1
|
Zhan Y, Deng Q, Jia Y, Chen Z, Zhao X, Ling Y, Qiu Y, Wang X, Wang F, He M, Huang W, Shen J, Wen S. Pdia3 deficiency exacerbates intestinal injury by disrupting goblet and Paneth cell function during ischemia/reperfusion. Cell Signal 2025; 130:111682. [PMID: 39988288 DOI: 10.1016/j.cellsig.2025.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a severe medical condition associated with high mortality rates due to its disruption of intestinal homeostasis and impairment of mucosal defenses. The intestinal epithelium, particularly goblet and Paneth cells, plays a critical role in maintaining gut barrier integrity. Protein disulfide isomerase A3 (PDIA3) is involved in protein folding within intestinal epithelial cells (IECs) and has been linked to the stress response during I/R injury. This study aims to explore the role of PDIA3 in preserving intestinal integrity and immune function during I/R injury. Our study employed both human and mouse models to investigate PDIA3's expression and function. The correlation between PDIA3 expression and disease severity was analyzed using statistical tests, including Pearson's correlation coefficient. An intestinal I/R model was established in intestinal epithelium-specific conditional knockout mice lacking the Pdia3 gene. Single-cell RNA sequencing, immunohistochemistry, and transcriptomic analysis were used to assess PDIA3 expression in various intestinal cell types and to evaluate its role in epithelial differentiation and immune responses. PDIA3 was found to be highly expressed in healthy IECs, especially in goblet and Paneth cells. Its expression was reduced in patients with mesenteric artery ischemia and Pdia3-deficient mice, leading to severe intestinal damage, including impaired goblet and Paneth cell function, reduced antimicrobial peptide production, and altered gut microbiota. Treatment with recombinant defensin α1, an antimicrobial peptide secreted by Paneth cells, significantly alleviated the adverse effects of Pdia3 deficiency, restoring gut microbiota balance and reducing inflammation in the intestinal I/R injury mice. Taken together, our findings suggest that Pdia3 plays a vital role in maintaining intestinal barrier function and immune defense. Its deficiency exacerbates I/R-induced intestinal damage by impairing epithelial differentiation, mucus production, and antimicrobial peptide secretion. Targeting Pdia3 and associated pathways offers promising therapeutic strategies for mitigating I/R injury and restoring intestinal homeostasis.
Collapse
Affiliation(s)
- Yaqing Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiwen Deng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yifan Jia
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Xu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yihong Ling
- State Key Laboratory of Oncology in South, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxin Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiwen Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Muchen He
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jiantong Shen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Department of Anesthesiology, Guangxi Hospital Division of the First Affiliated Hospital of Sun Yat-sen University, Nanning, China.
| |
Collapse
|
2
|
Turan I, Ozacmak HS, Ozacmak VH, Barut F. Modulation of the Oxidative Stress and ICAM-1/TLR4/NF-Κβ Levels by Metformin in Intestinal Ischemia/Reperfusion Injury in Rats. Cell Biochem Biophys 2025:10.1007/s12013-025-01687-5. [PMID: 40009289 DOI: 10.1007/s12013-025-01687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Metformin, a biguanide drug, is used for its antihyperglycemic effects. The purpose of the present study was to investigate the effects of metformin on the experimental model of intestinal ischemia-reperfusion (I/R) injury. Ischemia was induced by superior mesenteric artery occlusion followed by reperfusion. Metformin was administered orally by gavage at doses of 50, 100 or 200 mg/kg for one week before the surgery. Rats were divided to five groups (n = 8 for each): Sham control group; I/R control group; Metformin50 treated I/R group; Metformin100 treated I/R group; and Metformin200 treated I/R group. Tissue levels of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1), toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as histological analysis were evaluated. Metformin treatment decreased the levels of MDA in 100 and 200 mg/kg doses besides lowering the MPO activity and ICAM-1 levels in all doses. Metformin also reduced NF-κB levels at dose of 200 mg/kg and improved histopathological scores at doses of 100 and 200 mg/kg. The treatment with metformin can prevent I/R-induced intestinal injury through down-regulating ICAM-1 and NF-κB levels, reducing oxidative stress, and lowering neutrophil accumulation. We propose that metformin could be a therapeutic agent in intestinal I/R.
Collapse
Affiliation(s)
- Inci Turan
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey.
| | - Hale Sayan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Veysel Haktan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Figen Barut
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Pathology, Zonguldak, Turkey
| |
Collapse
|
3
|
Dokur M, Uysal E, Kucukdurmaz F, Altinay S, Polat S, Batcioglu K, Yilmaztekin Y, Guney T, Sapmaz Ercakalli T, Yaylali A, Sezgin E, Cetin Z, Saygili EI, Barut O, Kazimoglu H, Maralcan G, Koc S, Sokucu M, Dokur Yeni SN. Targeting the PANoptosome Using Necrostatin-1 Reduces PANoptosis and Protects the Kidney Against Ischemia-Reperfusion Injury in a Rat Model of Controlled Experimental Nonheart-Beating Donor. Transplant Proc 2024; 56:2268-2279. [PMID: 39632197 DOI: 10.1016/j.transproceed.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Reducing renal ischemia is crucial for the function and survival of grafts from nonheartbeat donors, as it leads to inflammatory responses and tubulointerstitial damage. The primary concern with organs from nonheartbeat donors is the long warm ischemia period and reperfusion injury following renal transplantation. This study had two main goals; one goal is to determine how Necrostatin-1 targeting the PANoptosome affects PANoptosis in the nonheart-beating donor rat model. The other goal is to find out if Necrostatin-1 can protect the kidney from ischemic injury for renal transplantation surgery. METHODS Twenty-four rats were grouped randomly as control and Necrostatin-1 in this experimental animal study, and we administered 1.65 mg/kg of Necrostatin-1 intraperitoneally to the experimental group for 30 minutes before cardiac arrest. We removed the rats' left kidneys and measured various oxidative stress marker measures such as malondialdehyde, superoxide dismutase, catalase, GPx, and 8-hydroxy-2-deoxyguanosine levels. We then subjected the tissues to immunohistochemical analysis, electron microscopy, and histopathological analysis. FINDINGS The Necrostatin-1 group had a lower total tubular injury score (P < .001) and less Caspase-3, gasdermin D, and mixed lineage kinase domain-like protein expression. Additionally, the apoptotic index of the study group was lower (P < .001). Furthermore, the study group had higher levels of superoxide dismutase and GPx (P < .05), whereas malondialdehyde levels were reduced (P = .009). Electron microscopy also revealed a significant improvement in tissue structure in the Necrostatin-1 group. CONCLUSION Necrostatin-1 protects against ischemic acute kidney injury in nonheart-beating donor rats by inhibiting PANoptosis via the blockade of RIPK1. As a result of this, Necrostatin-1 may offer novel opportunities for protecting donor kidneys from renal ischemia-reperfusion injury during transplantation in patients with end-stage kidney disease requiring a renal transplantation.
Collapse
Affiliation(s)
- Mehmet Dokur
- Department of Emergency Medicine, Biruni University Faculty of Medicine, Istanbul, Turkey.
| | - Erdal Uysal
- Department of General Surgery, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | | | - Serdar Altinay
- Deparment of Pathology, University of Health Sciences Faculty of Medicine, Antalya City Hospital, Antalya, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Kadir Batcioglu
- Department of Biochemistry, Inonu University Faculty of Pharmacy, Malatya, Turkey
| | - Yakup Yilmaztekin
- Department of Biochemistry, Inonu University Faculty of Pharmacy, Malatya, Turkey
| | - Turkan Guney
- Department of Medical Biochemistry, Bilecik Şeyh Edebali University Faculty of Medicine, Bilecik, Turkey
| | - Tugce Sapmaz Ercakalli
- Department of Histology and Embryology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Asli Yaylali
- Department of Histology and Embryology and IVF Center, Kahramanmaras Sutçu Imam University Faculty of Medicine, Kahramanmaras, Turkey
| | - Efe Sezgin
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - Zafer Cetin
- Department of Medical Biology, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Osman Barut
- Department of Urology, Kahramanmaras Sutcu Imam University Faculty of Medicine, Kahramanmaras, Turkey
| | - Hatem Kazimoglu
- Department of Urology, Sanko University School of Medicine, Gaziantep, Turkey
| | - Gokturk Maralcan
- Department of General Surgery, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Suna Koc
- Department of Anesthesiology and Reanimation, Biruni University Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Sokucu
- Department of Pathology, Sanko University Faculty of Medicine, Gaziantep, Turkey
| | - Sema Nur Dokur Yeni
- Department of Internal Medicine, Marmara University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Johnson CF, Schafer CM, Burge KY, Coon BG, Chaaban H, Griffin CT. Endothelial RIPK3 minimizes organotypic inflammation and vascular permeability in ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625188. [PMID: 39651150 PMCID: PMC11623548 DOI: 10.1101/2024.11.25.625188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent studies have revealed a link between endothelial receptor-interacting protein kinase 3 (RIPK3) and vascular integrity. During mouse embryonic development, hypoxia can trigger elevated endothelial RIPK3 that contributes to lethal vascular rupture. However, it is unknown whether RIPK3 regulate endothelial barrier function in adult vasculature under hypoxic injury conditions such as ischemia-reperfusion (I/R) injury. Here we performed inducible genetic deletion of endothelial Ripk3 ( Ripk iECKO ) in mice, which led to elevated vascular permeability in the small intestine and multiple distal organs after intestinal I/R injury. Mechanistically, this vascular permeability correlated with increased endothelial secretion of IL-6 and organ-specific expression of VCAM-1 and ICAM-1 adhesion molecules. Circulating monocyte depletion with clodronate liposomes reduced permeability in organs with elevated adhesion molecules, highlighting the contribution of monocyte adhesion and extravasation to Ripk iECKO barrier dysfunction. These results elucidate mechanisms by which RIPK3 regulates endothelial inflammation to minimize vascular permeability in I/R injury. GRAPHICAL ABSTRACT
Collapse
|
5
|
Shi Y, Liu J, Hou M, Tan Z, Chen F, Zhang J, Liu Y, Leng Y. Ursolic acid improves necroptosis via STAT3 signaling in intestinal ischemia/reperfusion injury. Int Immunopharmacol 2024; 138:112463. [PMID: 38971110 DOI: 10.1016/j.intimp.2024.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.
Collapse
Affiliation(s)
- Yajing Shi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, PR China
| | - Jie Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Min Hou
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Zhiguo Tan
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Feng Chen
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Jianmin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqiang Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yufang Leng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Xu L, Ma S, Qu M, Li N, Sun X, Wang T, Chen L, Zhu J, Ding Y, Gong Y, Hu F, Dong Z, Zhang R, Wang JH, Wang J, Zhou H. Parthanatos initiated by ROS-induced DNA damage is involved in intestinal epithelial injury during necrotizing enterocolitis. Cell Death Discov 2024; 10:345. [PMID: 39085218 PMCID: PMC11291915 DOI: 10.1038/s41420-024-02114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Necrotizing enterocolitis (NEC) involves intestinal epithelial damage and inflammatory response and is associated with high morbidity and mortality in infants. To improve therapeutic prospects, elucidating underlying molecular mechanisms of intestinal epithelial damage during NEC is of the essence. Poly (ADP-ribose) polymerase 1 (PARP1)-dependent parthanatos is a programmed inflammatory cell death. In the present study, the presence of parthanatos-associated proteins PARP1 and poly (ADP-ribose) (PAR), along with high expression of DNA damage-associated biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and phosphorylation of histone H2AX (γH2AX), were discovered in the intestinal tissues of NEC infants. Additionally, the upregulated expression of PARP1 and PAR in NEC intestinal tissues correlated distinctly with clinical indices indicative of NEC incidence and severity. Furthermore, we demonstrated that inhibiting the expression of parthanatos-associated proteins, by either pharmacological blockage using 3-aminobenzamide (3-AB), an inhibitor of PARP1, or genetic knockout using Parp1-deficient mice, resulted in substantial improvements in both histopathological severity scores associated with intestinal injury and inflammatory reactions. Moreover, in an in vitro NEC model, reactive oxygen species (ROS)-induced DNA damage promoted the formation of PAR and nuclear translocation of apoptosis-inducing factor (AIF), thus activating PARP1-dependent parthanatos in Caco-2 cells and human intestinal organoids. Our work verifies a previously unexplored role for parthanatos in intestinal epithelial damage during NEC and suggests that inhibition of parthanatos may serve as a potential therapeutic strategy for intervention of NEC.
Collapse
Affiliation(s)
- Lingqi Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Shurong Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Minhan Qu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xu Sun
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Tingting Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Lulu Chen
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Zhu
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Yifang Ding
- Department of Pediatrics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yuan Gong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Fangjie Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zhenzhen Dong
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Rui Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Zhu L, Xie Z, Yang G, Zhou G, Li L, Zhang S. Stanniocalcin-1 Promotes PARP1-Dependent Cell Death via JNK Activation in Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304123. [PMID: 38088577 PMCID: PMC10837357 DOI: 10.1002/advs.202304123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Stanniocalcin-1 (STC1) is upregulated by inflammation and modulates oxidative stress-induced cell death. Herein, the function of STC1 in colitis and stress-induced parthanatos, a newly identified type of programmed necrotic cell death dependent on the activation of poly-ADP ribose polymerase-1 (PARP1) is investigated. Results show that STC1 expression is markedly increased in the inflamed colonic mucosa of Crohn's disease (CD) patients and chemically-induced mice colitis models. Evaluation of parthanatos severity and pro-inflammatory cytokine expression shows that intestinal-specific Stc1 knockout (Stc1INT-KO ) mice are resistant to dextran sulfate sodium (DSS)-induced colitis and exhibit lower disease severity. STC1-overexpressing cells show an increased degree of parthanatos and proinflammatory cytokine expression, whereas STC1-knockout cells show a decreased degree of parthanatos. Co-immunoprecipitation, mass spectrometry, and proteomic analyses indicate that STC1 interacts with PARP1, which activates the JNK pathway via PARP1-JNK interactions. Moreover, inhibition of PARP1 and JNK alleviates parthanatos and inflammatory injuries triggered by STC1 overexpression. Finally, following restoration of Stc1 and Parp1 expression by adeno-associated viruses, and overexpression of Stc1 and Parp1 aggravated DSS-induced colitis in Stc1INT-KO mice. In conclusion, STC1 mediates oxidative stress-associated parthanatos and aggravates inflammation via the STC1-PARP1-JNK interactions and subsequent JNK pathway activation in CD pathogenesis.
Collapse
Affiliation(s)
- Liguo Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Zhuo Xie
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Guang Yang
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Gaoshi Zhou
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Li Li
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Shenghong Zhang
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| |
Collapse
|
8
|
Zhou P, Zhang S, Wang M, Zhou J. The Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis in Inflammatory Bowel Disease, Colorectal Cancer, and Intestinal Injury. Biomolecules 2023; 13:biom13050820. [PMID: 37238692 DOI: 10.3390/biom13050820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cell death includes programmed and nonprogrammed cell death. The former mainly includes ferroptosis, necroptosis, pyroptosis, autophagy, and apoptosis, while the latter refers to necrosis. Accumulating evidence shows that ferroptosis, necroptosis, and pyroptosis play essential regulatory roles in the development of intestinal diseases. In recent years, the incidence of inflammatory bowel disease (IBD), colorectal cancer (CRC), and intestinal injury induced by intestinal ischemia-reperfusion (I/R), sepsis, and radiation have gradually increased, posing a significant threat to human health. The advancement in targeted therapies for intestinal diseases based on ferroptosis, necroptosis, and pyroptosis provides new strategies for treating intestinal diseases. Herein, we review ferroptosis, necroptosis, and pyroptosis with respect to intestinal disease regulation and highlight the underlying molecular mechanisms for potential therapeutic applications.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Shun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
9
|
Cell Death Mechanisms in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2022; 47:3525-3542. [PMID: 35976487 DOI: 10.1007/s11064-022-03697-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Ischemic stroke is one of the major causes of morbidity and mortality, affecting millions of people worldwide. Inevitably, the interruption of cerebral blood supply after ischemia may promote a cascade of pathophysiological processes. Moreover, the subsequent restoration of blood flow and reoxygenation may further aggravate brain tissue injury. Although recombinant tissue plasminogen activator (rt-PA) is the only approved therapy for restoring blood perfusion, the reperfusion injury and the narrow therapeutic time window restrict its application for most stroke patients. Increasing evidence indicates that multiple cell death mechanisms are relevant to cerebral ischemia-reperfusion injury, including apoptosis, necrosis, necroptosis, autophagy, pyroptosis, ferroptosis, and so on. Therefore, it is crucial to comprehend various cell death mechanisms and their interactions. In this review, we summarize the various signaling pathways underlying cerebral ischemia-reperfusion injury and elaborate on the crosstalk between the different mechanisms.
Collapse
|
10
|
Chou SC, Aggarwal A, Dawson VL, Dawson TM, Kam TI. Recent advances in preventing neurodegenerative diseases. Fac Rev 2022; 10:81. [PMID: 35028646 PMCID: PMC8725650 DOI: 10.12703/r/10-81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The worldwide health-care burden of neurodegenerative diseases is on the rise-a crisis created through a combination of increased caseload and lack of effective treatments. The limitations of pharmacotherapy in these disorders have led to an urgent shift toward research and clinical trials for the development of novel compounds, interventions, and methods that target shared features across the spectrum of neurodegenerative diseases. Research targets include neuronal cell death, mitochondrial dysfunction, protein aggregation, and neuroinflammation. In the past few years, there has been a growth in understanding of the pathophysiologic mechanisms of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease. This increase in knowledge has led to the discovery of numerous novel neuroprotective therapeutic targets. In this context, we reviewed and summarized recent advancements in neuroprotective strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akanksha Aggarwal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
| |
Collapse
|
11
|
Haga S, Kanno A, Morita N, Jin S, Matoba K, Ozawa T, Ozaki M. Poly(ADP-ribose) Polymerase (PARP) is Critically Involved in Liver Ischemia/reperfusion-injury. J Surg Res 2021; 270:124-138. [PMID: 34656890 DOI: 10.1016/j.jss.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) is a DNA-repairing enzyme activated by extreme genomic stress, and therefore is potently activated in the remnant liver suffering from ischemia after surgical resection. However, the impact of PARP on post-ischemic liver injury has not been elucidated yet. MATERIALS AND METHODS We investigated the impact of PARP on murine hepatocyte/liver injury induced by hypoxia/ischemia, respectively. RESULTS PJ34, a specific inhibitor of PARP, markedly protected against hypoxia/reoxygenation (H/R)-induced cell death, though z-VAD-fmk, a pan-caspase inhibitor similarly showed the protective effect. PJ34 did not affect H/R-induced caspase activity or caspase-mediated cell death. z-VAD-fmk also did not affect the production of PAR (i.e., PARP activity). Therefore, PARP- and caspase-mediated cell death occurred in a mechanism independent of each other in H/R. H/R immediately induced activation of PARP and cell death afterwards, both of which were suppressed by PJ34 or Trolox, an antioxidant. This suggests that H/R-induced cell death occurred redox-dependently through PARP activation. H/R and OS induced nuclear translocation of apoptosis inducing factor (AIF, a marker of parthanatos) and RIP1-RIP3 interaction (a marker of necroptosis), both of which were suppressed by PJ34. H/R induced PARP-mediated parthanatos and necroptosis redox-dependently. In mouse experiments, PJ34 significantly reduced serum levels of AST, ALT & LDH and areas of hepatic necrosis after liver ischemia/reperfusion, similar to z-VAD-fmk or Trolox. CONCLUSION PARP, activated by ischemic damage and/or oxidative stress, may play a critical role in post-ischemic liver injury by inducing programmed necrosis (parthanatos and necroptosis). PARP inhibition may be one of the promising strategies against post-ischemic liver injury.
Collapse
Affiliation(s)
- Sanae Haga
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akira Kanno
- Department of Environmental Applied Chemistry, University of Toyama, Toyama, Toyama, Japan
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Shigeki Jin
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kotaro Matoba
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan; Laboratory of Molecular and Functional Bio-Imaging, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
12
|
Mi L, Zhang N, Wan J, Cheng M, Liao J, Zheng X. Remote ischemic post‑conditioning alleviates ischemia/reperfusion‑induced intestinal injury via the ERK signaling pathway‑mediated RAGE/HMGB axis. Mol Med Rep 2021; 24:773. [PMID: 34490475 PMCID: PMC8441982 DOI: 10.3892/mmr.2021.12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia reperfusion (I/R) injury is a tissue and organ injury that frequently occurs during surgery and significantly contributes to the pathological processes of severe infection, injury, shock, cardiopulmonary insufficiency and other diseases. However, the mechanism of intestinal I/R injury remains to be elucidated. A mouse model of intestinal I/R injury was successfully established and the model mice were treated with remote ischemic post‑conditioning (RIPOC) and/or an ERK inhibitor (CC‑90003), respectively. Histopathological changes of the intestinal mucosa were determined by hematoxylin and eosin staining. In addition, the levels of high‑mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) expression were confirmed by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry assays. The levels of antioxidants, oxidative stress markers (8‑OHdG) and interleukin 1 family members were evaluated by ELISA assays and the levels of NF‑κB pathway proteins were analyzed by western blotting. The data demonstrated that RIPOC could attenuate the histopathological features of intestinal mucosa in the intestinal I/R‑injury mouse models via the ERK pathway. It was also revealed that HMGB1 and RAGE expression in the mouse models could be markedly reduced by RIPOC (P<0.05) and that these reductions were associated with inhibition of the ERK pathway. Furthermore, it was demonstrated that RIPOC produced significant antioxidant and anti‑inflammatory effects following an intestinal I/R injury and that these effects were mediated via the ERK pathway (P<0.05). In addition, RIPOC was demonstrated to suppress the NF‑κB (p65)/NLR family pyrin domain containing 3 (NLRP3) inflammatory pathways in the intestinal I/R injury mouse models via the ERK pathway. The findings of the present study demonstrated that RIPOC helped to protect mice with an intestinal I/R injury by downregulating the ERK pathway.
Collapse
Affiliation(s)
- Lei Mi
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Nan Zhang
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jiyun Wan
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Ming Cheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jianping Liao
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
13
|
Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed Pharmacother 2021; 138:111482. [PMID: 33740527 DOI: 10.1016/j.biopha.2021.111482] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022] Open
Abstract
Intestinal ischemic reperfusion injury (IIRI) is a life-threatening condition with high morbidity and mortality in the clinic. IIRI was induced by intestinal ischemic diseases such as, small bowel transplantation, aortic aneurysm surgery, and strangulated hernias. Although related mechanisms have not been fully elucidated, during the last decade, researches have demonstrated that many factors are crucial in the pathological process, including oxidative stress (OS), epithelial barrier function disorder, and so on. Rats model, as the most applied animal IIRI model, provides specific targets for researches and therapeutic strategies. Moreover, various treatment strategies such as, anti-oxidative stress, anti-apoptosis, and anti-inflammation, have shown promising effects in alleviating IIRI. However, current researches cannot solve the clinical problems of IIRI, and specific treatment strategies are still needed to be exploited. This review focuses on a recommended experimental IIRI rat model and understanding of the involved mechanisms such as, OS, gut bacteria translocation, apoptosis, and necroptosis, aim at providing novel ideas for therapeutic strategies of IIRI.
Collapse
|
14
|
Liu Y, Xu Q, Wang Y, Liang T, Li X, Wang D, Wang X, Zhu H, Xiao K. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis 2021; 12:62. [PMID: 33431831 PMCID: PMC7801412 DOI: 10.1038/s41419-020-03365-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022]
Abstract
Necroptosis, a newly discovered form of programmed cell death that combines the features of apoptosis and necrosis, is important in various physiological and pathological disorders. However, the role of necroptosis on intestinal injury during sepsis has been rarely evaluated. This study aimed to investigate the presence of necroptosis in intestinal injury, and its contribution to intestinal injury in a piglet model challenged with Escherichia coli lipopolysaccharide (LPS). Firstly, a typical cell necrotic phenomenon was observed in jejunum of LPS-challenged pigs by transmission electron microscope. Protein expression of necroptosis signals including receptor-interacting protein kinase (RIP) 1, RIP3, and phosphorylated mixed-lineage kinase domain-like protein (MLKL), mitochondrial proteins including phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (DRP1), and cytoplasmic high-mobility group box 1 (HMGB1) were time-independently increased in jejunum of LPS-challenged piglets, which was accompanied by the impairment of jejunal morphology, and digestive and barrier function indicated by lower activities of jejunal disaccharidases and protein expression of jejunal tight junction proteins claudin-1 and occludin. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were also dynamically induced in serum and jejunum of piglets after LPS challenge. Moreover, pretreatment with necrostatin-1 (Nec-1), an specific inhibitor of necroptosis, inhibited necroptosis indicated by decreased necrotic ultrastructural changes and decreased protein expression of RIP1, RIP3, and phosphorylated MLKL as well as PGAM5, DRP1, and cytoplasmic HMGB1. Nec-1 pretreatment reduced jejunal morphological injury, and improved digestive and barrier function. Nec-1 pretreatment also decreased the levels of serum and jejunal pro-inflammatory cytokines and the numbers of jejunal macrophages and monocytes. These findings indicate for the first time that necroptosis is present and contributes to LPS-induced intestinal injury. Nec-1 may have a preventive effect on intestinal injury during sepsis.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China.
| | - Qiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, 430023, Wuhan, China
| |
Collapse
|
15
|
Zhu H, Fang Z, Chen J, Yang Y, Gan J, Luo L, Zhan X. PARP-1 and SIRT-1 are Interacted in Diabetic Nephropathy by Activating AMPK/PGC-1α Signaling Pathway. Diabetes Metab Syndr Obes 2021; 14:355-366. [PMID: 33531822 PMCID: PMC7846827 DOI: 10.2147/dmso.s291314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a metabolic disorder characterized by the accumulation of extracellular matrix (ECM). This study aims to investigate whether exists an interplay between poly (ADP-ribose) polymerase 1 (PARP-1) and sirtuin 1 (SIRT-1) in DN via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) signaling pathway. METHODS Eight-week-old male obese leptin-resistant (db/db) mice and nondiabetic control male C57BLKs/J (db/m) mice were used in this study. Body weight and blood glucose were evaluated after 6 h of fasting, which continues for 4 weeks. The kidney tissues were dissected for Western blot, immunofluorescence (IF) assay. Besides, PARP activity assay, MTT assay, NAD+ qualification, Western blot and IF were also performed to detect the level and relation of PARP-1 and SIRT-1 in mouse mesangial cells (MCs) with or without high glucose followed by inhibiting or elevating PARP-1 and SIRT-1, respectively. RESULTS Western blotting shows PARP-1 and ECM marker fibronectin (FN) are upregulated while SIRT-1 is downregulated in db/db mice (p<0.05) or in mouse MCs with high glucose (p<0.05), which are significantly restored by PARP-1 inhibitor (PJ34) (p<0.05) and SIRT-1 lentiviral transfected treatment (p<0.05), or worsened by SIRT-1 inhibitor EX527 (p<0.05). PJ34 treatment (p < 0.05) or SIRT-1 overexpression (p < 0.05) could increase PGC-1α and p-AMPK levels, concomitant with down expression of FN, however, were reversed in the presence of EX527 (p<0.05). DISCUSSION Our results suggest an important relationship between PARP-1 and SIRT-1 through AMPK-PGC-1α pathway, indicating a potential therapeutic method for DN.
Collapse
Affiliation(s)
- Hengmei Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Zhi Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Jiehui Chen
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Yun Yang
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Jiacheng Gan
- Department of Nuclear Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Liang Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou341000, People’s Republic of China
- Correspondence: Liang Luo Department of Cardiology, Ganzhou People’s Hospital, Ganzhou341000, People’s Republic of China Tel/Fax +8613807979503 Email
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
- Xiaojiang Zhan Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China Tel/Fax +8613507919885 Email
| |
Collapse
|
16
|
Xiao K, Xu Q, Liu C, He P, Qin Q, Zhu H, Zhang J, Gin A, Zhang G, Liu Y. Docosahexaenoic acid alleviates cell injury and improves barrier function by suppressing necroptosis signalling in TNF-α-challenged porcine intestinal epithelial cells. Innate Immun 2020; 26:653-665. [PMID: 33106070 PMCID: PMC7787556 DOI: 10.1177/1753425920966686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids are known to have beneficial effects on intestinal health. However, the underling mechanisms are largely unknown. The present study was conducted to investigate whether docosahexaenoic acid (DHA) attenuates TNF-α-induced intestinal cell injury and barrier dysfunction by modulating necroptosis signalling. Intestinal porcine epithelial cell line 1 was cultured with or without 12.5 µg/ml DHA, followed by exposure to 50 ng/ml TNF-α for indicated time periods. DHA restored cell viability and cell number triggered by TNF-α. DHA also improved barrier function, which was indicated by increased trans-epithelial electrical resistance, decreased FD4 flux and increased membrane localisation of zonula occludins (ZO-1) and claudin-1. Moreover, DHA suppressed cell necrosis in TNF-α-challenged cells, as shown in the IncuCyte ZOOM™ live cell imaging system and transmission electron microscopy. In addition, DHA decreased protein expression of TNF receptor, receptor interacting protein kinase 1, RIP3 and phosphorylation of mixed lineage kinase-like protein, phosphoglycerate mutase family 5, dynamin-related protein 1 and high mobility group box-1 protein. Furthermore, DHA suppressed protein expression of caspase-3 and caspase-8. Collectively, these results indicate that DHA is capable of alleviating TNF-α-induced cell injury and barrier dysfunction by suppressing the necroptosis signalling pathway.
Collapse
Affiliation(s)
- Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Qiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Congcong Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Pengwei He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Qin Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| | - Ashley Gin
- Department of Animal and Food Sciences, Oklahoma State University, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Centre for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, PR China
| |
Collapse
|
17
|
Wang L, Chen B, Xiong X, Chen S, Jin L, Zhu M. Necrostatin-1 Synergizes the Pan Caspase Inhibitor to Attenuate Lung Injury Induced by Ischemia Reperfusion in Rats. Mediators Inflamm 2020; 2020:7059304. [PMID: 33162831 PMCID: PMC7604602 DOI: 10.1155/2020/7059304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Both apoptosis and necroptosis have been recognized to be involved in ischemia reperfusion-induced lung injury. We aimed to compare the efficacies of therapies targeting necroptosis and apoptosis and to determine if there is a synergistic effect between the two therapies in reducing lung ischemia reperfusion injury. METHODS Forty Sprague-Dawley rats were randomized into 5 groups: sham (SM) group, ischemia reperfusion (IR) group, necrostatin-1+ischemia reperfusion (NI) group, carbobenzoxy-Val-Ala-Asp-fluoromethylketone+ischemia reperfusion (ZI) group, and necrostatin-1+carbobenzoxy-Val-Ala-Asp-fluoromethylketone+ischemia reperfusion (NZ) group. The left lung hilum was exposed without being clamped in rats from the SM group, whereas the rats were subjected to lung ischemia reperfusion by clamping the left lung hilum for 1 hour, followed by reperfusion for 3 hours in the IR group. 1 mg/kg necrostatin-1 (Nec-1: a specific necroptosis inhibitor) and 3 mg/kg carbobenzoxy-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk: a pan caspase inhibitor) were intraperitoneally administrated prior to ischemia in NI and ZI groups, respectively, and the rats received combined administration of Nec-1 and z-VAD-fmk in the NZ group. Upon reperfusion, expressions of receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and caspase-8 were measured, and the flow cytometry analysis was used to assess the cell death patterns in the lung tissue. Moreover, inflammatory marker levels in the bronchoalveolar lavage fluid and pulmonary edema were evaluated. RESULTS Both Nec-1 and z-VAD-fmk, either alone or in combination, significantly reduced morphological damage, inflammatory markers, and edema in lung tissues following reperfusion, and cotreatment of z-VAD-fmk with Nec-1 produced the optimal effect. The rats treated with Nec-1 had lower levels of inflammatory markers in the bronchoalveolar lavage fluid than those receiving z-VAD-fmk alone (P < 0.05). Interestingly, the z-VAD-fmk administration upregulated RIP1 and RIP3 expressions in the lung tissue from the ZI group compared to those in the IR group (P < 0.05). Reperfusion significantly increased the percentages of necrotic and apoptotic cells in lung tissue single-cell suspension, which could be decreased by Nec-1 and z-VAD-fmk, respectively (P < 0.05). CONCLUSIONS Nec-1 synergizes the pan caspase inhibitor to attenuate lung ischemia reperfusion injury in rats. Our data support the potential use of Nec-1 in lung transplantation-related disorders.
Collapse
Affiliation(s)
- Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Baihui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangqing Xiong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shunli Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lida Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Meizhen Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
18
|
Moon CM, Zheng JH, Min JJ, Jeong YY, Heo SH, Shin SS. In Vivo Bioluminescence Imaging for Targeting Acute Hypoxic/Ischemic Small Intestine with Engineered Salmonella typhimurium. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:484-492. [PMID: 32728597 PMCID: PMC7381499 DOI: 10.1016/j.omtm.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
This study aimed at investigating the feasibility of bioluminescence imaging (BLI) with engineered Salmonella typhimurium (ΔppGpp S. typhimurium) for visualizing acute hypoxic/ischemic bowels. At the start of 12- or 24-h reperfusion, ΔppGpp S. typhimurium was injected into the lateral tail veins of rats in which three segments of the small intestine were respectively subjected to 2, 3, and 4 h of ischemia. BLI and magnetic resonance imaging were performed at each reperfusion time point. Bioluminescence was exclusively detected in the hypoxic/ischemic segment of the intestine, showing the ability of ΔppGpp S. typhimurium to specifically target and proliferate in a hypoxic/ischemic area. Serial monitoring of these rat models revealed a progressive increase in bacterial bioluminescence in the ischemic intestines in conjunction with viable bacterial counts. The viable bacterial counts were positively correlated with lactate dehydrogenase levels after 24 h of reperfusion following 3 or 4 h of ischemia as well as interleukin-6 levels after 24 h of reperfusion following 4 h of ischemia. Our findings demonstrated that BLI was able to detect the acute hypoxic/ischemic bowel via monitoring of the distribution, internalization, and activity of administered ΔppGpp S. typhimurium. These findings may be useful for the early diagnosis of ischemic bowel disease.
Collapse
Affiliation(s)
- Chung-Man Moon
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.,Research Institute of Medical Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Hai Zheng
- College of Biology, Hunan University, Changsha, Hunan, China.,Laboratory of In Vivo Molecular Imaging, Institute for Molecular Imaging and Theranostics, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Suk-Hee Heo
- Department of Radiology, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Eryilmaz S, Turkyilmaz Z, Karabulut R, Gulburun MA, Poyraz A, Gulbahar O, Arslan B, Sonmez K. The effects of hydrogen-rich saline solution on intestinal anastomosis performed after intestinal ischemia reperfusion injury. J Pediatr Surg 2020; 55:1574-1578. [PMID: 31466816 DOI: 10.1016/j.jpedsurg.2019.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 01/31/2023]
Abstract
AIM We investigated the effects of hydrogen-rich saline solution (HRSS) on intestinal anastomosis performed after intestinal ischemia reperfusion injury (IRI). MATERIALS AND METHODS Thirty Wistar albino female rats were randomly divided into five groups. Only laparotomy was performed in the Sham group. In the other four groups, an intestinal IRI was performed for 45 min by clamping the superior mesenteric artery. After intestinal IRI, anastomosis was performed by cutting the intestine from the proximal 15 cm of the ileocecal valve at the first and 24th hours. HRSS was given intraperitoneally 5 ml/kg before reperfusion and for four more days in the HRSS1 and HRSS24groups, while no treatment was given to the I/R1 and I/R24 groups. After 5 days, all groups underwent relaparotomy. The anastomotic bursting pressures were measured in all groups, except the Sham group. The tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), myeloperoxidase (MPO) and malondialdehyde (MDA) levels were measured in the tissues taken from the anastomosis line. The tissue sections were evaluated histopathologically and the apoptosis index was determined by applying the TUNEL method. The results were analyzed one-way analysis of variance (ANOVA) and Pearson's chi-squared test. RESULTS Although the MPO, MDA, IL-6 and TNF-α tissue values were not statistically significant among the groups, the degree of tissue damage and apoptosis levels were lower and the anastomotic bursting pressures values were higher in the HRSS1 and HRSS24 groups compared to the I/R1 and I/R24 groups. CONCLUSION HRSS is effective in reducing the intestinal damage caused by an IRI: HRSS has the potential to reduce the detrimental effects of intestinal anastomosis performed after an intestinal IRI.
Collapse
Affiliation(s)
- Sibel Eryilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Zafer Turkyilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ramazan Karabulut
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Merve Altin Gulburun
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aylar Poyraz
- Department of Pediatric Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Pediatric Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Burak Arslan
- Department of Pediatric Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kaan Sonmez
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
20
|
Gao Y, Bai L, Zhou W, Yang Y, Zhang J, Li L, Jiang M, Mi Y, Li TT, Zhang X, Zhang W, Xu JT. PARP-1-regulated TNF-α expression in the dorsal root ganglia and spinal dorsal horn contributes to the pathogenesis of neuropathic pain in rats. Brain Behav Immun 2020; 88:482-496. [PMID: 32283287 DOI: 10.1016/j.bbi.2020.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Emerging evidence has implicated poly-(ADP-ribose) polymerase 1 (PARP-1), a transcriptional coregulator, in a variety of inflammatory diseases. In the current study, the role of PARP-1 in neuropathic pain and the underlying mechanisms were investigated. Neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rates. Western blotting, qRT-PCR, immunohistochemistry, chromatin immunoprecipitation (ChIP), and Co-IP assays were performed to elucidate the mechanisms. The results showed that SNL resulted in a significant increase in the expression and activation of PARP-1 in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn, which occurred on day one, reached peak on day 7, and persisted more than 2 weeks after surgery. Double immunofluorescence staining revealed that PARP-1 was expressed exclusively in DRG A-type and C-type neurons. In the spinal cord, PARP-1 mainly colocalized with the neuronal marker NeuN and the astrocytic marker GFAP specifically in the superficial lamina. Prior intrathecal (i.t.) injection of PJ-34, a PARPs inhibitor, or Tiq-A, a specific PARP-1 inhibitor, dose-dependently prevented the reductions in PWT and PWL following SNL. Established neuropathic pain-like hypersensitivity was also attenuated with i.t. injection of PJ-34 and Tiq-A starting on day 7 following SNL, a timepoint at which neuropathic pain was fully established. SNL-induced mechanical allodynia and thermal hyperalgesia were also alleviated by i.t. injection of PARP-1 siRNA following a reduction in PARP-1 expression in the dorsal horn. Moreover, the SNL-induced increases in TNF-α protein and mRNA in the dorsal horn and DRG were dramatically suppressed by i.t. injection of Tiq-A or PARP-1 siRNA. The i.t. lipopolysaccharide (LPS)-induced increase in the production of TNF-α in the dorsal horn was also inhibited by prior to i.t. injection of PARP-1 siRNA. Results of ChIP assay showed that SNL-induced PARP-1 activation promoted the binding of NF-κB p65 with the TNF-α promoter in the dorsal horn and that PARP-1 inhibition reduced this binding and suppressed TNF-α expression. Co-IP assay revealed that SNL caused a significant increase in the level of histone H1 poly(ADP)-ribosylation. Together, these results indicate that PARP-1-regulated TNF-α expression in the DRG and spinal dorsal horn following SNL contributes to the development and maintenance of neuropathic pain. Targeting PARP-1 might be a promising therapeutic strategy for the treatment of the chronic pain.
Collapse
Affiliation(s)
- Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Wenjuan Zhou
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Mingjun Jiang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yang Mi
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Tong-Tong Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Khripun AI, Mironkov AB, Pryamikov AD, Tyurin IN, Abashin MV, Alimov AN, Shurygin SN, Agasyan GA. [Endovascular surgery for acute mesenteric ischemia]. Khirurgiia (Mosk) 2020:61-66. [PMID: 32271739 DOI: 10.17116/hirurgia202003161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To demonstrate the results of endovascular treatment of 15 patients with acute mesenteric ischemia. MATERIAL AND METHODS There were 15 patients with acute mesenteric ischemia who underwent surgery (9 men and 6 women). Mean age was 77±11 years. Acute intestinal ischemia was caused by thromboembolism of superior mesenteric artery (9 patients), thrombosis of superior mesenteric artery (5 patients) and critical stenosis of the ostia of superior mesenteric artery and celiac trunk (1 patient). Mean time from clinical manifestation of disease to admission to the hospital was 13 hours (range 2-72 hours). In-hospital development of acute mesenteric ischemia was noted in 2 patients. Indications for endovascular intervention and techniques of endovascular revascularization of superior mesenteric artery are described in the article. RESULTS Blood flow restoration in superior mesenteric artery was achieved in 14 (93%) out of 15 patients. Laparotomy was required in 4 (27%) patients for extensive resection of necrotic intestine (n=1, 6.7%), local resection of small bowel (n=2, 13%). In another (6.7%) patient, intestine was recognized as viable after laparotomy. A bulk of intestine was preserved in most patients (n=14, 93%). In-hospital mortality rate was 47% (7 patients died). The main cause of nosocomial death (6 cases) was reperfusion syndrome followed by respiratory distress syndrome and multiple organ failure. CONCLUSION New methods of prevention and treatment of reperfusion syndrome can improve the results of treatment of acute mesenteric ischemia.
Collapse
Affiliation(s)
- A I Khripun
- Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Department of Surgery and Endoscopy of the Faculty of Additional Professional Education, Moscow, Russia
| | - A B Mironkov
- Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Department of Surgery and Endoscopy of the Faculty of Additional Professional Education, Moscow, Russia; V.M. Buyanov Municipal Clinical Hospital of the Moscow Healthcare Department, Moscow, Russia
| | - A D Pryamikov
- Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Department of Surgery and Endoscopy of the Faculty of Additional Professional Education, Moscow, Russia; V.M. Buyanov Municipal Clinical Hospital of the Moscow Healthcare Department, Moscow, Russia
| | - I N Tyurin
- V.M. Buyanov Municipal Clinical Hospital of the Moscow Healthcare Department, Moscow, Russia; Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Department of Anesthesiology and Resuscitation of the Faculty of Additional Professional Education, Moscow, Russia
| | - M V Abashin
- Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Department of Surgery and Endoscopy of the Faculty of Additional Professional Education, Moscow, Russia; V.M. Buyanov Municipal Clinical Hospital of the Moscow Healthcare Department, Moscow, Russia
| | - A N Alimov
- Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Department of Surgery and Endoscopy of the Faculty of Additional Professional Education, Moscow, Russia
| | - S N Shurygin
- V.M. Buyanov Municipal Clinical Hospital of the Moscow Healthcare Department, Moscow, Russia
| | - G A Agasyan
- Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Department of Surgery and Endoscopy of the Faculty of Additional Professional Education, Moscow, Russia; V.M. Buyanov Municipal Clinical Hospital of the Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
22
|
Wen S, Li X, Ling Y, Chen S, Deng Q, Yang L, Li Y, Shen J, Qiu Y, Zhan Y, Lai H, Zhang X, Ke Z, Huang W. HMGB1-associated necroptosis and Kupffer cells M1 polarization underlies remote liver injury induced by intestinal ischemia/reperfusion in rats. FASEB J 2020; 34:4384-4402. [PMID: 31961020 DOI: 10.1096/fj.201900817r] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/07/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Reperfusion of the ischemic intestine often leads to drive distant organ injury, especially injuries associated with hepatocellular dysfunction. The precise molecular mechanisms and effective multiple organ protection strategies remain to be developed. In the current study, significant remote liver dysfunction was found after 6 hours of reperfusion according to increased histopathological scores, serum lactate dehydrogenase (LDH), alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, as well as enhanced bacterial translocation in a rat intestinal ischemia/reperfusion (I/R) injury model. Moreover, receptor-interacting protein kinase 1/3 (RIP1/3) and phosphorylated-MLKL expressions in tissue were greatly elevated, indicating that necroptosis occurred and resulted in acute remote liver function impairment. Inhibiting the necroptotic pathway attenuated HMGB1 cytoplasm translocation and tissue damage. Meanwhile, macrophage-depletion study demonstrated that Kupffer cells (KCs) are responsible for liver damage. Blocking HMGB1 partially restored the liver function via suppressed hepatocyte necroptosis, tissue inflammation, hepatic KCs, and circulating macrophages M1 polarization. What's more, HMGB1 neutralization further protects against intestinal I/R-associated liver damage in microbiota-depleted rats. Therefore, intestinal I/R is likely associated with acute liver damage due to hepatocyte necroptosis, and which could be ameliorated by Nec-1 administration and HMGB1 inhibition with the neutralizing antibody and inhibitor. Necroptosis inhibition and HMGB1 neutralization/inhibition, may emerge as effective pharmacological therapies to minimize intestinal I/R-induced acute remote organ dysfunction.
Collapse
Affiliation(s)
- Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoqian Chen
- Department of Medical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiwen Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China.,Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiantong Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Qiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Zhan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjin Lai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Cacciolatti C, Meyer-Ficca ML, Southwood LL, Meyer RG, Bertolotti L, Zarucco L. In vitro effects of poly(ADP-ribose) polymerase inhibitors on the production of tumor necrosis factor-α by interferon- γ - and lipopolysaccharide-stimulated peripheral blood mononuclear cells of horses. Am J Vet Res 2019; 80:663-669. [PMID: 31246122 DOI: 10.2460/ajvr.80.7.663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate effects of poly(ADP-ribose) polymerase-1 (PARP1) inhibitors on the production of tumor necrosis factor-α (TNF-α) by interferon-γ (IFN-γ)- and lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) of horses as an in vitro model of inflammation in horses. SAMPLE 1,440 samples of PBMCs from 6 healthy research horses. PROCEDURES From heparinized whole blood samples, PBMC cultures were obtained. An initial dose-response trial on 48 PBMC samples from 2 horses (24 samples each) was used to determine concentrations of IFN-γ and LPS for use as low- and high-level stimulation concentrations. Seventy-two PBMC samples from 6 horses were assigned equally to 1 of 4 PARP1 inhibition categories: no PARP1 inhibitor (PARP1 inhibition control); 2-((R)-2-methylpyrrolidin-2-yl)-1H-benzimidazole-4-carbozamide dihydrochloride (ABT888);4-(3-(1-(cyclopropanecarbonyl)piperazine-4-carbonyl)-4-fluorobenzyl)phthalazin-1(2H)-one (AZD2281); or N-(6-oxo-5,6-dihydrophenanthridin-2-yl) -N,N-dimethylacetamide hydrochloride (PJ34). Samples of PBMCs from each horse and each PARP1 inhibition category were then assigned to 1 of 3 levels of IFN-γ and LPS stimulation: none (control), low stimulation, or high stimulation. After a 24-hour incubation period, a TNF-α ELISA was used to measure TNF-α concentration in the supernatant. Results were compared across treatments and for each horse. Data were analyzed with repeated-measures ANOVA. RESULTS Median TNF-α concentration was significantly lower for PJ34-treated, high-level stimulated PBMCs than for PARP1 inhibition control, high-level stimulated PBMCs; however, no other meaningful differences in TNF-α concentration were detected among the inhibition and stimulation combinations. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that PJ34 PARP1 inhibition may reduce TNF-α production in horses, a potential benefit in reducing inflammation and endotoxin-induced damage in horses.
Collapse
|
24
|
Wang Z, Guo LM, Wang SC, Chen D, Yan J, Liu FX, Huang JF, Xiong K. Progress in studies of necroptosis and its relationship to disease processes. Pathol Res Pract 2018; 214:1749-1757. [PMID: 30244947 DOI: 10.1016/j.prp.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022]
Abstract
This review briefly introduces the mechanism and detection methods of necroptosis in recent years. The most significant points of this review focus on the involvement of necroptotic proteins in disease progression. The following aspects are summarized: 1) RIPs, MLKL, and the upstream and downstream molecules that mediate necroptosis; 2) The development of detection methods for necroptosis; 3) The involvement of related necroptotic proteins in diverse diseases etiology; and 4) The application of necroptotic proteins in disease diagnosis.
Collapse
Affiliation(s)
- Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li-Min Guo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Shu-Chao Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Feng-Xia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|