1
|
Yehouenou Tessi DR, Arslan Yüce P, Gül G, Dinçel AS, Günal AÇ. How acetamiprid induced toxicity on freshwater mussel: Biomarker and histopathological responses? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106362. [PMID: 40082020 DOI: 10.1016/j.pestbp.2025.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
This study examines the acute and chronic toxicity, immunological responses, oxidative stress, and histopathological effects of acetamiprid (ACE) on the freshwater mussel Unio terminalis. Laboratory experiments determined the 96-h LC50 value, classifying ACE as moderately toxic to this species. Chronic toxicity tests were conducted using two controls [freshwater and dimethyl sulfoxide (DMSO)] and two ACE concentrations (3.52 mg/L and 6.70 mg/L), with exposure durations of 48 h, 7 days, and 21 days under semi-static conditions. Sublethal effects were assessed by analyzing total hemocyte count (THC), total antioxidant status (TAS), and total oxidative stress (TOS) in hemolymph samples. ACE exposure significantly reduced THC, indicating immunosuppression that could impair physiological functions and immune defense. TAS values remained stable, suggesting robust antioxidant regulation, while prolonged exposure led to elevated TOS levels, indicating oxidative stress and potential cellular damage. Histopathological changes observed included lipofuscin accumulation, hemocytic infiltration, gill tissue degeneration, and tubular degeneration in digestive glands. These results highlight the vulnerability of U. terminalis to ACE exposure and its usefulness as a bioindicator species of aquatic ecosystem health. The study underscores the need for stricter pesticide regulation and further research into chronic exposure and combined chemical effects to protect aquatic biodiversity.
Collapse
Affiliation(s)
| | - Pınar Arslan Yüce
- Department of Biology, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| | - Göktuğ Gül
- Environmental Health and Environmental Sciences Program, Health Services Vocational School, Gazi University, Ankara, Turkey
| | - Aylin Sepici Dinçel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aysel Çağlan Günal
- Department of Environmental Sciences, Gazi University, Ankara, Turkey; Biology Education Department, Faculty of Gazi Education, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Alzahrani KJ, El Safadi M, Alzahrani FM, Akbar A, Alsiwiehri NO. Bromoxynil induced hepatic toxicity via dysregulating TLR4/MyD88, JAK1/STAT3 and NF-κB signaling pathways: A dose-dependent investigation. Tissue Cell 2025; 93:102735. [PMID: 39827709 DOI: 10.1016/j.tice.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bromoxynil (BML) is a toxic herbicide that is reported to cause various organ toxicities. However, there is not a single investigation conducted to elucidate the adverse impacts of BML on hepatic tissues at different dose concentrations. Therefore, the current investigation was planned to assess the deleterious effects of BML on liver against different dose concentrations. Thirty-six albino rats (Sprague Dawley) were divided into four groups including the control, BML (10 mg/kg), BML (20 mg/kg) and BML (40 mg/kg). Gene expressions were assessed by qRT-PCR while other biochemical parameters were evaluated through ELISA as well as standard assays. The histological procedure was conducted as per the standard protocols of histomorphology. It is revealed that BML intoxication at all tested doses showed notable elevation in the gene expression of tumor necrosis factor-alpha (TNF-α), toll-like receptors-4 (TLR-4), interleukin-1beta (IL-1β), myeloid differentiation primary response protein-88 (MyD88), interleukin-6 (IL-6), tumor necrosis factor receptor-associated factor-6 (TRAF-6), cyclooxygenase-2 (COX-2), nuclear factor kappa-B (NF-κB), Janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3) while reducing the gene expression of inhibitor of kappa-B (I-κB). Moreover, BML exposure (10 mg/kg, 20 mg/kg, 40 mg/kg) reduced the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione (GSH), glutathione S- transferase (GST), heme-oxygenase-1 (HO-1) and glutathione reductase (GSR) while upregulating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). However, an elevation was observed in the levels of alanine transaminase (ALT), gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) while a reduction in the levels of total proteins and albumin was observed after high dose (20 mg/kg, 40 mg/kg) of BML. There was insignificant elevation among the values of these biomarkers at 10 mg/kg administration of BML. Besides, BML exposure at 10 mg/kg, 20 mg/kg and 40 mg/kg escalated the levels of Bcl-2-associated X protein (Bax), cysteine-aspartic acid protease-9 (Caspase-9) and cysteine-aspartic acid protease-3 (Caspase-3) while reducing the levels of B-cell lymphoma 2 (Bcl-2) in hepatic tissues. Similarly, BML at all tested concentrations showed adverse impacts on hepatic histology. These findings validated the deleterious impacts of BML on hepatic tissues owing to its pro-oxidative, pro-inflammatory and pro-apoptotic potential.
Collapse
Affiliation(s)
- Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ali Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Naif O Alsiwiehri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Shri P, Singh KP, Rani V, Nagar DP, Acharya J, Bhaskar ASB. N-acetylcysteine prevents cholinergic and non-cholinergic toxic effects induced by nerve agent poisoning in rats. Toxicol Res (Camb) 2025; 14:tfae223. [PMID: 39830891 PMCID: PMC11741679 DOI: 10.1093/toxres/tfae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/25/2024] [Indexed: 01/22/2025] Open
Abstract
Objective Organophosphorus Nerve Agent, VX [(O-Ethyl S-diisopropylaminomethyl) methylphosphonothioate] compound interferes with acetylcholine signaling by targeting the AChE enzyme. Studies suggest that in nerve agents poisoning, non-cholinergic effects are also responsible for damage in peripheral tissues including long term damage in brain. Present study reports cholinergic and non-cholinergic effects of VX poisoning and their prevention by use of N-acetylcysteine (NAC) in addition to conventional antidotes atropine sulphate and 2-PAM chloride as an antioxidant. NAC was chosen being an approved drug for medical conditions including oxidative damage and as mucolytic. Results Results of the study showed that after 1x LD 50 exposure to VX and standard atropine and oxime therapy resulted in recovery of cholinesterase activity up to 51%, while additional NAC administration resulted in increased recovery up to 89% in brain cholinesterase activity. NAC also helped in maintaining intracellular and tissue GSH level, reduced ROS generation and lipid peroxidation. NAC treatment could able to reduce the lipid peroxidation (MDA) levels in liver of NAC administered groups as compared to standard treatment of atropine sulphate and PAM chloride at 10 LD 50 VX. Likewise, a 20% higher level of GSH was found in NAC treated group at 1x LD 50 dose in brain. Cell cycle analysis and histopathological results showed that NAC prevents VX induced damage. Conclusion it was found that use of antioxidant agent NAC along with standard atropine-oxime treatment is helpful in reducing the cholinergic and oxidative stress mediated toxicity induced by VX.
Collapse
Affiliation(s)
- Poorna Shri
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - K P Singh
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Varsha Rani
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - D P Nagar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - J Acharya
- Process Technology Development Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - A S B Bhaskar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
4
|
Deena K, Maadurshni GB, Manivannan J, Sivasamy R. Short-term exposure of 2.4 GHz electromagnetic radiation on cellular ROS generation and apoptosis in SH-SY5Y cell line and impact on developing chick embryo brain tissue. Mol Biol Rep 2025; 52:144. [PMID: 39836269 DOI: 10.1007/s11033-025-10217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines. We hypothesized that exposure to this frequency would induce oxidative stress and apoptosis in neurons. METHODS AND RESULTS Chick embryos were exposed continuously to 2.4 GHz EMR for 4 h each day over a 5-day period, and comparisons were made with a control group. At the end of the exposure, brain tissues were dissected for histopathological analysis, antioxidant assays, and reactive oxygen species (ROS) detection. Additionally, SH-SY5Y cells were exposed to 2.4 GHz EMR to assess cell viability, DNA damage, and apoptosis. Our results showed that exposure to 2.4 GHz EMR induces oxidative stress in both chick embryos and the SH-SY5Y cells, though no significant tissue-level impact was observed. In SH-SY5Y cells, ROS production increased after 4 h of exposure, accompanied by moderate DNA damage and early markers of apoptosis, such as upregulation of the Bax gene. Furthermore, we observed that antioxidants, such as NAC and Mito-TEMPO, helped mitigate the cytotoxic effects of EMR in both the study models. CONCLUSION In conclusion, short-term exposure (4 h) to 2.4 GHz EMR induced moderate cellular and molecular changes, primarily oxidative stress. The oxidative stress was reduced by antioxidants, which suggests potential benefits in preventing EMR-induced cytotoxicity. Extended exposure to EMR beyond 4 h may pose adverse health risks to humans, endorsing further investigation.
Collapse
Affiliation(s)
- Krishnan Deena
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Science, Bharathiar University, Coimbatore-46, Tamil Nadu, India
| | - Ramasamy Sivasamy
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India.
| |
Collapse
|
5
|
Aliabadi M, Valizadegan F, Seyedalipour B, Yaqubi S, Nazifi E. A promising therapeutic potential of Origanum vulgare extract in mitigating ethanol-induced working memory impairments and hippocampal oxidative stress in rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39676694 DOI: 10.1080/09603123.2024.2440898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
This study explored the therapeutic potential hydroalcoholic extract derived from Origanum vulgare leaf in mitigating ethanol-induced working memory impairments and hippocampal oxidative stress in rats. Eight groups, including controls, ethanol-exposed rats, and those treated with extract (100, 200, and 300 mg/kg) alone or combined with ethanol, were assessed using the radial arm maze (RAM) for behavioral tests. Ethanol increased working memory errors and time spent in error zones, effects notably reduced by the extract, especially at 300 mg/kg dose (P≤0.001). Biochemical tests showed ethanol suppressed catalase (CAT), superoxide dismutase (SOD), and acetylcholinesterase (AChE) activities within the hippocampus and cortex. while the extract elevated CAT and SOD activities and reduced AChE activity. These results suggest the extract's neuroprotective properties, including oxidative stress reduction and neurotransmitter modulation, which mitigate ethanol-induced hippocampal damage. This highlights Origanum vulgare extract potential as a therapeutic adjunct for memory deficits and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Maryam Aliabadi
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Farhad Valizadegan
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Ehsan Nazifi
- Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
Jalalian EJ, Taravati A, Seyedalipour B. GSTP1-A313G genetic polymorphism and the risk of preeclampsia in pregnant women: A study in the northern population of Iran. Pregnancy Hypertens 2024; 37:101144. [PMID: 39111192 DOI: 10.1016/j.preghy.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 09/15/2024]
Abstract
Preeclampsia or high blood pressure in pregnancy is one of the special disorders during pregnancy. It seems that oxidative stress plays an important role in the occurrence of this disease. The purpose of this study is to investigate the relationship between the A313G polymorphism in exon five of the glutathione S-transferase gene (GSTP1) and the risk of preeclampsia in a case-control study. In this study, blood samples were collected from 70 healthy pregnant women and 70 women with preeclampsia. After genomic DNA extraction, the PCR-RFLP method was performed to check the genotype in GSTP1-A313G and the genotypic frequencies of AA, AG, and GG were determined in all samples. Also, using bioinformatics software, the effect of the above polymorphism on the protein structure was investigated. Statistical analysis for A313G polymorphism showed that AG (OR: 1.1684, 95 % CI: 0.5877-2.3228, p = 0.657) and GG (OR: 1.3793, 95 % CI: 0.3376-5.6359, p = 0.654) genotypes were not associated with risk of preeclampsia in the population of northern Iran. However, bioinformatic analyzes have shown that this polymorphism does have a destructive effect on the protein structure. However, more studies with larger sample sizes are needed to draw firm conclusions.
Collapse
Affiliation(s)
- Ehsan Joz Jalalian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, Islamic Azad University Damghan Branch, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
7
|
Orban C, Agapie M, Bratu A, Jafal M, Duțu M, Popescu M. No Significant Beneficial Effects of Intravenous N-Acetylcysteine on Patient Outcome in Non-Paracetamol Acute Liver Failure: A Meta-Analysis of Randomized Controlled Trials. Biomedicines 2024; 12:1462. [PMID: 39062036 PMCID: PMC11274394 DOI: 10.3390/biomedicines12071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Acute liver failure is a life-threatening organ dysfunction with systemic organ involvement and is associated with significant mortality and morbidity unless specific management is undertaken. This meta-analysis aimed to assess the effects of intravenous N-acetylcysteine (NAC) on mortality and the length of hospital stay in patients with non-acetaminophen acute liver failure. Two hundred sixty-six studies from four databases were screened, and four randomized control trials were included in the final analysis. Our results could not demonstrate increased overall survival (OR 0.70, 95% CI [0.34, 1.44], p = 0.33) or transplant-free survival (OR 0.90, 95% CI [0.25, 3.28], p = 0.87) in patients treated with intravenous NAC. We observed an increased overall survival in adult patients treated with NAC (OR 0.59, 95% CI [0.35, 0.99], p = 0.05) compared to pediatric patients, but whether this is attributed to the age group or higher intravenous dose administered remains unclear. We did not observe a decreased length of stay in NAC-treated patients (OR -5.70, 95% CI [-12.44, 1.05], p = 0.10). In conclusion, our meta-analysis could not demonstrate any significant benefits on overall and transplant-free patient survival in non-acetaminophen ALF. Future research should also focus on specific etiologies of ALF that may benefit most from the use of NAC.
Collapse
Affiliation(s)
- Carmen Orban
- Department of Anesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (C.O.); (M.J.); (M.D.); (M.P.)
- Department of Anesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Mihaela Agapie
- Department of Anesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (C.O.); (M.J.); (M.D.); (M.P.)
- Department of Anesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Angelica Bratu
- Department of Anesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Mugurel Jafal
- Department of Anesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (C.O.); (M.J.); (M.D.); (M.P.)
- Department of Anesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Mădălina Duțu
- Department of Anesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (C.O.); (M.J.); (M.D.); (M.P.)
- Department of Anesthesiology and Intensive Care, “Dr. Carol Davila” University Emergency Central Military Hospital, 134 Calea Plevnei, 010242 Bucharest, Romania
| | - Mihai Popescu
- Department of Anesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (C.O.); (M.J.); (M.D.); (M.P.)
- Department of Anesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| |
Collapse
|
8
|
Aioub AAA, Abdelnour SA, Hashem AS, Maher M, Abdel-Wahab SIZ, Alkeridis LA, Shukry M, Sayed SM, Elsobki AEA. Cinnamon nanoemulsion mitigates acetamiprid-induced hepatic and renal toxicity in rats: biochemical, histopathological, immunohistochemical, and molecular docking analysis. BMC Vet Res 2024; 20:256. [PMID: 38867202 PMCID: PMC11167909 DOI: 10.1186/s12917-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, 33717, Egypt
| | - Mohamed Maher
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, kafrelsheikh University, kafrelsheikh, 33516, Egypt
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E A Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
9
|
Albrakati A. The potential neuroprotective of luteolin against acetamiprid-induced neurotoxicity in the rat cerebral cortex. Front Vet Sci 2024; 11:1361792. [PMID: 38818490 PMCID: PMC11138160 DOI: 10.3389/fvets.2024.1361792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Acetamiprid is a class of neuroactive insecticides widely used to control insect pests. The current study aimed to investigate the potential neuroprotective effects of luteolin against acetamiprid-induced neurotoxicity in the rat cerebral cortex. Four equal groups of adult male rats (10 in each): control, acetamiprid (40 mg/kg for 28 days), luteolin (50 mg/kg for 28 days), and acetamiprid+luteolin cotreatment were used. Acetamiprid was shown to alter the oxidative state by increasing oxidant levels [nitric oxide (NO) and malondialdehyde (MDA)] and decreasing antioxidants [glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase-(CAT)], with increased activity of nuclear factor erythroid 2-related factor 2-(Nrf2). Likewise, acetamiprid increases the inflammatory response, as evidenced by increased interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nuclear factor kappa B-(NF-κB). In contrast, the treatment with luteolin brought these markers back to levels close to normal, showing that it protects neurocytes from oxidative damage and the neuroinflammation effects of acetamiprid-induced inflammation. Luteolin also demonstrated a neuroprotective role via the modulation of acetylcholinesterase (AChE) activity in the cerebral cortex tissue. Histopathology showed severe neurodegenerative changes, and apoptotic cells were seen in the acetamiprid-induced cerebral cortex layer, which was evident by increased protein expression levels of Bax and caspase-3 and decreased Bcl-2 levels. Histochemistry confirmed the neuronal degeneration, as proven by the change in neurocyte colour from brown to black when stained with a silver stain. Luteolin may have a neuroprotective effect against biochemical and histopathological changes induced by acetamiprid in the rat cerebral cortex.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
10
|
Benchikh I, Ziani K, Gonzalez Mateos A, Khaled BM. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: a systematic review. Crit Rev Toxicol 2024; 54:194-213. [PMID: 38470098 DOI: 10.1080/10408444.2024.2310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.
Collapse
Affiliation(s)
- Imen Benchikh
- Laboratory of Applied Hydrology and Environment, Department of Biology, Faculty of Natural Sciences and Life, Belhadj Bouchaib University, Ain Témouchent, Algeria
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants, Department of Biology, University of Saida-Dr. Taher Moulay, Saida, Algeria
| | - Antonio Gonzalez Mateos
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres, Spain
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| |
Collapse
|
11
|
Wang R, Yang X, Wang T, Kou R, Liu P, Huang Y, Chen C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115237. [PMID: 37451096 DOI: 10.1016/j.ecoenv.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of pesticides performs a vital role in safeguarding crop yields and quality, providing the opportunity for multiple pesticides to co-exist, which poses a significant potential risk to human health. To assess the toxic effects caused by exposures to individual pesticides (chlorpyrifos, carbofuran and acetamiprid), binary combinations and ternary combinations, individual and combined exposure models were developed using HepG2 cells and the types of combined effects of pesticide mixtures were assessed using concentration addition (CA), independent action (IA) and combination index (CI) models, respectively, and the expression of biomarkers related to oxidative stress, apoptosis and cell necrosis was further examined. Our results showed that both individual pesticides and mixtures exerted toxic effects on HepG2 cells. The CI model indicated that the toxic effects of pesticide mixtures exhibited synergistic effects. The results of the lactate dehydrogenase (LDH) release and apoptosis assay revealed that the pesticide mixture increased the release of LDH and apoptosis levels. Moreover, our results also showed that individual pesticides and mixtures disrupted redox homeostasis and that pesticide mixtures produced more intense oxidative stress effects. In conclusion, we have illustrated the enhanced combined toxicity of pesticide mixtures by in-vitro experiments, which provides a theoretical basis and scientific basis for further toxicological studies.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruirui Kou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yueqing Huang
- Department of General Medicine, The Affliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215026, China.
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
12
|
Zeinab Mohamed, El-Kader AEKMA, Salah-Eldin AE, Mohamed O, Awadalla EA. Protective Effects of Curcumin against Acetamiprid-Induced Neurotoxicity in Male Albino Rats. BIOL BULL+ 2023; 50:509-521. [DOI: 10.1134/s1062359022602609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 09/01/2023]
|
13
|
Phogat A, Singh J, Kumar V, Malik V. Berberine mitigates acetamiprid-induced hepatotoxicity and inflammation via regulating endogenous antioxidants and NF-κB/TNF-α signaling in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87412-87423. [PMID: 37421530 DOI: 10.1007/s11356-023-28279-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
Acetamiprid is a neonicotinoid insecticide used on a large scale and has been reported for oxidative stress-mediated toxicity and physiological alterations in mammals. The plant-derived natural antioxidant berberine (BBR) possesses protective potential against inflammation, structural changes, and cellular toxicity. The current study aimed to investigate the toxic effects of acetamiprid exposure and the antioxidative and anti-inflammatory efficacy of BBR in rat liver tissue. The results showed that intragastric exposure of acetamiprid (21.7 mg/kg b.wt, i.e., 1/10 of LD50) for 21 days significantly elicited oxidative stress as evidenced by lipid peroxidation, protein oxidation, and depletion of endogenous antioxidants. Furthermore, acetamiprid exposure elevated NF-κB, TNF-α, IL-1β, IL-6, and IL-12 expression and caused structural alterations in liver tissue. Biochemical results showed that 2-h pre-treatment of BBR (150 mg/kg b.wt; 21 days) reduced damage to lipids and proteins, replenished GSH, enhanced SOD and catalase activities, and offered antioxidative effects against acetamiprid toxicity. Also, BBR suppressed inflammation by regulating NF-κB/TNF-α signaling in hepatic tissue of acetamiprid-intoxicated rats. Histopathological examination confirmed the hepatoprotective effects of BBR. Our findings indicate that BBR might be a potential ameliorative agent against oxidative stress-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
14
|
El-Baz FK, Salama A, Ali SI, Elgohary R. Lutein isolated from Scenedesmus obliquus microalga boosts immunity against cyclophosphamide-induced brain injury in rats. Sci Rep 2022; 12:22601. [PMID: 36585479 PMCID: PMC9803677 DOI: 10.1038/s41598-022-25252-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Lutein is a naturally potent antioxidant carotenoid synthesized in green microalgae with a potent ability to prevent different human chronic conditions. To date, there are no reports of the immune-stimulating effect of pure lutein isolated from Scenedesmus obliquus. Thus, we isolated the natural lutein from S. obliquus and evaluated its effectiveness as an immunostimulant against cyclophosphamide-induced brain injury. We purified all-E-(3R, 3'R, 6'R)-Lutein from S. obliquus using prep-HPLC and characterized it by 1H- and 13C-NMR spectroscopy. We assigned rats randomly to four experimental groups: the Control group got a vehicle for lutein dimethyl sulfoxide for ten successive days. The Cyclophosphamide group received a single i.p injection of Cyclophosphamide (200 mg/kg). Lutein groups received 50 and 100 (mg/kg) of lutein one time per day for ten successive days after the cyclophosphamide dose. Lutein administration reduced brain contents of Macrophage inflammatory protein2 (MIP2), cytokine-induced- neutrophil chemoattractant (CINC), and Matrix metalloproteinase 1 (MMP1). Besides, it lowered the contents of interleukin 1 beta (IL-1β) and interleukin 18 (IL-18), associated with low content of NLR pyrin domain protein 3 (NLRP3) and consequently caspase-1 compared to the cyclophosphamide group. In the histomorphometric analysis, lutein groups (50 and 100 mg/Kg) showed mild histopathological alterations as they significantly reduced nuclear pyknosis numbers by 65% and 69% respectively, compared to the cyclophosphamide group. This is the first study that showed the immunomodulatory roles of lutein against cyclophosphamide-induced brain injury via decreasing neuroinflammation, chemokines recruitment, and neuron degeneration with the modulation of immune markers. Hence, lutein can be an effective immunomodulator against inflammation-related immune disorders.
Collapse
Affiliation(s)
- Farouk K. El-Baz
- grid.419725.c0000 0001 2151 8157Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Abeer Salama
- grid.419725.c0000 0001 2151 8157Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Sami I. Ali
- grid.419725.c0000 0001 2151 8157Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Rania Elgohary
- grid.419725.c0000 0001 2151 8157Narcotics, Ergogenics and Poisons Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| |
Collapse
|
15
|
Zayman E, Gül M, Erdemli ME, Gül S, Bağ HG, Taşlıdere E. Biochemical and histopathological investigation of the protective effects of melatonin and vitamin E against the damage caused by acetamiprid in Balb-c mouse testicles at light and electron microscopic level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47571-47584. [PMID: 35182334 DOI: 10.1007/s11356-022-19143-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The protective effects of melatonin (Mel) and vitamin E (Vit E) against the negative effects of acetamiprid (Acmp) on testicles, reproductive hormones, and oxidative stress parameters were investigated in the present study. A total of 50 Balb-c male mice were used in 7 groups; 6 mice in the control groups (distilled water, corn oil, ethanol), and 8 in other groups (Acmp, Acmp + Mel, Acmp + Vit E, Acmp + Vit E + Mel). After the experiment, which lasted 21 days, hematoxylin eosin (H&E), periodic acid Schiff (PAS), and caspase-3 immunohistochemical (IHC) staining was performed on the testicular tissues. Also, the tissues were examined ultrastructurally with the transmission electron microscopy (TEM). In the Acmp group, there were decreased seminiferous tubule diameter and epithelial thickness, epithelial degeneration, decreased spermatozoa in the lumen, decreased PAS-positive staining in the seminiferous epithelial basement membrane, edema in the interstitial area, and hydropic degeneration in Leydig cells. Caspase-3 immunoreactivity was higher than in the other groups. TEM examination showed degeneration in tubule cells, lysosomal accumulation in cells of the spermatogenic line, vacuolizations with myelin figures, and necrosis. Hydropic degeneration, electron-dense lipid vacuoles, and chromatolysis were evident in the Leydig cell cytoplasm. In Sertoli cells, electron-dense lysosomal deposits were noted. In biochemical terms, there were decreased tissue glutathione (GSH) and total antioxidant status (TAS), and increased malondialdehyde (MDA) and total oxidant status (TOS). Plasma luteinizing hormone (LH), follicular stimulating hormone (FSH), and testosterone levels were decreased. In the groups with melatonin, vitamin E, and both were applied together, tissue damage, and apoptotic cell death were reduced at both light microscopic and ultrastructural levels. In biochemical terms, there were decreased oxidative parameters and increased hormonal parameters. It was found that vitamin E was more effective in decreasing oxidative parameters and increasing antioxidative parameters when compared to melatonin, and hormonal parameters increased at a higher level in the Acmp + Vit E group than in all groups. As a result, it was found that exposure to Acmp caused damage to testicular tissue, induced oxidative stress in testicles, and decreased plasma LH, FSH, and testosterone levels, and although vitamin E is more effective than melatonin in preventing this damage, both are effective.
Collapse
Affiliation(s)
- Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Malatya Turgut Ozal University, Malatya, Turkey.
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Mehmet Erman Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Medical Faculty, Malatya Turgut Ozal University, Malatya, Turkey
| | - Harika Gözükara Bağ
- Department of Biostatistics, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology and Embryology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
16
|
Dhillon T, Kumar A, Kumar V. Neuroprotective Effect of N-acetylcysteine Against Monocrotophos-Induced Oxidative Stress in Different Brain Regions of Rats. Appl Biochem Biotechnol 2022; 194:4049-4065. [PMID: 35587328 DOI: 10.1007/s12010-022-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Monocrotophos (MCP) is systemic organophosphate insecticide used against crop pests. It is reported to cause mammalian toxicity through both acute and chronic exposure. In the present study, we have shown the protective role of N-acetylcysteine (NAC) against MCP-induced oxidative stress in frontal cortex, corpus striatum and hippocampus brain regions of rats. Male Albino Wistar rats were divided into control, NAC-treated, MCP and NAC + MCP-treated groups. An oral dose of MCP (0.9 mg/kg b.wt) and NAC (200 mg/kg b.wt) was administered for 28 days. Results showed an increase in lipid peroxidation (LPO) and protein oxidation followed by decreased antioxidant enzymes after 28 days of MCP exposure. Histopathological analysis showed that monocrotophos exposure caused neurodegenerative changes as evident by neurons with dystrophic changes in the form of shrunken hyperchromatic nuclei in all the regions of the rat brain. N-acetylcysteine supplementation to MCP-treated rats showed a reduction in oxidative stress and ameliorated cellular alterations in all of the three regions. The results of the study indicate that N-acetylcysteine offers neuroprotection by improving antioxidant response and decreasing oxidative stress in different regions of the rat brain.
Collapse
Affiliation(s)
- Twinkle Dhillon
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Amit Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
17
|
Shafie B, Pourahmad J, Rezaei M. N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver. J Food Biochem 2021; 45:e13775. [PMID: 34080202 DOI: 10.1111/jfbc.13775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022]
Abstract
Acrolein, a common environmental, food, and water pollutant, has been linked to the pathology of several diseases. This toxic substance is an unsaturated aldehyde and a major component of cigarette smoke and also produced during the processing of fat-containing foods. This study aimed to evaluate the protective effect of ellagic acid and N-acetylcysteine (NAC) in acrolein-induced toxicity in mitochondria isolated from the rat liver. The mitochondria were exposed to different concentrations of acrolein for 40 min, then functionality was assessed. Contact with acrolein rapidly and remarkably depleted the intracellular glutathione and antioxidant capacity, because of increased ROS production and lipid peroxidation which may lead to the cell death. Mitochondria were then pre-exposed to different concentrations of ellagic acid, NAC, and IC50 concentration of acrolein. Consistent with the results, acrolein decreased GSH content and increased ROS level and lipid peroxidation, which led to ATP depletion and mitochondrial dysfunction. While ellagic acid has been able to reduce ROS and therefore the permeability of the mitochondrial membrane potential (MMP), presumably via its antioxidant properties, we've not detected its favorable effect on GSH and ATP restoration and also on mitochondrial complex II function. However, NAC strongly decreased ROS, lipid peroxidation and MMP and improved GSH content and complex II activity. These results showed that ellagic acid while reported to possess some cellular protective properties, did not prevent mitochondria from being affected by acrolein during this in vitro study. PRACTICAL APPLICATIONS: Ellagic acid is found in fruits, vegetables, and nuts which are revealed to possess strong antioxidant and protective properties. Mitochondrial dysfunction has been implicated in the pathogenesis of some chronic diseases including cancer, diabetes, liver disease, and neurodegenerative disorders, and presumably, ellagic acid by its mitochondrial protective effects can be helpful in these chronic conditions. Acrolein is an α,β-unsaturated aldehyde that can be produced during cooking at high temperature. By increasing the ROS level and lipid peroxidation and depleting the glutathione content, acrolein induces cellular damage and mitochondrial toxicity. This toxicant is taken into account as a carcinogen and mutagen. In this study, the protective effect of ellagic acid in comparison with N-acetylcysteine has been investigated during the toxicity of acrolein in the rat liver mitochondria to look for evidence of whether it is useful or not through this insult.
Collapse
Affiliation(s)
- Behnaz Shafie
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|