yield was 1.63972%. The predicted results for best reaction conditions were in good agreement with experiment values. Ultrasound-assisted extraction method can enhance the extraction rate of flavonoid significantly. It is a powerful tool to extract of important phytochemicals from nature plant.
Collapse
|
25
|
Yuan Y, Che L, Qi C, Meng Z. Protective effects of polysaccharides on hepatic injury: A review. Int J Biol Macromol 2019; 141:822-830. [PMID: 31487518 DOI: 10.1016/j.ijbiomac.2019.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
Chronic hepatic injury caused by hepatitis B and C virus (HBV and HCV) infection, high fat diet and alcohol intake has increased to be the critical promoter of hepatocellular carcinoma (HCC). These high risk factors set into motion a vicious cycle of hepatocyte death, inflammation and fibrosis that finally results in cirrhosis and HCC after several decades. However, the treatment options for HCC are very limited. Therefore, early treatment of liver injury may reduce the incidence and probability of HCC or delay the progression of HCC. Substantial ongoing research has focused on nontoxic biological macromolecules, mainly polysaccharides, which possess prominent efficacies on hepatoprotective activity. Based on these encouraging observations, a great deal of effort has been devoted to discovering novel polysaccharides for the development of effective therapeutics for hepatic injury. This review focuses on the protective effects of polysaccharides on liver injury, including hepatitis virus infection, nonalcoholic steatohepatitis, alcoholic liver disease and other hepatic injuries, and describes the underlying mechanisms.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Medicine Laboratory, First Hospital, Jilin University, Changchun 130021, China
| | - Lihe Che
- Department of Infectious Disease, First Hospital, Jilin University, Changchun 130021, China
| | - Chong Qi
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
26
|
Abd Razak DL, Mohd Fadzil NH, Jamaluddin A, Abd Rashid NY, Sani NA, Abdul Manan M. Effects of different extracting conditions on anti-tyrosinase and antioxidant activities of Schizophyllum commune fruit bodies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Yu F, Song J, Liang J, Wang S, Lu J. Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 2019; 112:603-614. [PMID: 31004699 DOI: 10.1016/j.ygeno.2019.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/30/2023]
Abstract
Russula griseocarnosa is a species of edible ectomycorrhizal fungi with medicinal properties that grows in southern China. Total DNA was isolated from a fresh fruiting body of R. griseocarnosa and subjected to sequencing using Illumina Hiseq with the PacBio RS sequencing platform. Here, we present the 64.81 Mb draft genome map of R. griseocarnosa based on 471 scaffolds and 16,128 coding protein genes. The gene annotation of protein coding genes was used to obtain corresponding annotations by blastp. Phylogenetic analysis revealed a close evolutionary relationship of R. griseocarnosa to Heterobasidion irregulare and Stereum hirsutum in the core Russulales clade. The R. griseocarnosa genome encodes a repertoire of enzymes engaged in carbohydrate and polysaccharide metabolism, along with cytochrome P450s and secondary metabolite biosynthesis. The genome content of R. griseocarnosa provides insights into the genetic basis of its reported medicinal properties and serves as a reference for comparative genomics of fungi.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; Nanjing Forestry University, Nanjing 210037, China
| | - Jie Song
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Junfeng Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Shengkun Wang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Junkun Lu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
28
|
Ji HY, Yu J, Chen XY, Liu AJ. Extraction, optimization and bioactivities of alcohol-soluble polysaccharide from Grifola frondosa. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00081-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Khatua S, Acharya K. Alkali treated antioxidative crude polysaccharide from Russula alatoreticula potentiates murine macrophages by tunning TLR/NF-κB pathway. Sci Rep 2019; 9:1713. [PMID: 30737411 PMCID: PMC6368593 DOI: 10.1038/s41598-018-37998-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
In our previous research, Russula alatoreticula was demonstrated as a novel species, ethnic myco-food and reservoir of hot water extractable polysaccharides. However, residue after the hydrothermal process still offer plenty of medicinal carbohydrates that could easily be extracted by using alkali solvent. Thus, the present work was attempted to prepare crude polysaccharide using remainder of the conventional method and subsequently a β-glucan enriched fraction, RualaCap, was isolated. The bio-polymers displayed pronounced therapeutic efficacy as evident by radical scavenging, chelating ability, reducing power and total antioxidant capacity. In addition, strong immune-enhancing potential was also observed indicated by augmentation in macrophage viability, phagocytic uptake, nitric oxide (NO) production and reactive oxygen species (ROS) synthesis. Alongside, the polysaccharides effectively triggered transcriptional activation of Toll like receptor (TLR)-2, TLR-4, nuclear factor kappa B (NF-κB), cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, Iκ-Bα, interferon (IFN)-γ and interleukin (IL)-10 genes explaining mode of action. Taken together, our results signify possibility of RualaCap as a potent nutraceutical agent and enhance importance of R. alatoreticula especially in the field of innate immune stimulation.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
30
|
Athmouni K, Belhaj D, El Feki A, Ayadi H. Optimization, antioxidant potential, modulatory effect and anti-apoptotic action in of Euphorbia bivonae polysaccharides on hydrogen peroxide-induced toxicity in human embryonic kidney cells HEK293. Int J Biol Macromol 2018; 116:482-491. [PMID: 29727642 DOI: 10.1016/j.ijbiomac.2018.04.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 02/01/2023]
Abstract
For the first time, we have determined the effect of solvent, liquid-solid ratio and extraction time on polysaccharides yield was evaluated using a full factorial design (23). In this present investigation, a total of 7 molecules were determined in this species. In our analysis saccharose was the dominant monosaccharides. Arabinose, pyranose, fructose, glucose, inositol, saccharose and trehalose found in E. bivonae. The results of the in vitro antioxidant assay showed that the EBPS have higher antioxidant capacity. Accordingly, the HEK293 cells pre-treated with EBPS compounds (100 μg·mL-1) enhanced cell viability against H2O2 exposure. Our results revealed that H2O2-exposure induced a significant increase in intracellular ROS and lipid peroxidation in HEK293 cells. Additionally, the H2O2-induced alteration in HEK293 cells morphology, was ameliorated by EBPS treatment. In addition, EPBS pre-treated cells significantly enhanced the activities of HEK293 cells antioxidant status (SOD, CAT, GPx and GSH) that were decreased after hydrogen peroxide exposure.
Collapse
Affiliation(s)
- Khaled Athmouni
- University of Sfax Tunisia, Faculty of Sciences, Department of life sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktology, Unit UR 11 ES 72/Street of Soukra Km 3,5,B.P. 1171, CP 3000, Tunisia; University of Sfax Tunisia, Faculty of Sciences, Department of life sciences, Laboratory of Animal Ecophysiology, B.P. 95, 3000, Tunisia.
| | - Dalel Belhaj
- University of Sfax Tunisia, Faculty of Sciences, Department of life sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktology, Unit UR 11 ES 72/Street of Soukra Km 3,5,B.P. 1171, CP 3000, Tunisia
| | - Abdelfattah El Feki
- University of Sfax Tunisia, Faculty of Sciences, Department of life sciences, Laboratory of Animal Ecophysiology, B.P. 95, 3000, Tunisia
| | - Habib Ayadi
- University of Sfax Tunisia, Faculty of Sciences, Department of life sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktology, Unit UR 11 ES 72/Street of Soukra Km 3,5,B.P. 1171, CP 3000, Tunisia
| |
Collapse
|
31
|
Chen Q, Qi C, Peng G, Liu Y, Zhang X, Meng Z. Immune-enhancing effects of a polysaccharide PRG1-1 from Russula griseocarnosa on RAW264.7 macrophage cells via the MAPK and NF-κB signalling pathways. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1461198] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Qian Chen
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| | - Chong Qi
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| | - Gong Peng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Xinyuan Zhang
- Jilin Academy of Social Science, Institute of Japanese Studies, Changchun, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
32
|
Optimization, antioxidant properties and GC–MS analysis of Periploca angustifolia polysaccharides and chelation therapy on cadmium-induced toxicity in human HepG2 cells line and rat liver. Int J Biol Macromol 2018; 108:853-862. [DOI: 10.1016/j.ijbiomac.2017.10.175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022]
|
33
|
Liu Y, Zhang J, Meng Z. Purification, characterization and anti-tumor activities of polysaccharides extracted from wild Russula griseocarnosa. Int J Biol Macromol 2017; 109:1054-1060. [PMID: 29155159 DOI: 10.1016/j.ijbiomac.2017.11.093] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
The anti-tumor activity of a novel polysaccharide, PRG1-1, obtained from Russula griseocarnosa sporocarp was investigated in this paper. PRG1-1 has a molecular weight of 630kDa and was extracted and purified using DEAE-cellulose and gel filtration chromatography from crude polysaccharide extract of R. griseocarnosa sporocarp. PRG1-1 was composed of glucose, galactose, mannose, xylose and fructose, in a molar ratio of 66.5:29.2:3.17: 0.663:0.447, respectively. Purified PRG1-1 significantly reduced cell viability, increased the production of lactate dehydrogenase (LDH) and reactive oxygen species (ROS), and enhanced the apoptotic rate in HeLa and SiHa cells. Furthermore, after 24h of PRG1-1 exposure the expression levels of cleaved PARP and caspase-3 were increased and mitochondrial cytochrome c was induced to release to the cytosol. Collectively, our results suggested that the cytotoxicity effects of PRG1-1 on human cervical carcinoma are associated with the apoptotic pathway. These data indicate the promising potential of bioactive PRG1-1 as natural agent to inhibit tumor cell proliferation in the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, 130021, China; The Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, 130018, China
| | - Jinjin Zhang
- Department of Gynaecology II, First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|