1
|
Sharma A, Balde A, Nazeer RA. A review on animal venom-based matrix metalloproteinase modulators and their therapeutic implications. Int Immunopharmacol 2025; 157:114703. [PMID: 40300352 DOI: 10.1016/j.intimp.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/03/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Matrix Metalloproteinases (MMPs) belong to a family of proteolytic enzymes that degrade extracellular matrix components, such as collagen, elastin, laminin, and fibronectin. They also play a part in tissue remodeling by cleaving and rejoining the tissue proteins. Cancer, neurodegenerative disorders, cardiovascular diseases, arthritis, and chronic inflammatory conditions are just some of the diseases that can start or get worse when different MMPs are not working properly. Venomous Animals such as honeybees, toads, snakes, spiders, scorpions, jellyfish, and sea anemones contain venom-secreting glands, which help them defend against predators and immobilize their prey. The molecules that come from animal venom are a complicated mix of bioactive molecules, such as peptides, enzymes, proteins, and small organic compounds that do a number of biological things. Venom-derived molecules have been found to modulate MMP. These venoms and their components target specific signaling pathways, modifying MMP expression levels to either induce inflammation or exhibit anti-inflammatory effects. In this review, we study and explore different MMPs, such as MMP1, MMP2, MMP3, MMP7, MMP8, and MMP9, and their roles in the progression of certain diseases. We also look at different types of molecules derived from marine and land animal venom that are used as MMP modulators. We look at how they work by targeting specific signaling pathways to change MMPs and how they might be used as a medicine to stop diseases by decreasing MMPs.
Collapse
Affiliation(s)
- Ansumaan Sharma
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Rășinar AD, Radulov I, Berbecea A, Floares (Oarga) D, Vicar N, Simiz E, Dragomirescu M, Pătruică S. Assessing the Influence of Stimulatory Feeding of Bee Colonies on Mineral Composition and Antioxidant Activity of Bee Venom. INSECTS 2025; 16:423. [PMID: 40332952 PMCID: PMC12027726 DOI: 10.3390/insects16040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Bee venom is a complex natural beekeeping product, traditionally used in apitherapy, with a wide spectrum of pharmacological properties. Research on the mineral content of bee venom is limited and challenging to compare across studies due to the varying regions where they are conducted. Our study aimed to assess the mineral content of bee venom and how supplementary feeding of bee colonies with probiotic products, essential oils, as well as rapeseed and acacia nectar and pollen, affects the mineral content and antioxidant activity of the venom. The parameters analyzed included moisture, pH, dry matter, ash, impurities, and levels of macro and micro elements and antioxidant activity. The moisture content of the samples was 10-22%, and pH ranged between 5.84 to 6.41. The macro element content of the venom showed that potassium was the most abundant macro element, followed by calcium, magnesium, and phosphorus. Pb was identified in samples collected indicating lead pollution in the area where the hives were located in the case of the three harvests. In all samples, the highest DPPH radical scavenging activity was observed at a concentration of 2.00 mg/mL, with sample V6 showing the maximum value of 87.05%.
Collapse
Affiliation(s)
- Adrian Dan Rășinar
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.D.R.); (E.S.); (M.D.); (S.P.)
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timişoara, Romania; (D.F.); (N.V.)
| | - Adina Berbecea
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timişoara, Romania; (D.F.); (N.V.)
| | - Doris Floares (Oarga)
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timişoara, Romania; (D.F.); (N.V.)
| | - Nicoleta Vicar
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timişoara, Romania; (D.F.); (N.V.)
| | - Eliza Simiz
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.D.R.); (E.S.); (M.D.); (S.P.)
| | - Monica Dragomirescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.D.R.); (E.S.); (M.D.); (S.P.)
| | - Silvia Pătruică
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.D.R.); (E.S.); (M.D.); (S.P.)
| |
Collapse
|
3
|
Liu C, Li X, Chen M, Liu Y, Li K, Wang D, Yang Z, Guo Y, Zhao Y, Zhao H, Zhang C. Characterization and neurotherapeutic evaluation of venom polypeptides identified from Vespa magnifica: The role of Mastoparan-M in Parkinson's disease intervention. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119481. [PMID: 39947367 DOI: 10.1016/j.jep.2025.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a common neurodegenerative disorder in the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies. Hufeng Jiu from Vespa magnifica Smith, a traditional remedy used by the Chinese Jingpo minority, is documented in the Pharmacopoeia of China (2020) for treating rheumatic arthritis. Notably, recent research suggests that components of wasp venom (WV) from Vespa magnifica Smith, particularly polypeptides such as Mastoparan-M (Mast-M) and Vespakinin-M, may have potential therapeutic effects for neurological disorders. However, the specific polypeptide components of WV and their therapeutic effects on PD models remain insufficiently understood. AIM OF THE STUDY This study aims to characterize the neuroactive polypeptides in Vespa magnifica Smith venom and investigate the therapeutic potential of Mast-M for PD. MATERIALS AND METHODS Neuroactive polypeptides in WV were identified using LC/MS, and Mast-M derived from venom of Vespa magnifica Smith was verified with HPLC. The neuroprotective effects of WV and its peptides were assessed using the CCK-8 assay in 1-methyl-4- phenylpyridinium (MPP+)-induced SH-SY5Y human neuroblastoma cells. Mast-M was identified as a potent antagonist against MPP+-induced neurotoxicity. The toxicity, hemolytic activity, and blood-brain-barrier (BBB) permeability of Mast-M were evaluated in mice, and its therapeutic effects were assessed in an MPTP-induced PD mouse model, focusing on motor function and tyrosine hydroxylase (TH) levels. Additionally, Mast-M's impact on mitochondrial membrane potential (MMP), autophagy, and the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signling pathway was investigated. RESULTS A total of 1007 peptides were identified in the WV, including 187 UniProtKB unreviewed, with 185 predicted to be BBB-permeability. Our results show that Mast-M exhibits a time-dependent distribution in mice, initially localizing in the peritoneal region and subsequently accumulating in the brain, liver, and kidney. Cellular uptake studies reveal that Mast-M penetrates cell membranes and accumulates intracellularly over time. In the MPP+-induced neurotoxicity model using SH-SY5Y cells, Mast-M significantly enhances cell viability and MMP. In vivo safety assessments indicate that Mast-M is well-tolerated at doses up to 100 μg/kg, with no significant toxicological effects observed. However, higher doses induce hepatic distress, necessitating dose optimization. Hemolysis was absent at concentrations ≤37 μg/mL, with an EC50 for hemolytic activity of 197 μg/mL. In MPTP-induced PD models, Mast-M partially ameliorates motor deficits and preserves TH expression in dopaminergic neurons, supporting its neuroprotective role. Mechanistically, Mast-M activates autophagic pathways, as evidenced by the upregulation of autophagy-related protein LC3 in MPP+-challenged SH-SY5Y cells. Furthermore, Mast-M promotes mitophagy and mitochondrial biogenesis, modulating the AMPK/mTOR signaling axis to facilitate mitochondrial turnover. CONCLUSION Mast-M emerges as a promising therapeutic candidate for PD, capable of crossing the BBB, enhancing autophagy, and providing neuroprotection in PD models. Further studies are warranted to optimize dosing and elucidate its full therapeutic potential.
Collapse
Affiliation(s)
- Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Xiaoyu Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Yunyun Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Kunkun Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | | | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
4
|
Balde A, Benjakul S, Nazeer RA. A review on NLRP3 inflammasome modulation by animal venom proteins/peptides: mechanisms and therapeutic insights. Inflammopharmacology 2025; 33:1013-1031. [PMID: 39934538 DOI: 10.1007/s10787-025-01656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The venom peptides from terrestrial as well as aquatic species have demonstrated potential in regulating the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a sophisticated assemblage present in immune cells responsible for detecting and responding to external mediators. The NLRP3 inflammasome plays a role in several pathological conditions such as type 2 diabetes, hyperglycemia, Alzheimer's disease, obesity, autoimmune disorders, and cardiovascular disorders. Venom peptides derived from animal venoms have been discovered to selectively induce certain signalling pathways, such as the NLRP3 inflammasome, mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Experimental evidence has demonstrated that venom peptides can regulate the expression and activation of the NLRP3 inflammasome, resulting in the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Furthermore, these peptides have been discovered to impede the activation of the NLRP3 inflammasome, therefore diminishing inflammation and tissue injury. The functional properties of venom proteins and peptides obtained from snakes, bees, wasps, and scorpions have been thoroughly investigated, specifically targeting the NLRP3 inflammasome pathway, venom proteins and peptides have shown promise as therapeutic agents for the treatment of certain inflammatory disorders. This review discusses the pathophysiology of NLRP3 inflammasome in the onset of various diseases, role of venom as therapeutics. Further, various venom components and their role in the modulation of NLRP3 inflammasome are discoursed. A substantial number of venomous animals and their toxins are yet unexplored, and to comprehensively grasp the mechanisms of action of them and their potential as therapeutic agents, additional research is required which can lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
5
|
Tlak Gajger I, Vlainić J. Antioxidant Activity of Honey Bee Products. Antioxidants (Basel) 2025; 14:64. [PMID: 39857398 PMCID: PMC11762966 DOI: 10.3390/antiox14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Antioxidants have gained significant importance in modern nutrition [...].
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- NRL for Honeybee Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Josipa Vlainić
- Institute Ruđer Bošković, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Pareek A, Mehlawat K, Tripathi K, Pareek A, Chaudhary S, Ratan Y, Apostolopoulos V, Chuturgoon A. Melittin as a therapeutic agent for rheumatoid arthritis: mechanistic insights, advanced delivery systems, and future perspectives. Front Immunol 2024; 15:1510693. [PMID: 39759520 PMCID: PMC11695321 DOI: 10.3389/fimmu.2024.1510693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential. Hence, the review summarizes current insights into BV's composition, antiarthritic mechanism and pharmacological benefits, focusing on melittin. Constituting 50-60% of BV, melittin notably downregulates nuclear factor Kappa B (NF-κB) activity, inhibits MMP-1 and MMP-8, and diminishes tumor necrosis factor (TNF-α), all of which contribute to the mitigation of type 2 collagen degradation. Despite its potential, melittin exhibits hemolytic activity and can significantly affect cell membranes, limiting its application, which poses a challenge to its therapeutic use. To overcome these challenges, delivery techniques utilizing nanocarriers and modifications in amino acid sequencing have been developed. Recent advancements in delivery systems, including nanocarriers, transdermal patches, and nanoemulsions, aim to minimize toxicity, expanding its therapeutic utility for RA. This article explores these novel strategies, underlining the evolving role of melittin in RA management.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | | | | | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Jadhav V, Bhagare A, Palake A, Kodam K, Dhaygude A, Kardel A, Lokhande D, Aher J. In vitro cytotoxicity assessment of biosynthesized Apis mellifera bee venom nanoparticles (BVNPs) against MCF-7 breast cancer cell lines. DISCOVER NANO 2024; 19:170. [PMID: 39402248 PMCID: PMC11473470 DOI: 10.1186/s11671-024-04123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In this work, we reported the synthesis of honey bee (Apis mellifera) venom-derived nanoparticles via a hydrothermal method. This method not only ensures the preservation of the bee venom's bioactive components but also enhances their potential stability, thus broadening the scope for their applications in the biomedicinal field. The synthesis method started with the homogenization suspension of bee venom, followed by its hydrothermal process to synthesize bee venom nanoparticles (BVNPs). The successful synthesis of BVNPs was characterized using various characteristic techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Fourier Transforms Infrared (FTIR) Spectroscopy, Zeta Potential (ZP), Liquid Chromatography-Mass Spectrometry (LCMS), and Transmission Electron Microscopy (TEM). The synthesis of BVNPs through biosynthesis is shown by the visible violet-brown color development at 347 nm by UV-Vis spectroscopy. FTIR analysis revealed the presence of several functional groups in the BVNPs, including alcohols (-OH), phenols (C6H5-), carboxylic acids (-COOH), amines (-NH2, -NH-), aldehydes (-CHO), ketones (-CO-), nitriles (-CN), amides (-CO-N-), imines (-CNH-), esters (-COO-), and polysaccharides. These functional groups, as confirmed by their specific stretching and bending vibrational modes, contribute to the diverse biological activities of BVNPs, including cytotoxicity against MCF-7 breast cancer cells. The ZP of the BVNPs indicated good colloidal stability at - 45 mV. LCMS analysis confirmed the presence of major bioactive molecules, including melittin & apamin and TEM analysis shows the BVNPs exhibited a quasi-spherical shape with good dispersion, the average size was approximately 25 nm, with some being smaller (quantum dots) and interplanar spacing of 0.236 nm indicated a highly ordered crystalline structure. Moreover, the anticancer efficacy of the BVNPs was ascertained through in vitro assays against MCF-7 breast cancer cells, showing a dose-dependent cytotoxic effect. The findings of this study underscore the viability of hydrothermal synthesis in producing biologically active and structurally stable BVNPs, with a significant potential for anticancer activities.
Collapse
Affiliation(s)
- Vikram Jadhav
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India.
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Arun Bhagare
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Ashwini Palake
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Dhaygude
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Anant Kardel
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Dnyaneshwar Lokhande
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Jayraj Aher
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| |
Collapse
|
8
|
Farid A, Mohamed A, Ahmed A, Mehanny F, Safwat G. Preparation of bee venom-loaded chitosan nanoparticles for treatment of streptozotocin-induced diabetes in male Sprague Dawley rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:97. [DOI: 10.1186/s43088-024-00557-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 01/12/2025] Open
Abstract
Abstract
Background
Diabetes mellitus (DM) can be defined as an increase in the blood sugar level and a disturbance in protein, fat and carbohydrate metabolism. Bee venom (BV) is useful for treating and preventing diabetic rats’ histological and biochemical problems. Although the medical advantages of BV have been identified, its safety has remained a substantial barrier for its application. Consequently, the goal of our work was to prepare bee venom-loaded chitosan (BV-CS) nanoparticles (NPs), which would then be physically characterized. This was followed by examining the effect of the synthetized BV-CS NPs on oxidation, inflammation and coagulation in vitro. In diabetic rats’ model [induced by streptozotocin (STZ)], the produced BV-CS NPs were tested as an anti-diabetic medication.
Results
In vivo testing on pancreatic tissue homogenates showed that BV-CS NPs have antioxidant and anti-inflammatory properties. The results showed that BV-CS NPs can be used as a safe and efficient therapy for diabetes. Up to a concentration of 250 µg/ml, the generated NPs demonstrated potential antioxidant, membrane stabilizing, and non-cytotoxic capabilities. Our findings indicated that the administration of BV-CS NPs significantly controlled blood glucose levels and metabolic abnormalities that accompanied diabetes induction.
Conclusions
BV-CS NPs were successful in treating STZ-induced diabetes in rats, stimulated insulin secretion and were safe to be used in vivo.
Graphical abstract
Collapse
|
9
|
Kumar R, Thakur A, Kumar S, Hajam YA. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon 2024; 10:e37138. [PMID: 39296128 PMCID: PMC11408027 DOI: 10.1016/j.heliyon.2024.e37138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Royal jelly (RJ), a secretion produced by honeybees, has garnered significant interest for its potential as a therapeutic intervention and functional food supplement. This systematic review aims to synthesize current research on the health benefits, bioactive components, and mechanisms of action of RJ. Comprehensive literature searches were conducted across multiple databases, including PubMed, Scopus, and Web of Science, focusing on studies published from 2000 to 2024 (April). Findings indicate that RJ exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anti-aging effects. Beneficial biological properties of RJ might be due to the presence of flavonoids proteins, peptides, fatty acids. Both preclinical and clinical studies have reported that RJ improves the immune function such as wound healing, and also decreases the severity of chronic diseases including diabetes and cardiovascular disorders. The molecular mechanisms underlying these effects involve modulation of signalling pathways such as NF-κB, MAPK, and AMPK. Despite promising results, the review identifies several gaps in the current knowledge, including the need for standardized dosing regimens and long-term safety assessments. Furthermore, variations in RJ composition due to geographic and botanical factors necessitate more rigorous quality control measures. This review underscores the potential of RJ as a multifunctional therapeutic agent and highlights the necessity for further well designed studies to fully elucidate its health benefits and optimize its use as a functional food supplement.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Ankita Thakur
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Suresh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab -144030, India
| |
Collapse
|
10
|
Stela M, Cichon N, Spławska A, Szyposzynska M, Bijak M. Therapeutic Potential and Mechanisms of Bee Venom Therapy: A Comprehensive Review of Apitoxin Applications and Safety Enhancement Strategies. Pharmaceuticals (Basel) 2024; 17:1211. [PMID: 39338374 PMCID: PMC11434713 DOI: 10.3390/ph17091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Apitoxin therapy (BVT-bee venom therapy) is an emerging complementary treatment utilizing bee venom for various medical conditions. This review explores the potential and therapeutic mechanisms of bee venom, focusing on its chemical composition and the methods for its extraction and purification to enhance safety while maintaining bioactivity. Bee venom contains amphipathic peptides such as melittin and apamin, enzymes like phospholipase A2, and bioamines including histamine and catecholamines, contributing to its pleiotropic effects. The therapeutic applications of bee venom span anti-inflammatory, analgesic, antimicrobial, antiviral, neuroprotective, anti-arthritic, and anti-cancer activities. Clinical and laboratory studies have demonstrated its efficacy in treating chronic and autoimmune diseases, pain management, and improving quality of life. The immunogenic properties of bee venom necessitate ongoing research to mitigate allergic reactions, ensuring its safe and effective use in medical practice. This review summarizes the current state of research on bee venom therapy, highlighting its potential benefits and future research directions.
Collapse
Affiliation(s)
- Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Aleksandra Spławska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
11
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
12
|
Anjum SI, Ullah A, Gohar F, Raza G, Khan MI, Hameed M, Ali A, Chen CC, Tlak Gajger I. Bee pollen as a food and feed supplement and a therapeutic remedy: recent trends in nanotechnology. Front Nutr 2024; 11:1371672. [PMID: 38899322 PMCID: PMC11186459 DOI: 10.3389/fnut.2024.1371672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.
Collapse
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Plant Protection, Ministry of National Food Security and Research, Karachi, Pakistan
| | - Faryal Gohar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Muhammad Ilyas Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
14
|
Gajski G, Leonova E, Sjakste N. Bee Venom: Composition and Anticancer Properties. Toxins (Basel) 2024; 16:117. [PMID: 38535786 PMCID: PMC10975291 DOI: 10.3390/toxins16030117] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 04/25/2025] Open
Abstract
Among the various natural compounds used in alternative and Oriental medicine, toxins isolated from different organisms have had their application for many years, and Apis mellifera venom has been studied the most extensively. Numerous studies dealing with the positive assets of bee venom (BV) indicated its beneficial properties. The usage of bee products to prevent the occurrence of diseases and for their treatment is often referred to as apitherapy and is based mainly on the experience of the traditional system of medical practice in diverse ethnic communities. Today, a large number of studies are focused on the antitumor effects of BV, which are mainly attributed to its basic polypeptide melittin (MEL). Previous studies have indicated that BV and its major constituent MEL cause a strong toxic effect on different cancer cells, such as liver, lung, bladder, kidney, prostate, breast, and leukemia cells, while a less pronounced effect was observed in normal non-target cells. Their proposed mechanisms of action, such as the effect on proliferation and growth inhibition, cell cycle alterations, and induction of cell death through several cancer cell death mechanisms, are associated with the activation of phospholipase A2 (PLA2), caspases, and matrix metalloproteinases that destroy cancer cells. Numerous cellular effects of BV and MEL need to be elucidated on the molecular level, while the key issue has to do with the trigger of the apoptotic cascade. Apoptosis could be either a consequence of the plasmatic membrane fenestration or the result of the direct interaction of the BV components with pro-apoptotic and anti-apoptotic factors. The interaction of BV peptides and enzymes with the plasma membrane is a crucial step in the whole process. However, before its possible application as a remedy, it is crucial to identify the correct route of exposure and dosage of BV and MEL for potential therapeutic use as well as potential side effects on normal cells and tissues to avoid any possible adverse event.
Collapse
Affiliation(s)
- Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Elina Leonova
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
- Genetics and Bioinformatics, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| |
Collapse
|
15
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
16
|
Abbasi F, Shawrang P, Sadeghi M, Majidi-Zahed H. Effect of gamma-irradiated honey bee venom on blood parameter and histopathological observations of liver and kidney in a mice animal model. Res Vet Sci 2023; 165:105050. [PMID: 37856942 DOI: 10.1016/j.rvsc.2023.105050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Honey bee venom is a valuable product with a wide range of biological effects, whose use is rapidly increasing in apitherapy. In this study, the effect of gamma-irradiated honey bee venom (doses of 0, 2, 4, 6, and 8 kGy, volume of 0.1 ml, and concentration of 0.2 mg/ml) was evaluated on median lethal dose (LD50) determinations, liver and kidney histology, biochemical marker level, and serum protein analyses. Hence, the LD50 induced by the honey bee venom irradiated at 4, 6, and 8 kGy was increased, compared with the one at 0 and 2 kGy. Normal histology was observed in the liver and kidney of the mice receiving the honey bee venom irradiated at 4, 6, and 8 kGy. The serum levels of alanine aminotransferase (ALT) and all serum proteins were reduced at 4, 6, and 8 kGy compared with 0 and 2 kGy. Therefore, gamma irradiation at 4, 6, and 8 kGy had no negative effect on LD50, liver and kidney tissues, ALT, and serum protein levels by decreasing the allergen compounds of the honey bee venom.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran
| | - Parvin Shawrang
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Maryam Sadeghi
- University of Tehran, College of Agriculture & Natural Resources, Karaj, Iran
| | - Hamed Majidi-Zahed
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran
| |
Collapse
|
17
|
Abd El-Aziz A, Abo Ghanima M, Mota-Rojas D, Sherasiya A, Ciani F, El-Sabrout K. Bee Products for Poultry and Rabbits: Current Challenges and Perspectives. Animals (Basel) 2023; 13:3517. [PMID: 38003135 PMCID: PMC10668745 DOI: 10.3390/ani13223517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Poultry and rabbit production are important and rapidly growing agricultural subsectors, particularly in several developing countries. To ensure the sustainability of poultry and rabbit production, realistic poultry and rabbit farming practices must be improved. Apitherapy is a traditional alternative medicine that involves the prevention and treatment of some diseases with several bee products including propolis, royal jelly, pollen, and venom. More feeding investigations on the numerous benefits of bee products for poultry and rabbits are crucial to be addressed. Poultry and rabbit production has recently experienced numerous challenges, including climate change, disease spread, and antibiotic misuse. Improving animal welfare, health, and production is a top priority for all livestock farms, as is supplying consumers with safe and healthy products. Therefore, this review aims to collect and investigate recent relevant literature on the use of bee products, as feed additives, drinking water supplements, and injections, for poultry and rabbits to improve animal health and production. From the current findings, bee products can improve the growth and immunological performance of small-livestock animals, such as poultry and rabbits, by activating digestive enzymes, maintaining microbial balance, and promoting vitamin synthesis. Therefore, bee products could be a promising natural alternative to growth promoters, reproductive stimulants, and immunological enhancers in poultry and rabbit farms to provide safe and healthy products for humans.
Collapse
Affiliation(s)
- Ayman Abd El-Aziz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (A.A.E.-A.)
| | - Mahmoud Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (A.A.E.-A.)
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | | | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy;
| | - Karim El-Sabrout
- Poultry Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|