1
|
Chen S, Yu W, Shen Y, Lu L, Meng X, Liu J. Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral-gut-brain axis: implications for human health and well-being. ASIAN BIOMED 2025; 19:21-35. [PMID: 40231163 PMCID: PMC11994223 DOI: 10.2478/abm-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Air pollution exposure has become an international health issue that poses many risks to life and health. The bidirectional regulatory network, known as the oral-gut-brain axis connects the oral cavity, intestine, and central nervous system, as well as its influence on health outcomes from exposure to air pollution is receiving increased attention. This article systematically details the epidemiological evidence linking air pollutants to diseases affecting the oral, respiratory, intestinal, and nervous systems, while also explaining the route of air pollutants via the oral-gut-brain axis. The oral-gut-brain axis anomalies resulting from air pollution and their underlying molecular processes are also covered. The study provides a fresh viewpoint on how exposure to air pollution affects health and investigates cutting-edge preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Wenlei Yu
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Yiwen Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Linjie Lu
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine,Jiaxing, 314400, China
| | - Xiangyong Meng
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| | - Jun Liu
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| |
Collapse
|
2
|
de Souza V, Bitencourt KCQM, Rodrigues VMM, Schapochnik A, da Palma Cruz M, Damazo AS, Ferreira CM, Cecatto RB, Destro MFS, Lino-Dos-Santos-Franco A. Repercussion of inflammatory bowel disease on lung homeostasis: The role of photobiomodulation. Lasers Med Sci 2024; 39:70. [PMID: 38378954 DOI: 10.1007/s10103-024-04022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic and multifactorial diseases characterized by dysfunction of the intestinal mucosa and impaired immune response. Data show an important relationship between intestine and respiratory tract. The treatments of IBD are limited. Photobiomodulation (PBM) is an effective anti-inflammatory therapy. Our objective was to evaluate the repercussion of IBD as well as its treatment with PBM on pulmonary homeostasis. Male Wistar rats were submitted to IBD induction by acetic acid and treated or not with PBM. Rats were irradiated with red LED on both right and left sides of the ventral surface and beside the external anal region during 3 consecutive days (wavelenght 660 nm, power 100 mw, total energy 15 J and time of irradiation 150 s per point). Our results showed that IBD altered pulmonary homeostasis, since we observed an increase in the histopathological score, in myeloperoxidase activity (MPO), in mast cell degranulation, and in the release and gene expression of cytokines. We also showed that PBM treatment reduced biomarkers of IBD and reverted all augmented parameters in the lung, restoring its homeostasis. Thus, we confirm experimentally the important gut-lung axis and the role of PBM as a promising therapy.
Collapse
Affiliation(s)
- Vanessa de Souza
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | | | - Virgínia Mendes Matias Rodrigues
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Adriana Schapochnik
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Marlon da Palma Cruz
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | | | | | - Rebeca Boltes Cecatto
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Maria Fernanda Setubal Destro
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil.
| |
Collapse
|
3
|
Song W, Yue Y, Zhang Q. Imbalance of gut microbiota is involved in the development of chronic obstructive pulmonary disease: A review. Biomed Pharmacother 2023; 165:115150. [PMID: 37429232 DOI: 10.1016/j.biopha.2023.115150] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic disease characterized by chronic airway inflammation and remodeling, which seriously endangers human health. Recent developments in genomics and metabolomics have revealed the roles of the gut microbiota and its metabolites in COPD. Dysbiosis of the gut microbiota directly increases gut permeability, thereby promoting the translocation of pathological bacteria. The gut microbiota and associated metabolites may influence the development and progression of COPD by modulating immunity and inflammation. Furthermore, the systemic hypoxia and oxidative stress that occur in COPD may also be involved in intestinal dysfunction. The cross-talk between the gut and lungs is known as the gut-lung axis; however, an overview of its mechanism is lacking. This review highlights the critical and complex interplay of gut microbiota and immune responses in the gut-lung axis, further explores possible links between the gut and lungs, and summarizes new interventions through diet, probiotics, vitamins, and fecal microbiota transplantation, which are critical to COPD.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, China.
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
4
|
Casili G, Scuderi SA, Lanza M, Filippone A, Basilotta R, Mannino D, Campolo M, Esposito E, Paterniti I. The protective role of prolyl oligopeptidase (POP) inhibition in acute lung injury induced by intestinal ischemia-reperfusion. Oncotarget 2021; 12:1663-1676. [PMID: 34434495 PMCID: PMC8378771 DOI: 10.18632/oncotarget.28041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Intestinal ischemia-reperfusion (II/R) develops when the blood flow to the intestines decreases, followed by the reestablishment of the blood supply to the ischemic tissue, resulting in intestinal mucosal barrier dysfunction, with consequent severe local and systemic inflammation. Acute lung injury (ALI) represents the most serious complication after II/R. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic and inflammatory molecules. The aim of the present study is to assess the effects of POP-inhibition mediated by KYP-2047 treatment in the pathophysiology of ALI following II/R. An in vivo model of II/R was performed and mice were subjected to KYP-2047 treatment (intraperitoneal, 1, 2.5 and 5 mg/kg). Histological analysis, Masson’s trichrome staining, immunohistochemical, immunofluorescence, biochemical and western blots analysis were performed on ileum and lung samples. KYP-2047 treatment ameliorated histological alteration in ileum and lung, reduced collagen amount and lowered inflammatory protein levels. Moreover, TGF-β1, eNOS, VEGF and CD34 positive staining has been modulated; also, a reduction in apoptosis expression was confirmed. This research revealed the strong anti-inflammatory potential of KYP-2047 associated to its modulatory role on angiogenesis and apoptosis, suggesting POP as a novel therapeutic target for ALI after II/R.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
6
|
Tarashi S, Ahmadi Badi S, Moshiri A, Nasehi M, Fateh A, Vaziri F, Siadat SD. The human microbiota in pulmonary tuberculosis: Not so innocent bystanders. Tuberculosis (Edinb) 2018; 113:215-221. [PMID: 30514505 DOI: 10.1016/j.tube.2018.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/22/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection is a worldwide health concern, which needs robust and efficient control strategies, and the evaluation of human microbiota can be very important in this regard. Dysbiosis of normal microbiota is an important issue in the pathogenesis of Mtb. However, only few studies demonstrated the interaction between Mtb infection and microbiota. The current study aimed at reviewing literature on gut and lung microbiota in Mtb infection. Eleven articles regarding gut and lung microbiota composition in individuals with Mtb infection were selected, and then the importance of gut-lung axis in Mtb infection was evaluated. Also the relationship between microbiota composition and Mtb infection were discussed in terms of treatment, epigenetic field, and biomarkers.
Collapse
Affiliation(s)
- Samira Tarashi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Experimental Therapy Unit, Laboratory of Oncology, G.Gaslini Children's Hospital, Genoa, Italy
| | - Mahshid Nasehi
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Acute lung injury induced by intestinal ischemia and reperfusion is altered in obese female mice. Pulm Pharmacol Ther 2018; 49:54-59. [PMID: 29337267 DOI: 10.1016/j.pupt.2018.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/11/2018] [Indexed: 01/22/2023]
Abstract
RATIONAL Acute lung injury (ALI) is a common complication after intestinal ischemia and reperfusion (I/R) injury that can lead to acute respiratory distress syndrome (ARDS). We have previously demonstrated that females are protected against lung damage induced by intestinal I/R through an estrogen mediated mechanism. OBJECTIVES To investigate the effect of obesity on ALI induced by intestinal I/R in female mice. METHODS C57Bl/6 female mice were fed with a standard low-fat diet (SD) or a high-fat diet (HFD) for 9 weeks. Intestinal I/R injury was induced by a 45 min occlusion of the mesenteric artery followed by 2 and 24 h of reperfusion. RESULTS Significant increase in lung myeloperoxidase expression (MPO) and neutrophil numbers of SD and HFD mice occurred at 2 h and 24 h of reperfusion. Furthermore, HFD mice presented a significant increase in lung eosinophil peroxidase (EPO) expression and eosinophil numbers compared to SD mice. Lung wet/dry weight ratio was significantly greater in HFD mice at 2 and 24 h of reperfusion, accompanied by a significant increase in the expression of inducible NO in the lung tissue and a significant decrease in arterial oxygen saturation at 24 h of reperfusion relative to SD mice. CONCLUSION Obesity predisposes female mice to increased pulmonary oedema and deterioration in gas exchange, which is accompanied by an increase in iNOS expression in the lung.
Collapse
|
8
|
Yuan Y, Alwis I, Wu MCL, Kaplan Z, Ashworth K, Bark D, Pham A, Mcfadyen J, Schoenwaelder SM, Josefsson EC, Kile BT, Jackson SP. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci Transl Med 2017; 9:eaam5861. [PMID: 28954929 DOI: 10.1126/scitranslmed.aam5861] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 11/02/2022]
Abstract
Gut ischemia is common in critically ill patients, promoting thrombosis and inflammation in distant organs. The mechanisms linking hemodynamic changes in the gut to remote organ thrombosis remain ill-defined. We demonstrate that gut ischemia in the mouse induces a distinct pulmonary thrombotic disorder triggered by neutrophil macroaggregates. These neutrophil aggregates lead to widespread occlusion of pulmonary arteries, veins, and the microvasculature. A similar pulmonary neutrophil-rich thrombotic response occurred in humans with the acute respiratory distress syndrome. Intravital microscopy during gut ischemia-reperfusion injury revealed that rolling neutrophils extract large membrane fragments from remnant dying platelets in multiple organs. These platelet fragments bridge adjacent neutrophils to facilitate macroaggregation. Platelet-specific deletion of cyclophilin D, a mitochondrial regulator of cell necrosis, prevented neutrophil macroaggregation and pulmonary thrombosis. Our studies demonstrate the existence of a distinct pulmonary thrombotic disorder triggered by dying platelets and neutrophil macroaggregates. Therapeutic targeting of platelet death pathways may reduce pulmonary thrombosis in critically ill patients.
Collapse
Affiliation(s)
- Yuping Yuan
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
- Heart Research Institute, Newtown, New South Wales 2042, Australia
- Charles Perkins Centre, University of Sydney, New South Wales 2006, Australia
| | - Imala Alwis
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
- Heart Research Institute, Newtown, New South Wales 2042, Australia
- Charles Perkins Centre, University of Sydney, New South Wales 2006, Australia
| | - Mike C L Wu
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
- Heart Research Institute, Newtown, New South Wales 2042, Australia
- Charles Perkins Centre, University of Sydney, New South Wales 2006, Australia
| | - Zane Kaplan
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
| | - Katrina Ashworth
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
| | - David Bark
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
| | - Alan Pham
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - James Mcfadyen
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
| | - Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia
- Heart Research Institute, Newtown, New South Wales 2042, Australia
| | - Emma C Josefsson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin T Kile
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Shaun P Jackson
- Australian Centre for Blood Diseases, Alfred Medical and Research Education Precinct, Monash University, Melbourne, Victoria 3004, Australia.
- Heart Research Institute, Newtown, New South Wales 2042, Australia
- Charles Perkins Centre, University of Sydney, New South Wales 2006, Australia
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
|
10
|
Inhibition of P38 MAPK Downregulates the Expression of IL-1β to Protect Lung from Acute Injury in Intestinal Ischemia Reperfusion Rats. Mediators Inflamm 2016; 2016:9348037. [PMID: 26980948 PMCID: PMC4766341 DOI: 10.1155/2016/9348037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/27/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) induced by intestinal ischemia/reperfusion (II/R) has high incidence and mortality, in which IL-1β was essential for the full development of ALI. However, the detailed regulating mechanism for this phenomenon remains to be unclear. The purpose of this study was to investigate whether inhibition of P38 MAPK could downregulate the expression of IL-1β to protect lung from acute injury in II/R rats. Here, we found that the level of pulmonary edema at 16 hours after operation (hpo) was obviously enhanced compared to that in 8hpo and sham groups. Immunofluorescent staining demonstrated that IL-1β and P38 MAPK were detected in lung tissues. And rats with II/R have the highest translation level for IL-1β and phosphorylation of P38 MAPK in lung tissues at 16hpo compared with 8hpo and sham groups. Moreover, administration of SB239063, an inhibitor of P38 α and β, could effectively downregulate the expressions of IL-1β and protects lung tissues from injury in II/R rats. Our findings indicate that the inhibition of P38 α and β may downregulate the expression of IL-1β to protect lung from acute injury in II/R, which could be used as a potential target for reducing ALI induced by II/R in the future clinical trial.
Collapse
|
11
|
Hodge LM, Creasy C, Carter K, Orlowski A, Schander A, King HH. Lymphatic Pump Treatment as an Adjunct to Antibiotics for Pneumonia in a Rat Model. J Osteopath Med 2015; 115:306-16. [DOI: 10.7556/jaoa.2015.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Background: Lymphatic pump treatment (LPT) is a technique used by osteopathic physicians as an adjunct to antibiotics for patients with respiratory tract infections, and previous studies have demonstrated that LPT reduces bacterial load in the lungs of rats with pneumonia. Currently, it is unknown whether LPT affects drug effcacy.
Objective: To determine whether the combination of antibiotics and LPT would reduce bacterial load in the lungs of rats with acute pneumonia.
Methods: Rats were infected intranasally with 5×107 colony-forming units (CFU) of Streptococcus pneumoniae. At 24, 48, and 72 hours after infection, the rats received no therapy (control), 4 minutes of sham therapy, or 4 minutes of LPT, followed by subcutaneous injection of 40 mg/kg of levofoxacin or sterile phosphate-buffered saline. At 48, 72, and 96 hours after infection, the spleens and lungs were collected, and S pneumoniae CFU were enumerated. Blood was analyzed for a complete blood cell count and leukocyte differential count.
Results: At 48 and 72 hours after infection, no statistically significant differences in pulmonary CFU were found between control, sham therapy, or LPT when phosphate-buffered saline was administered; however, the reduction in CFU was statistically significant in all rats given levofoxacin. The combination of sham therapy and levofoxacin decreased bacterial load at 72 and 96 hours after infection, and LPT and levofoxacin significantly reduced CFU compared with sham therapy and levofoxacin at both time points (P<.05). Colony-forming units were not detected in the spleens at any time. No statistically significant differences in hematologic findings between any treatment groups were found at any time point measured.
Conclusion: The results suggest that 3 applications of LPT induces an additional protective mechanism when combined with levofoxacin and support its use as an adjunctive therapy for the management of pneumonia; however, the mechanism responsible for this protection is unclear.
Collapse
|
12
|
Breithaupt-Faloppa AC, Thais Fantozzi E, Romero DC, Rodrigues ADS, de Sousa PTR, Lino Dos Santos Franco A, Oliveira-Filho RM, Boris Vargaftig B, Tavares de Lima W. Acute effects of estradiol on lung inflammation due to intestinal ischemic insult in male rats. Shock 2014; 41:208-13. [PMID: 24220282 DOI: 10.1097/shk.0000000000000092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intestinal ischemia and reperfusion (intestinal I/R) causes acute lung inflammation that is characterized by leukocyte migration, increased lung microvascular permeability, and, in severe forms, noncardiogenic pulmonary edema and acute respiratory distress syndrome. Female sex hormones interfere with immune response, and experimental and clinical evidence shows that females are more resistant than males to organ injury caused by gut trauma. To reduce the lung inflammation caused by intestinal I/R, we have acutely treated male rats with estradiol. Intestinal I/R was performed by the clamping (45 min) of the superior mesenteric artery (SMA), followed by 2 h of intestinal reperfusion (unclamping SMA). Groups of rats received 17β estradiol (E2, 280 µg/kg, i.v., single dose) 30 min after the SMA occlusion (ischemia period) or 1 h after the unclamping of SMA (reperfusion period). Leukocytes influx into the lung and microvascular leakage were assessed by lung myeloperoxidase activity and Evans blue dye extravasation, respectively. The lung expression of adhesion molecules (intercellular adhesion molecule 1, platelet endothelial cell adhesion molecule 1, and vascular cell adhesion molecule [VCAM]) was evaluated by immunohistochemistry. Interleukin 1β (IL-1β), IL-10, and NOx concentrations were quantified in supernatants of cultured lung tissue. We have found that intestinal I/R increased the lung myeloperoxidase activity and Evans blue dye extravasation, which were reduced by treatment of rats with E2. Intestinal I/R increased ICAM-1 expression only, and it was decreased by E2 treatment. However, E2 treatment reduced the basal expression of platelet endothelial cell adhesion molecule 1. E2 treatment during intestinal ischemia was effective to reduce the levels of IL-10 and IL-1β in explant supernatant, but only IL-10 levels were reduced by E2 at reperfusion phase. The treatment with E2 did not affect NOx concentration. Taken together, our data suggest that estradiol modulates the lung inflammatory response induced by lung injury, likely by acute effects. Thus, acute estradiol treatment could be considered as a potential therapeutic agent in ischemic events.
Collapse
Affiliation(s)
- Ana Cristina Breithaupt-Faloppa
- *Laboratory of Cardiovascular Surgery and Physiopathology of Circulation (LIM-11), Heart Institute (InCor), Medicine School, †Department of Pharmacology, Institute of Biomedical Sciences, and ‡Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ku YC, Liu ME, Ku CS, Liu TY, Lin SL. Relationship between vitamin D deficiency and cardiovascular disease. World J Cardiol 2013; 5:337-346. [PMID: 24109497 PMCID: PMC3783986 DOI: 10.4330/wjc.v5.i9.337] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have found that low 25-hydroxyvitamin D levels may be associated with coronary risk factors and adverse cardiovascular outcomes. Additionally, vitamin D deficiency causes an increase in parathyroid hormone, which increases insulin resistance and is associated with diabetes, hypertension, inflammation, and increased cardiovascular risk. In this review, we analyze the association between vitamin D supplementation and the reduction in cardiovascular disease. The role of vitamin D deficiency in cardiovascular morbidity and mortality is still controversial, and larger scale, randomized placebo controlled trials are needed to investigate whether oral vitamin D supplementation can reduce cardiovascular risk. Given the low cost, safety, and demonstrated benefit of higher 25-hydroxyvitamin D levels, vitamin D supplementation should become a public health priority for combating common and costly chronic cardiovascular diseases.
Collapse
|
14
|
Real-time in vivo imaging of early mucosal changes during ischemia-reperfusion in human jejunum. PLoS One 2012; 7:e39638. [PMID: 22745799 PMCID: PMC3382139 DOI: 10.1371/journal.pone.0039638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/27/2012] [Indexed: 02/08/2023] Open
Abstract
Background and study aims Small intestinal ischemia-reperfusion (IR) is a frequent, potentially life threatening phenomenon. There is a lack of non-invasive diagnostic modalities. For many intestinal diseases, visualizing the intestinal mucosa using endoscopy is gold standard. However, limited knowledge exists on small intestinal IR-induced, early mucosal changes. The aims of this study were to investigate endoscopic changes in human jejunum exposed to IR, and to study concordance between endoscopic appearance and histology. Patients and methods In 23 patients a part of jejunum, to be removed for surgical reasons, was isolated and selectively exposed to ischemia with 0, 30 or 120 minutes of reperfusion. In 3 patients, a videocapsule was inserted in the isolated segment before exposure to IR, to visualize the mucosa. Endoscopic view at several time points was related to histology (Heamatoxylin & Eosin) obtained from 20 patients. Results Ischemia was characterized by loss of villous structure, mucosal whitening and appearance of punctate lesions. This was related to appearance of subepithelial spaces and breaches in the epithelial lining in the histological view. Early during reperfusion, the lumen filled with IR-damaged, shed cells and VCE showed mucosal erosions, hemorrhage and intraluminal debris. At 60 minutes of reperfusion, the only remaining signs of IR were loss of villous structure and small erosions, indicating rapid mucosal healing. Conclusions This study shows a unique, real-time in vivo endoscopic view of early mucosal changes during IR of the human small intestine. Future studies should evaluate its usefulness in diagnosis of patients suspected of IR.
Collapse
|