1
|
Manfredini L, Gürcan ÖD. Shell models on recurrent sequences: Fibonacci, Padovan, and other series. Phys Rev E 2025; 111:025103. [PMID: 40103027 DOI: 10.1103/physreve.111.025103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025]
Abstract
A class of shell models is proposed where the shell variables are defined on a recurrent sequence of integer wave numbers such as the Fibonacci or the Padovan series or their variations, including a sequence made of square roots of Fibonacci numbers rounded to the nearest integer. Considering the simplest model, which involves only local interactions, the interaction coefficients can be generalized in such a way that the inviscid invariants, such as energy and helicity, can be conserved even though there is no exact self-similarity. It is shown that these models basically have identical features with standard shell models and produce the same power-law spectra, similar spectral fluxes, and analogous deviation from self-similar scaling of the structure functions, implying comparable levels of turbulent intermittency. Such a formulation potentially opens up the possibility of using shell models, or their generalizations along with discretized regular grids such as those found in direct numerical simulations, as either diagnostic tools or subgrid models. It also allows us to develop models where the wave-number shells can be interpreted as sparsely decimated sets of wave numbers over an initially regular grid. In addition to conventional shell models with local interactions that result in forward cascade, a particular a helical shell model with long-range interactions is considered on a similarly recurrent sequence of wave numbers, corresponding to the Fibonacci series, and found to result in the usual inverse cascade.
Collapse
Affiliation(s)
- L Manfredini
- Observatoire de Paris, Université Paris-Saclay, Sorbonne Université, Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, F-91120 Palaiseau, France
| | - Ö D Gürcan
- Observatoire de Paris, Université Paris-Saclay, Sorbonne Université, Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, F-91120 Palaiseau, France
| |
Collapse
|
2
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Bellows S, Janes G, Avitabile D, King JR, Bishopp A, Farcot E. Fluctuations in auxin levels depend upon synchronicity of cell divisions in a one-dimensional model of auxin transport. PLoS Comput Biol 2023; 19:e1011646. [PMID: 38032890 PMCID: PMC10688697 DOI: 10.1371/journal.pcbi.1011646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Auxin is a well-studied plant hormone, the spatial distribution of which remains incompletely understood. Here, we investigate the effects of cell growth and divisions on the dynamics of auxin patterning, using a combination of mathematical modelling and experimental observations. In contrast to most prior work, models are not designed or tuned with the aim to produce a specific auxin pattern. Instead, we use well-established techniques from dynamical systems theory to uncover and classify ranges of auxin patterns as exhaustively as possible as parameters are varied. Previous work using these techniques has shown how a multitude of stable auxin patterns may coexist, each attainable from a specific ensemble of initial conditions. When a key parameter spans a range of values, these steady patterns form a geometric curve with successive folds, often nicknamed a snaking diagram. As we introduce growth and cell division into a one-dimensional model of auxin distribution, we observe new behaviour which can be explained in terms of this diagram. Cell growth changes the shape of the snaking diagram, and this corresponds in turn to deformations in the patterns of auxin distribution. As divisions occur this can lead to abrupt creation or annihilation of auxin peaks. We term this phenomenon 'snake-jumping'. Under rhythmic cell divisions, we show how this can lead to stable oscillations of auxin. We also show that this requires a high level of synchronisation between cell divisions. Using 18 hour time-lapse imaging of the auxin reporter DII:Venus in roots of Arabidopsis thaliana, we show auxin fluctuates greatly, both in terms of amplitude and periodicity, consistent with the snake-jumping events observed with non-synchronised cell divisions. Periodic signals downstream of the auxin signalling pathway have previously been recorded in plant roots. The present work shows that auxin alone is unlikely to play the role of a pacemaker in this context.
Collapse
Affiliation(s)
- Simon Bellows
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - George Janes
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Daniele Avitabile
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. King
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Kiradjiev KB, Band LR. Multiscale Asymptotic Analysis Reveals How Cell Growth and Subcellular Compartments Affect Tissue-Scale Hormone Transport. Bull Math Biol 2023; 85:101. [PMID: 37702758 PMCID: PMC10499980 DOI: 10.1007/s11538-023-01199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Determining how cell-scale processes lead to tissue-scale patterns is key to understanding how hormones and morphogens are distributed within biological tissues and control developmental processes. In this article, we use multiscale asymptotic analysis to derive a continuum approximation for hormone transport in a long file of cells to determine how subcellular compartments and cell growth and division affect tissue-scale hormone transport. Focusing our study on plant tissues, we begin by presenting a discrete multicellular ODE model tracking the hormone concentration in each cell's cytoplasm, subcellular vacuole, and surrounding apoplast, represented by separate compartments in the cell-file geometry. We allow the cells to grow at a rate that can depend both on space and time, accounting for both cytoplasmic and vacuolar expansion. Multiscale asymptotic analysis enables us to systematically derive the corresponding continuum model, obtaining an effective reaction-advection-diffusion equation and revealing how the effective diffusivity, effective advective velocity, and the effective sink term depend on the parameters in the cell-scale model. The continuum approximation reveals how subcellular compartments, such as vacuoles, can act as storage vessels, that significantly alter the effective properties of hormone transport, such as the effective diffusivity and the induced effective velocity. Furthermore, we show how cell growth and spatial variance across cell lengths affect the effective diffusivity and the induced effective velocity, and how these affect the tissue-scale hormone distribution. In particular, we find that cell growth naturally induces an effective velocity in the direction of growth, whereas spatial variance across cell lengths induces effective velocity due to the presence of an extra compartment, such as the apoplast and the vacuole, and variations in the relative sizes between the compartments across the file of cells. It is revealed that hormone transport is faster across cells of decreasing lengths than cells with increasing lengths. We also investigate the effect of cell division on transport dynamics, assuming that each cell divides as soon as it doubles in size, and find that increasing the time between successive cell divisions decreases the growth rate, which enhances the effect of cell division in slowing hormone transport. Motivated by recent experimental discoveries, we discuss particular applications for transport of gibberellic acid (GA), an important growth hormone, within the Arabidopsis root. The model reveals precisely how membrane proteins that mediate facilitated GA transport affect the effective tissue-scale transport. However, the results are general enough to be relevant to other plant hormones, or other substances that are transported in a similar way in any type of cells.
Collapse
Affiliation(s)
- K B Kiradjiev
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - L R Band
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
5
|
Marconi M, Wabnik K. Computer models of cell polarity establishment in plants. PLANT PHYSIOLOGY 2023; 193:42-53. [PMID: 37144853 PMCID: PMC10469401 DOI: 10.1093/plphys/kiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Plant development is a complex task, and many processes involve changes in the asymmetric subcellular distribution of cell components that strongly depend on cell polarity. Cell polarity regulates anisotropic growth and polar localization of membrane proteins and helps to identify the cell's position relative to its neighbors within an organ. Cell polarity is critical in a variety of plant developmental processes, including embryogenesis, cell division, and response to external stimuli. The most conspicuous downstream effect of cell polarity is the polar transport of the phytohormone auxin, which is the only known hormone transported in a polar fashion in and out of cells by specialized exporters and importers. The biological processes behind the establishment of cell polarity are still unknown, and researchers have proposed several models that have been tested using computer simulations. The evolution of computer models has progressed in tandem with scientific discoveries, which have highlighted the importance of genetic, chemical, and mechanical input in determining cell polarity and regulating polarity-dependent processes such as anisotropic growth, protein subcellular localization, and the development of organ shapes. The purpose of this review is to provide a comprehensive overview of the current understanding of computer models of cell polarity establishment in plants, focusing on the molecular and cellular mechanisms, the proteins involved, and the current state of the field.
Collapse
Affiliation(s)
- Marco Marconi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
6
|
Reinhardt D, Gola EM. Law and order in plants - the origin and functional relevance of phyllotaxis. TRENDS IN PLANT SCIENCE 2022; 27:1017-1032. [PMID: 35643801 DOI: 10.1016/j.tplants.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The regular arrangement of organs (phyllotaxis) in vegetative shoots and flowers is one of the most stunning features of plants. Spiral patterns characterized by Fibonacci numbers have attracted the particular interest of natural scientists and mathematicians. Numerous reviews have dealt with the molecular genetic mechanisms underlying phyllotaxis, and modeling studies have sought to recreate phyllotaxis according to mathematical, biochemical, or physical laws. However, what is the functional significance of regular plant architecture, and how did it evolve? We discuss the developmental constraints and selective forces that may have favored the selection of phyllotaxis, and we argue that a central driver of regular phyllotaxis may have been limitations in the allocation of founder cells and metabolic resources to the different tissues in the shoot apex.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, Route Albert Gockel 3, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Edyta M Gola
- Department of Plant Developmental Biology, Faculty of Plant Sciences, University of Wroclaw, Kanonia 6/8, 50-328, Wroclaw, Poland
| |
Collapse
|
7
|
Guo K, Huang C, Miao Y, Cosgrove DJ, Hsia KJ. Leaf morphogenesis: The multifaceted roles of mechanics. MOLECULAR PLANT 2022; 15:1098-1119. [PMID: 35662674 DOI: 10.1016/j.molp.2022.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Plants produce a rich diversity of biological forms, and the diversity of leaves is especially notable. Mechanisms of leaf morphogenesis have been studied in the past two decades, with a growing focus on the interactive roles of mechanics in recent years. Growth of plant organs involves feedback by mechanical stress: growth induces stress, and stress affects growth and morphogenesis. Although much attention has been given to potential stress-sensing mechanisms and cellular responses, the mechanical principles guiding morphogenesis have not been well understood. Here we synthesize the overarching roles of mechanics and mechanical stress in multilevel and multiple stages of leaf morphogenesis, encompassing leaf primordium initiation, phyllotaxis and venation patterning, and the establishment of complex mature leaf shapes. Moreover, the roles of mechanics at multiscale levels, from subcellular cytoskeletal molecules to single cells to tissues at the organ scale, are articulated. By highlighting the role of mechanical buckling in the formation of three-dimensional leaf shapes, this review integrates the perspectives of mechanics and biology to provide broader insights into the mechanobiology of leaf morphogenesis.
Collapse
Affiliation(s)
- Kexin Guo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Daniel J Cosgrove
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
8
|
Cieslak M, Owens A, Prusinkiewicz P. Computational Models of Auxin-Driven Patterning in Shoots. Cold Spring Harb Perspect Biol 2022; 14:a040097. [PMID: 34001531 PMCID: PMC8886983 DOI: 10.1101/cshperspect.a040097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models from two perspectives. First, we consider cellular and tissue-level models of interaction between auxin and its transporters in shoots. These models form a coherent body of results exploring different hypotheses pertinent to the patterning of new outgrowth and vascular strands. Second, we consider models operating at the level of plant organs and entire plants. We highlight techniques used to reduce the complexity of these models, which provide a path to capturing the essence of studied phenomena while running simulations efficiently.
Collapse
Affiliation(s)
- Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Andrew Owens
- Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
9
|
Marconi M, Gallemi M, Benkova E, Wabnik K. A coupled mechano-biochemical model for cell polarity guided anisotropic root growth. eLife 2021; 10:72132. [PMID: 34723798 PMCID: PMC8716106 DOI: 10.7554/elife.72132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.
Collapse
Affiliation(s)
- Marco Marconi
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| | - Marcal Gallemi
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Krzysztof Wabnik
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| |
Collapse
|
10
|
ten Tusscher KH. What remains of the evidence for auxin feedback on PIN polarity patterns? PLANT PHYSIOLOGY 2021; 186:804-807. [PMID: 33760101 PMCID: PMC8195499 DOI: 10.1093/plphys/kiab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 05/29/2023]
Abstract
In light of recent findings, the feedback between auxin and PIN that plays a major role in models for self-organized auxin patterning requires revisiting.
Collapse
Affiliation(s)
- Kirsten H ten Tusscher
- Department of Theoretical Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
11
|
Gao H, Zhang L, Zhang KL, Yang L, Ma YY, Xu ZQ. Tobacco NtabSPL6-2 can enhance local and systemic resistances of Arabidopsis thaliana to bacterial and fungal pathogens. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153263. [PMID: 32836021 DOI: 10.1016/j.jplph.2020.153263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
NtabSPL6-2 of Nicotiana tabacum was introduced into Arabidopsis by Agrobacterium-mediated floral-dip method. Compared to wild-type Col-0 plants, the arrangement of cauline leaves in NtabSPL6-2 transgenic plants was converted into opposite from simple and alternate, and the margin of rosette leaves was serrated. NtabSPL6-2 transgenic plants possessed a significantly greater fresh weight. Subcellular localization by fusion with GFP confirmed that the encoded product of NtabSPL6-2 existed in the nucleus. The leaves of NtabSPL6-2 transgenic plants exhibited an enhanced capacity to restrain the bacterial reproduction after infection by Pseudomonas syringae, accompanied by higher expression of the pathogenesis-related gene PR1 in the infiltrated leaves, indicating NtabSPL6-2 could improve the defense response of Arabidopsis to P. syringae at the local sites. Similarly, it was confirmed that NtabSPL6-2 could enhance the systemic acquired resistance of Arabidopsis in response to P. syringae. In addition, the area of necrotic plaque appearing on the transgenic leaves inoculated with Botrytis cinerea was smaller and accompanied by an upregulation of PR1 and PR5, indicating NtabSPL6-2 transgenic leaves were less susceptible to the fungal pathogen. Moreover, there was less accumulation of reactive oxygen species (H2O2 and O2-) and malondialdehyde in the local infected sites of transgenic plants, whereas the wild-type Col-0 plants were more oxidatively injured after infestation by B. cinerea.
Collapse
Affiliation(s)
- Hang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Kai-Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
12
|
Interplay between the shoot apical meristem and lateral organs. ABIOTECH 2020; 1:178-184. [PMID: 36303571 PMCID: PMC9590523 DOI: 10.1007/s42994-020-00021-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
Abstract
Tissues and organs within a living organism are coordinated, but the underlying mechanisms are not well understood. The shoot apical meristem (SAM) continually produces lateral organs, such as leaves, from its peripheral zone. Because of their close proximity, SAM and lateral organs interact during plant development. Existing lateral organs influence the positions of newly formed organs to determine the phyllotaxis. The SAM not only produces lateral organs, but also influences their morphogenesis. In particular, the SAM promotes leaf polarity determination and leaf blade formation. Furthermore, lateral organs help the SAM to maintain homeostasis by restricting stem cell activity. Recent advances have started to elucidate how SAM and lateral organs patterning and growth are coordinated in the shoot apex. In this review, we discuss recent findings on the interaction between SAM and lateral organs during plant development. In particular, polar auxin transport appears to be a commonly used coordination mechanism.
Collapse
|
13
|
Gürcan ÖD, Xu S, Morel P. Spiral chain models of two-dimensional turbulence. Phys Rev E 2019; 100:043113. [PMID: 31770954 DOI: 10.1103/physreve.100.043113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 11/07/2022]
Abstract
Reduced models, mirroring self-similar, fractal nature of two-dimensional turbulence, are proposed, using logarithmic spiral chains, which provide a natural generalization of shell models to two dimensions. In a turbulent cascade, where each step can be represented by a rotation and a scaling of the interacting triad, the use of a spiral chain whose nodes can be obtained by scaling and rotating an original wave vector provides an interesting perspective. A family of such spiral chain models depending on the distance of interactions can be obtained by imposing a logarithmic spiral grid with a constant divergence angle and a constant scaling factor and imposing the condition of exact triadic interactions. Scaling factors in such sequences are given by the square roots of known ratios such as the plastic ratio, the super-golden ratio, or some small Pisot numbers. While spiral chains can represent monofractal models of a self-similar cascade, which can span a large range of wave numbers and have good angular coverage, it is also possible that spiral chains or chains of consecutive triads play an important role in the cascade. As numerical models, the spiral chain models based on decimated Fourier coefficients have the usual problems of shell models of two-dimensional turbulence such as the dual cascade being overwhelmed by statistical chain equipartition due to an almost stochastic evolution of the complex phases. A generic spiral chain model based on evolution of energy is proposed, which is shown to recover the dual cascade behavior in two-dimensional turbulence.
Collapse
Affiliation(s)
- Ö D Gürcan
- Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France
| | - Shaokang Xu
- Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France.,Peking University, School of Physics, Beijing, China
| | - P Morel
- Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, F-91120 Palaiseau, France.,Département de Physique, Université Paris-Sud, Orsay, France
| |
Collapse
|
14
|
Echevin E, Le Gloanec C, Skowrońska N, Routier-Kierzkowska AL, Burian A, Kierzkowski D. Growth and biomechanics of shoot organs. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3573-3585. [PMID: 31037307 DOI: 10.1093/jxb/erz205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Plant organs arise through complex interactions between biological and physical factors that control morphogenesis. While there has been tremendous progress in the understanding of the genetics behind development, we know much less about how mechanical forces control growth in plants. In recent years, new multidisciplinary research combining genetics, live-imaging, physics, and computational modeling has begun to fill this gap by revealing the crucial role of biomechanics in the establishment of plant organs. In this review, we provide an overview of our current understanding of growth during initiation, patterning, and expansion of shoot lateral organs. We discuss how growth is controlled by physical forces, and how mechanical stresses generated during growth can control morphogenesis at the level of both cells and tissues. Understanding the mechanical basis of growth and morphogenesis in plants is in its early days, and many puzzling facts are yet to be deciphered.
Collapse
Affiliation(s)
- Emilie Echevin
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Constance Le Gloanec
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Nikolina Skowrońska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska, Katowice, Poland
| | - Anne-Lise Routier-Kierzkowska
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| | - Agata Burian
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska, Katowice, Poland
| | - Daniel Kierzkowski
- Institut de Recherche en Biologie Végétale, Department of Biological Sciences, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
15
|
Yonekura T, Iwamoto A, Fujita H, Sugiyama M. Mathematical model studies of the comprehensive generation of major and minor phyllotactic patterns in plants with a predominant focus on orixate phyllotaxis. PLoS Comput Biol 2019; 15:e1007044. [PMID: 31170142 PMCID: PMC6553687 DOI: 10.1371/journal.pcbi.1007044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/19/2019] [Indexed: 11/20/2022] Open
Abstract
Plant leaves are arranged around the stem in a beautiful geometry that is called phyllotaxis. In the majority of plants, phyllotaxis exhibits a distichous, Fibonacci spiral, decussate, or tricussate pattern. To explain the regularity and limited variety of phyllotactic patterns, many theoretical models have been proposed, mostly based on the notion that a repulsive interaction between leaf primordia determines the position of primordium initiation. Among them, particularly notable are the two models of Douady and Couder (alternate-specific form, DC1; more generalized form, DC2), the key assumptions of which are that each leaf primordium emits a constant power that inhibits new primordium formation and that this inhibitory effect decreases with distance. It was previously demonstrated by computer simulations that any major type of phyllotaxis can occur as a self-organizing stable pattern in the framework of DC models. However, several phyllotactic types remain unaddressed. An interesting example is orixate phyllotaxis, which has a tetrastichous alternate pattern with periodic repetition of a sequence of different divergence angles: 180°, 90°, −180°, and −90°. Although the term orixate phyllotaxis was derived from Orixa japonica, this type is observed in several distant taxa, suggesting that it may reflect some aspects of a common mechanism of phyllotactic patterning. Here we examined DC models regarding the ability to produce orixate phyllotaxis and found that model expansion via the introduction of primordial age-dependent changes of the inhibitory power is absolutely necessary for the establishment of orixate phyllotaxis. The orixate patterns generated by the expanded version of DC2 (EDC2) were shown to share morphological details with real orixate phyllotaxis. Furthermore, the simulation results obtained using EDC2 fitted better the natural distribution of phyllotactic patterns than did those obtained using the previous models. Our findings imply that changing the inhibitory power is generally an important component of the phyllotactic patterning mechanism. Phyllotaxis, the beautiful geometry of plant-leaf arrangement around the stem, has long attracted the attention of researchers of biological-pattern formation. Many mathematical models, as typified by those of Douady and Couder (alternate-specific form, DC1; more generalized form, DC2), have been proposed for phyllotactic patterning, mostly based on the notion that a repulsive interaction between leaf primordia spatially regulates primordium initiation. In the framework of DC models, which assume that each primordium emits a constant power that inhibits new primordium formation and that this inhibitory effect decreases with distance, the major types (but not all types) of phyllotaxis can occur as stable patterns. Orixate phyllotaxis, which has a tetrastichous alternate pattern with a four-cycle sequence of the divergence angle, is an interesting example of an unaddressed phyllotaxis type. Here, we examined DC models regarding the ability to produce orixate phyllotaxis and found that model expansion by introducing primordial age-dependent changes of the inhibitory power is absolutely necessary for the establishment of orixate phyllotaxis. The simulation results obtained using the expanded version of DC2 (EDC2) fitted well the natural distribution of phyllotactic patterns. Our findings imply that changing the inhibitory power is generally an important component of the phyllotactic patterning mechanism.
Collapse
Affiliation(s)
- Takaaki Yonekura
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akitoshi Iwamoto
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Hironori Fujita
- Astrobiology Center, National Institutes of Natural Sciences, Mitaka, Tokyo, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Strain- or Stress-Sensing in Mechanochemical Patterning by the Phytohormone Auxin. Bull Math Biol 2019; 81:3342-3361. [DOI: 10.1007/s11538-019-00600-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/12/2019] [Indexed: 01/22/2023]
|
17
|
Rueda-Contreras MD, Romero-Arias JR, Aragón JL, Barrio RA. Curvature-driven spatial patterns in growing 3D domains: A mechanochemical model for phyllotaxis. PLoS One 2018; 13:e0201746. [PMID: 30114231 PMCID: PMC6095518 DOI: 10.1371/journal.pone.0201746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022] Open
Abstract
Here we discuss the formation of phyllotactic patterns in the shoot apical meristem (SAM) of plants, where the spatial distribution of the phytohormone auxin determines phyllotaxis in a domain that is growing and changing in time. We assume that the concentration of auxin modifies the mechanical properties of the domain and that the mechanical stress field in the SAM orients the flux of auxin. To study this problem we propose a mechanism for pattern formation in growing domains with variable curvature. The dynamics of chemicals is modeled by a reaction-diffusion system that produces a three dimensional pattern of chemical concentrations that changes the stress field in the domain while growing. The growth process is modeled by a phase-field order parameter which determines the location of the boundaries of the domain. This field is coupled to the chemical concentration through a curvature term that affects the local mechanical stress in the domain. The local stress changes in turn modify the chemical patterns. Our model constitutes a useful and novel approach in theoretical biology, as many developmental processes in organisms seem to be affected by the changes of curvature, size, mechanical stress and other physical aspects. Several patterns seen in many plants are reproduced under certain conditions by our model.
Collapse
Affiliation(s)
- Mara D. Rueda-Contreras
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - José R. Romero-Arias
- CONACYT - Instituto de Física y Matemáticas, Universidad Michoacana, Ciudad Universitaria, Morelia, Michoacán 58040, Mexico
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - José L. Aragón
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
- * E-mail:
| | - Rafael A. Barrio
- Instituto de Física, Universidad Nacional Autónoma de México, 01000 Ciudad de México, Mexico
| |
Collapse
|
18
|
Ronse De Craene L. Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. JOURNAL OF PLANT RESEARCH 2018; 131:367-393. [PMID: 29589194 DOI: 10.1007/s10265-018-1021-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/14/2018] [Indexed: 05/26/2023]
Abstract
Flower morphology results from the interaction of an established genetic program, the influence of external forces induced by pollination systems, and physical forces acting before, during and after initiation. Floral ontogeny, as the process of development from a meristem to a fully developed flower, can be approached either from a historical perspective, as a "recapitulation of the phylogeny" mainly explained as a process of genetic mutations through time, or from a physico-dynamic perspective, where time, spatial pressures, and growth processes are determining factors in creating the floral morphospace. The first (historical) perspective clarifies how flower morphology is the result of development over time, where evolutionary changes are only possible using building blocks that are available at a certain stage in the developmental history. Flowers are regulated by genetically determined constraints and development clarifies specific transitions between different floral morphs. These constraints are the result of inherent mutations or are induced by the interaction of flowers with pollinators. The second (physico-dynamic) perspective explains how changes in the physical environment of apical meristems create shifts in ontogeny and this is reflected in the morphospace of flowers. Changes in morphology are mainly induced by shifts in space, caused by the time of initiation (heterochrony), pressure of organs, and alterations of the size of the floral meristem, and these operate independently or in parallel with genetic factors. A number of examples demonstrate this interaction and its importance in the establishment of different floral forms. Both perspectives are complementary and should be considered in the understanding of factors regulating floral development. It is suggested that floral evolution is the result of alternating bursts of physical constraints and genetic stabilization processes following each other in succession. Future research needs to combine these different perspectives in understanding the evolution of floral systems and their diversification.
Collapse
|
19
|
Fujita H, Kawaguchi M. Spatial regularity control of phyllotaxis pattern generated by the mutual interaction between auxin and PIN1. PLoS Comput Biol 2018; 14:e1006065. [PMID: 29614066 PMCID: PMC5882125 DOI: 10.1371/journal.pcbi.1006065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 11/19/2022] Open
Abstract
Phyllotaxis, the arrangement of leaves on a plant stem, is well known because of its beautiful geometric configuration, which is derived from the constant spacing between leaf primordia. This phyllotaxis is established by mutual interaction between a diffusible plant hormone auxin and its efflux carrier PIN1, which cooperatively generate a regular pattern of auxin maxima, small regions with high auxin concentrations, leading to leaf primordia. However, the molecular mechanism of the regular pattern of auxin maxima is still largely unknown. To better understand how the phyllotaxis pattern is controlled, we investigated mathematical models based on the auxin-PIN1 interaction through linear stability analysis and numerical simulations, focusing on the spatial regularity control of auxin maxima. As in previous reports, we first confirmed that this spatial regularity can be reproduced by a highly simplified and abstract model. However, this model lacks the extracellular region and is not appropriate for considering the molecular mechanism. Thus, we investigated how auxin maxima patterns are affected under more realistic conditions. We found that the spatial regularity is eliminated by introducing the extracellular region, even in the presence of direct diffusion between cells or between extracellular spaces, and this strongly suggests the existence of an unknown molecular mechanism. To unravel this mechanism, we assumed a diffusible molecule to verify various feedback interactions with auxin-PIN1 dynamics. We revealed that regular patterns can be restored by a diffusible molecule that mediates the signaling from auxin to PIN1 polarization. Furthermore, as in the one-dimensional case, similar results are observed in the two-dimensional space. These results provide a great insight into the theoretical and molecular basis for understanding the phyllotaxis pattern. Our theoretical analysis strongly predicts a diffusible molecule that is pivotal for the phyllotaxis pattern but is yet to be determined experimentally.
Collapse
Affiliation(s)
- Hironori Fujita
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- * E-mail:
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
20
|
Hernández-Hernández V, Barrio RA, Benítez M, Nakayama N, Romero-Arias JR, Villarreal C. A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN). Phys Biol 2018; 15:036002. [PMID: 29393068 DOI: 10.1088/1478-3975/aaac99] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico. Current Address: Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
21
|
Bhatia N, Heisler MG. Self-organizing periodicity in development: organ positioning in plants. Development 2018; 145:145/3/dev149336. [PMID: 29439134 DOI: 10.1242/dev.149336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Periodic patterns during development often occur spontaneously through a process of self-organization. While reaction-diffusion mechanisms are often invoked, other types of mechanisms that involve cell-cell interactions and mechanical buckling have also been identified. Phyllotaxis, or the positioning of plant organs, has emerged as an excellent model system to study the self-organization of periodic patterns. At the macro scale, the regular spacing of organs on the growing plant shoot gives rise to the typical spiral and whorled arrangements of plant organs found in nature. In turn, this spacing relies on complex patterns of cell polarity that involve feedback between a signaling molecule - the plant hormone auxin - and its polar, cell-to-cell transport. Here, we review recent progress in understanding phyllotaxis and plant cell polarity and highlight the development of new tools that can help address the remaining gaps in our understanding.
Collapse
Affiliation(s)
- Neha Bhatia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Marcus G Heisler
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
|
23
|
Romero-Arias JR, Hernández-Hernández V, Benítez M, Alvarez-Buylla ER, Barrio RA. Model of polar auxin transport coupled to mechanical forces retrieves robust morphogenesis along the Arabidopsis root. Phys Rev E 2017; 95:032410. [PMID: 28415207 DOI: 10.1103/physreve.95.032410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 11/06/2022]
Abstract
Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.
Collapse
Affiliation(s)
- J Roberto Romero-Arias
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México Distrito Federal, Mexico.,Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
| | - Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariana Benítez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| | - Elena R Alvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| | - Rafael A Barrio
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| |
Collapse
|
24
|
Abstract
We consider the evolution of the packing of disks (representing the position of buds) that are introduced at the top of a surface which has the form of a growing stem. They migrate downwards, while conforming to three principles, applied locally: dense packing, homogeneity, and continuity. We show that spiral structures characterized by the widely observed Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...), as well as related structures, occur naturally under such rules. Typical results are presented in an animation.
Collapse
Affiliation(s)
- A Mughal
- Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, Wales, SY23 3BZ, United Kingdom
| | - D Weaire
- Foams and Complex Systems, School of Physics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
25
|
Abstract
Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.
Collapse
Affiliation(s)
- Behruz Bozorg
- Computational Biology & Biological Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
26
|
Refahi Y, Brunoud G, Farcot E, Jean-Marie A, Pulkkinen M, Vernoux T, Godin C. A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis. eLife 2016; 5. [PMID: 27380805 PMCID: PMC4947393 DOI: 10.7554/elife.14093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and makes quantitative predictions on the nature of disorders arising from noise. We further show that disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that disorders can reveal biological watermarks of developmental systems. DOI:http://dx.doi.org/10.7554/eLife.14093.001 Plants grow throughout their lifetime, forming new flowers and leaves at the tips of their stems through a patterning process called phyllotaxis, which occurs in spirals for a vast number of plant species. The classical view suggests that the positioning of each new leaf or flower bud at the tip of a growing stem is based on a small set of principles. This includes the idea that buds produce inhibitory signals that prevent other buds from forming too close to each other. When computational models of phyllotaxis follow these ‘deterministic’ principles, they are able to recreate the spiral pattern the buds form on a growing stem. In real plants, however, the spiral pattern is not always perfect. The observed disturbances in the pattern are believed to reflect the presence of random fluctuations – regarded as noise – in phyllotaxis. Here, using numerical simulations, Refahi et al. noticed that the patterns of inhibitory signals in a shoot tip pre-determine the locations of several competing sites where buds could form in a robust manner. However, random fluctuations in the way cells perceive these inhibitory signals could greatly disturb the timing of organ formation and affect phyllotaxis patterns. Building on this, Refahi et al. created a new computational model of bud patterning that takes into account some randomness in how cells perceive the inhibitory signals released by existing buds. The model can accurately recreate the classical spiral patterns of buds and also produces occasional disrupted patterns that are similar to those seen in real plants. Unexpectedly, Refahi et al. show that these ‘errors’ reveal key information about how the signals that control phyllotaxis might work. These findings open up new avenues of research into the role of noise in phyllotaxis. The model can be used to predict how altering the activities of genes or varying plant growth conditions might disturb this patterning process. Furthermore, the work highlights how the structure of disturbances in a biological system can shed new light on how the system works. DOI:http://dx.doi.org/10.7554/eLife.14093.002
Collapse
Affiliation(s)
- Yassin Refahi
- Laboratoire de Reproduction de développement des plantes, Lyon, France.,Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Géraldine Brunoud
- Laboratoire de Reproduction de développement des plantes, Lyon, France
| | - Etienne Farcot
- School of Mathematical Sciences, The University of Nottingham, Nottingham, United Kingdom.,Center for Integrative Plant Biology, The University of Nottingham, Notthingam, United Kingdom
| | - Alain Jean-Marie
- INRIA Project-Team Maestro, INRIA Sophia-Antipolis Méditerranée Research Center, Montpellier, France
| | | | - Teva Vernoux
- Laboratoire de Reproduction de développement des plantes, Lyon, France
| | - Christophe Godin
- INRIA Project-Team Virtual Plants, CIRAD, INRA and INRIA Sophia-Antipolis Méditerranée Research Center, Montpellier, France
| |
Collapse
|
27
|
Swinton J, Ochu E. Novel Fibonacci and non-Fibonacci structure in the sunflower: results of a citizen science experiment. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160091. [PMID: 27293788 PMCID: PMC4892450 DOI: 10.1098/rsos.160091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/19/2016] [Indexed: 05/29/2023]
Abstract
This citizen science study evaluates the occurrence of Fibonacci structure in the spirals of sunflower (Helianthus annuus) seedheads. This phenomenon has competing biomathematical explanations, and our core premise is that observation of both Fibonacci and non-Fibonacci structure is informative for challenging such models. We collected data on 657 sunflowers. In our most reliable data subset, we evaluated 768 clockwise or anticlockwise parastichy numbers of which 565 were Fibonacci numbers, and a further 67 had Fibonacci structure of a predefined type. We also found more complex Fibonacci structures not previously reported in sunflowers. This is the third, and largest, study in the literature, although the first with explicit and independently checkable inclusion and analysis criteria and fully accessible data. This study systematically reports for the first time, to the best of our knowledge, seedheads without Fibonacci structure. Some of these are approximately Fibonacci, and we found in particular that parastichy numbers equal to one less than a Fibonacci number were present significantly more often than those one more than a Fibonacci number. An unexpected further result of this study was the existence of quasi-regular heads, in which no parastichy number could be definitively assigned.
Collapse
Affiliation(s)
| | - Erinma Ochu
- University of Manchester Centre for the History of Science, Technology and Medicine
| |
Collapse
|
28
|
Draelants D, Avitabile D, Vanroose W. Localized auxin peaks in concentration-based transport models of the shoot apical meristem. J R Soc Interface 2016; 12:rsif.2014.1407. [PMID: 25878130 DOI: 10.1098/rsif.2014.1407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We study the formation of auxin peaks in a generic class of concentration-based auxin transport models, posed on static plant tissues. Using standard asymptotic analysis, we prove that, on bounded domains, auxin peaks are not formed via a Turing instability in the active transport parameter, but via simple corrections to the homogeneous steady state. When the active transport is small, the geometry of the tissue encodes the peaks' amplitude and location: peaks arise where cells have fewer neighbours, that is, at the boundary of the domain. We test our theory and perform numerical bifurcation analysis on two models that are known to generate auxin patterns for biologically plausible parameter values. In the same parameter regimes, we find that realistic tissues are capable of generating a multitude of stationary patterns, with a variable number of auxin peaks, that can be selected by different initial conditions or by quasi-static changes in the active transport parameter. The competition between active transport and production rate determines whether peaks remain localized or cover the entire domain. In particular, changes in the auxin production that are fast with respect to the cellular life cycle affect the auxin peak distribution, switching from localized spots to fully patterned states. We relate the occurrence of localized patterns to a snaking bifurcation structure, which is known to arise in a wide variety of nonlinear media, but has not yet been reported in plant models.
Collapse
Affiliation(s)
- Delphine Draelants
- Department of Mathematics and Computer Science, Universiteit Antwerpen, Middelheimlaan 1, 2020 Antwerpen, Belgium
| | - Daniele Avitabile
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Wim Vanroose
- Department of Mathematics and Computer Science, Universiteit Antwerpen, Middelheimlaan 1, 2020 Antwerpen, Belgium
| |
Collapse
|
29
|
Comelli P, Glowa D, Chandler JW, Werr W. Founder-cell-specific transcription of the DORNRÖSCHEN-LIKE promoter and integration of the auxin response. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:143-155. [PMID: 26428063 DOI: 10.1093/jxb/erv442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transcription of the DORNRÖSCHEN (DRNL) promoter marks lateral-organ founder cells throughout Arabidopsis development, from cotyledons to flowers or floral organs. In the inflorescence apex, DRNL::GFP depicts incipient floral phyllotaxy, and organs in the four floral whorls are differentially prepatterned: the sepals unidirectionally along an abaxial-adaxial axis, the four petals and two lateral stamens in two putative morphogenetic fields, and the medial stamens subsequently in a ring-shaped domain, before two groups of carpel founder cells are specified. The dynamic DRNL transcription pattern is controlled by three enhancer elements, which redundantly and synergistically control qualitative or quantitative aspects of expression, and differentially integrate the auxin response in Arabidopsis inflorescence and floral meristems. The high sequence conservation of all three enhancer elements among the Brassicaceae is striking, which suggests that densely packed cis-regulatory elements are conserved to recruit multiple transcription factors, including auxin response factors, into higher-order enhanceosome complexes. The spatial organization of the enhancers is also conserved, by a microsynteny that extends beyond the Brassicaceae, which relates to enhancer sharing, as the distal element En1 bidirectionally serves DRNL and the upstream At1g24600 gene; the genes are transcribed in opposite directions and possibly comprise a conserved functional chromatin domain.
Collapse
Affiliation(s)
- Petra Comelli
- Institute of Developmental Biology, Biocenter Cologne, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Dorothea Glowa
- Institute of Developmental Biology, Biocenter Cologne, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - John W Chandler
- Institute of Developmental Biology, Biocenter Cologne, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Wolfgang Werr
- Institute of Developmental Biology, Biocenter Cologne, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
30
|
Kitazawa MS, Fujimoto K. A dynamical phyllotaxis model to determine floral organ number. PLoS Comput Biol 2015; 11:e1004145. [PMID: 25950739 PMCID: PMC4423988 DOI: 10.1371/journal.pcbi.1004145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022] Open
Abstract
How organisms determine particular organ numbers is a fundamental key to the development of precise body structures; however, the developmental mechanisms underlying organ-number determination are unclear. In many eudicot plants, the primordia of sepals and petals (the floral organs) first arise sequentially at the edge of a circular, undifferentiated region called the floral meristem, and later transition into a concentric arrangement called a whorl, which includes four or five organs. The properties controlling the transition to whorls comprising particular numbers of organs is little explored. We propose a development-based model of floral organ-number determination, improving upon earlier models of plant phyllotaxis that assumed two developmental processes: the sequential initiation of primordia in the least crowded space around the meristem and the constant growth of the tip of the stem. By introducing mutual repulsion among primordia into the growth process, we numerically and analytically show that the whorled arrangement emerges spontaneously from the sequential initiation of primordia. Moreover, by allowing the strength of the inhibition exerted by each primordium to decrease as the primordium ages, we show that pentamerous whorls, in which the angular and radial positions of the primordia are consistent with those observed in sepal and petal primordia in Silene coeli-rosa, Caryophyllaceae, become the dominant arrangement. The organ number within the outmost whorl, corresponding to the sepals, takes a value of four or five in a much wider parameter space than that in which it takes a value of six or seven. These results suggest that mutual repulsion among primordia during growth and a temporal decrease in the strength of the inhibition during initiation are required for the development of the tetramerous and pentamerous whorls common in eudicots. Why do most eudicot flowers have either four or five petals? This fundamental and attractive problem in botany has been little investigated. Here, we identify the properties responsible for organ-number determination in floral development using mathematical modeling. Earlier experimental and theoretical studies showed that the arrangements of preexisting organs determine where a new organ will arise. Expanding upon those studies, we integrated two interactions between floral organs: (1) spatially and temporally decreased inhibition of new organ initiation by preexisting organs, and (2) mutual repulsion among organs such that they are “pushed around” during floral development. In computer simulations incorporating such initiation inhibition and mutual repulsion, the floral organs spontaneously formed several circles, consistent with the concentric circular arrangement of sepals and petals in eudicot flowers. Each circle tended to contain four or five organs arranged in positions that agreed quantitatively with the organ positions in the pentamerous flower, Silene coeli-rosa, Caryophyllaceae. These results suggest that the temporal decay of initiation inhibition and the mutual repulsion among growing organs determine the particular organ number during eudicot floral development.
Collapse
Affiliation(s)
- Miho S. Kitazawa
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail: (MSK); (KF)
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
- * E-mail: (MSK); (KF)
| |
Collapse
|
31
|
Abstract
Plant cells in tissues experience mechanical stress not only as a result of high turgor, but also through interaction with their neighbors. Cells can expand at different rates and in different directions from neighbors with which they share a cell wall. This in connection with specific tissue shapes and properties of the cell wall material can lead to intricate stress patterns throughout the tissue. Two cellular responses to mechanical stress are a microtubule cytoskeletal response that directs new wall synthesis so as to resist stress, and a hormone transporter response that regulates transport of the hormone auxin, a regulator of cell expansion. Shape changes in plant tissues affect the pattern of stresses in the tissues, and at the same time, via the cellular stress responses, the pattern of stresses controls cell growth, which in turn changes tissue shape, and stress pattern. This feedback loop controls plant morphogenesis, and explains several previously mysterious aspects of plant growth.
Collapse
|
32
|
Rhee J, Nejad TM, Comets O, Flannery S, Gulsoy EB, Iannaccone P, Foster C. Promoting convergence: the Phi spiral in abduction of mouse corneal behaviors. COMPLEXITY 2015; 20:22-38. [PMID: 25755620 PMCID: PMC4351477 DOI: 10.1002/cplx.21562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Why do mouse corneal epithelial cells display spiraling patterns? We want to provide an explanation for this phenomenon by applying an idealized problem solving process. Specifically, we applied complementary line-fitting methods to measure transgenic epithelial reporter expression arrangements displayed on three mature, live enucleated globes to clarify the problem. Two prominent logarithmic curves were discovered, one of which displayed the ϕ ratio, an indicator of the optimal configuration in phyllotactic systems. We then utilized two different computational approaches to expose our current understanding of the behavior. In one procedure, which involved an isotropic mechanics-based finite element method, we successfully produced logarithmic spiral curves of maximum shear strain based pathlines but computed dimensions displayed pitch angles of 35° (ϕ spiral is ~17°), which was altered when we fitted the model with published measurements of coarse collagen orientations. We then used model-based reasoning in context of Peircean abduction to select a working hypothesis. Our work serves as a concise example of applying a scientific habit of mind and illustrates nuances of executing a common method to doing integrative science.
Collapse
Affiliation(s)
- Jerry Rhee
- Stanley Manne Children's Research Institute,
Developmental Biology Program and Department of Pediatrics, Feinberg School of Medicine,
Northwestern UniversityChicago, Illinois
- Correspondence to: Jerry Rhee; 2430 N Halsted Street, Chicago, IL 60611. E-mail:
| | - Talisa Mohammad Nejad
- Department of Civil and Materials Engineering, University
of Illinois at ChicagoChicago, Illinois
| | - Olivier Comets
- Department of Materials Science and Engineering,
Northwestern UniversityChicago, Illinois
| | - Sean Flannery
- Stanley Manne Children's Research Institute,
Developmental Biology Program and Department of Pediatrics, Feinberg School of Medicine,
Northwestern UniversityChicago, Illinois
| | - Eine Begum Gulsoy
- Department of Materials Science and Engineering,
Northwestern UniversityChicago, Illinois
| | - Philip Iannaccone
- Stanley Manne Children's Research Institute,
Developmental Biology Program and Department of Pediatrics, Feinberg School of Medicine,
Northwestern UniversityChicago, Illinois
| | - Craig Foster
- Department of Civil and Materials Engineering, University
of Illinois at ChicagoChicago, Illinois
| |
Collapse
|
33
|
Tang S, Li Y, Liu WK, Huang XX. Surface Ripples of Polymeric Nanofibers under Tension: The Crucial Role of Poisson’s Ratio. Macromolecules 2014. [DOI: 10.1021/ma5012599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Tang
- Department
of Engineering Mechanics, Chongqing University, Chongqing, China, 400017
| | - Ying Li
- Department
of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Wing Kam Liu
- Department
of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States
- Distinguished
Scientists Program Committee, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Xiao Xu Huang
- College
of Material Science and Engineering, Chongqing University, Chongqing, China, 400017
| |
Collapse
|
34
|
Voß U, Bishopp A, Farcot E, Bennett MJ. Modelling hormonal response and development. TRENDS IN PLANT SCIENCE 2014; 19:311-9. [PMID: 24630843 PMCID: PMC4013931 DOI: 10.1016/j.tplants.2014.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 05/20/2023]
Abstract
As our knowledge of the complexity of hormone homeostasis, transport, perception, and response increases, and their outputs become less intuitive, modelling is set to become more important. Initial modelling efforts have focused on hormone transport and response pathways. However, we now need to move beyond the network scales and use multicellular and multiscale modelling approaches to predict emergent properties at different scales. Here we review some examples where such approaches have been successful, for example, auxin-cytokinin crosstalk regulating root vascular development or a study of lateral root emergence where an iterative cycle of modelling and experiments lead to the identification of an overlooked role for PIN3. Finally, we discuss some of the remaining biological and technical challenges.
Collapse
Affiliation(s)
- Ute Voß
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Etienne Farcot
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK; School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
35
|
Hernández-Hernández V, Rueda D, Caballero L, Alvarez-Buylla ER, Benítez M. Mechanical forces as information: an integrated approach to plant and animal development. FRONTIERS IN PLANT SCIENCE 2014; 5:265. [PMID: 24959170 PMCID: PMC4051191 DOI: 10.3389/fpls.2014.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/21/2014] [Indexed: 05/04/2023]
Abstract
Mechanical forces such as tension and compression act throughout growth and development of multicellular organisms. These forces not only affect the size and shape of the cells and tissues but are capable of modifying the expression of genes and the localization of molecular components within the cell, in the plasma membrane, and in the plant cell wall. The magnitude and direction of these physical forces change with cellular and tissue properties such as elasticity. Thus, mechanical forces and the mesoscopic fields that emerge from their local action constitute important sources of positional information. Moreover, physical and biochemical processes interact in non-linear ways during tissue and organ growth in plants and animals. In this review we discuss how such mechanical forces are generated, transmitted, and sensed in these two lineages of multicellular organisms to yield long-range positional information. In order to do so we first outline a potentially common basis for studying patterning and mechanosensing that relies on the structural principle of tensegrity, and discuss how tensegral structures might arise in plants and animals. We then provide some examples of morphogenesis in which mechanical forces appear to act as positional information during development, offering a possible explanation for ubiquitous processes, such as the formation of periodic structures. Such examples, we argue, can be interpreted in terms of tensegral phenomena. Finally, we discuss the hypothesis of mechanically isotropic points as a potentially generic mechanism for the localization and maintenance of stem-cell niches in multicellular organisms. This comparative approach aims to help uncovering generic mechanisms of morphogenesis and thus reach a better understanding of the evolution and development of multicellular phenotypes, focusing on the role of physical forces in these processes.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Denisse Rueda
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Lorena Caballero
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Elena R. Alvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Mariana Benítez
- Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
- *Correspondence: Mariana Benítez, Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, México City 04350, Mexico e-mail:
| |
Collapse
|
36
|
van Berkel K, de Boer RJ, Scheres B, ten Tusscher K. Polar auxin transport: models and mechanisms. Development 2013; 140:2253-68. [PMID: 23674599 DOI: 10.1242/dev.079111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Here we propose a new mathematical framework for the analysis of polar auxin transport and present a detailed mathematical analysis of published models. We show that most models allow for self-organised patterning for similar biological assumptions, and find that the pattern generated is typically unidirectional, unless additional assumptions or mechanisms are incorporated. Our analysis thus suggests that current models cannot explain the bidirectional fountain-type patterns found in plant meristems in a fully self-organised manner, and we discuss future research directions to address the gaps in our understanding of auxin transport mechanisms.
Collapse
Affiliation(s)
- Klaartje van Berkel
- Molecular Genetics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Pennybacker M, Newell AC. Phyllotaxis, pushed pattern-forming fronts, and optimal packing. PHYSICAL REVIEW LETTERS 2013; 110:248104. [PMID: 25165965 DOI: 10.1103/physrevlett.110.248104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Indexed: 06/03/2023]
Abstract
We demonstrate that the pattern forming partial differential equation derived from the auxin distribution model proposed by Meyerowitz, Traas, and others gives rise to all spiral phyllotaxis properties observed on plants. We show how the advancing pushed pattern front chooses spiral families enumerated by Fibonacci sequences with all attendant self-similar properties, a new amplitude invariant curve, and connect the results with the optimal packing based algorithms previously used to explain phyllotaxis. Our results allow us to make experimentally testable predictions.
Collapse
Affiliation(s)
- Matthew Pennybacker
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA
| | - Alan C Newell
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
38
|
Sassi M, Vernoux T. Auxin and self-organization at the shoot apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2579-92. [PMID: 23585672 DOI: 10.1093/jxb/ert101] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants continuously generate new tissues and organs throughout their life cycle, due to the activity of populations of specialized tissues containing stem cells called meristems. The shoot apical meristem (SAM) generates all the aboveground organs of the plant, including leaves and flowers, and plays a key role in plant survival and reproduction. Organ production at the SAM occurs following precise spatio-temporal patterns known as phyllotaxis. Because of the regularity of these patterns, phyllotaxis has been the subject of investigations from biologists, physicists, and mathematicians for several centuries. Both experimental and theoretical works have led to the idea that phyllotaxis results from a self-organizing process in the meristem via long-distance interactions between organs. In recent years, the phytohormone auxin has emerged not only as the central regulator of organogenesis at the SAM, but also as a major determinant of the self-organizing properties of phyllotaxis. Here, we discuss both the experimental and theoretical evidence for the implication of auxin in the control of organogenesis and self-organization of the SAM. We highlight how several layers of control acting at different scales contribute together to the function of the auxin signal in SAM dynamics. We also indicate a role for mechanical forces in the development of the SAM, supported by recent interdisciplinary studies.
Collapse
Affiliation(s)
- Massimiliano Sassi
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | |
Collapse
|
39
|
Feller C, Gabriel JP, Mazza C, Yerly F. Pattern formation in auxin flux. J Math Biol 2013; 68:879-909. [PMID: 23436057 DOI: 10.1007/s00285-013-0655-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/22/2013] [Indexed: 11/30/2022]
Abstract
The plant hormone auxin is fundamental for plant growth, and its spatial distribution in plant tissues is critical for plant morphogenesis. We consider a leading model of the polar auxin flux, and study in full detail the stability of the possible equilibrium configurations. We show that the critical states of the auxin transport process are composed of basic building blocks, which are isolated in a background of auxin depleted cells, and are not geometrically regular in general. The same model was considered recently through a continuous limit and a coupling to the von Karman equations, to model the interplay of biochemistry and mechanics during plant growth. Our conclusions might be of interest in this setting, since, for example, we establish the existence of Lyapunov functions for the auxin flux, proving in this way the convergence of pure transport processes toward the set of equilibrium points.
Collapse
Affiliation(s)
- C Feller
- Department of Mathematics, University of Fribourg, Ch. du Musée 23, 1700 , Fribourg, Switzerland,
| | | | | | | |
Collapse
|
40
|
Beleyur T, Abdul Kareem VK, Shaji A, Prasad K. A mathematical basis for plant patterning derived from physico-chemical phenomena. Bioessays 2013; 35:366-76. [PMID: 23386477 DOI: 10.1002/bies.201200126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The position of leaves and flowers along the stem axis generates a specific pattern, known as phyllotaxis. A growing body of evidence emerging from recent computational modeling and experimental studies suggests that regulators controlling phyllotaxis are chemical, e.g. the plant growth hormone auxin and its dynamic accumulation pattern by polar auxin transport, and physical, e.g. mechanical properties of the cell. Here we present comprehensive views on how chemical and physical properties of cells regulate the pattern of leaf initiation. We further compare different computational modeling studies to understand their scope in reproducing the observed patterns. Despite a plethora of experimental studies on phyllotaxis, understanding of molecular mechanisms of pattern initiation in plants remains fragmentary. Live imaging of growth dynamics and physicochemical properties at the shoot apex of mutants displaying stable changes from one pattern to another should provide mechanistic insights into organ initiation patterns.
Collapse
Affiliation(s)
- Thejasvi Beleyur
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | | | | | | |
Collapse
|
41
|
Reick CH. Self-similarity and scaling in two models of phyllotaxis and the selection of asymptotic divergence angles. J Theor Biol 2012; 313:181-200. [DOI: 10.1016/j.jtbi.2012.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 08/05/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
|
42
|
Urdy S. On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell differentiation, growth, pattern formation and morphogenesis. Biol Rev Camb Philos Soc 2012; 87:786-803. [PMID: 22429266 DOI: 10.1111/j.1469-185x.2012.00221.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the 1950s, embryology was conceptualized as four relatively independent problems: cell differentiation, growth, pattern formation and morphogenesis. The mechanisms underlying the first three traditionally have been viewed as being chemical in nature, whereas those underlying morphogenesis have usually been discussed in terms of mechanics. Often, morphogenesis and its mechanical processes have been regarded as subordinate to chemical ones. However, a growing body of evidence indicates that the biomechanics of cells and tissues affect in striking ways those phenomena often thought of as mainly under the control of cell-cell signalling. This accumulation of data has led to a revival of the mechano-transduction concept in particular, and of complexity in general, causing us now to consider whether we should retain the traditional conceptualization of development. The researchers' semantic preferences for the terms 'patterning', 'pattern formation' or 'morphogenesis' can be used to describe three main 'schools of thought' which emerged in the late 1970s. In the 'molecular school', the term patterning is deeply tied to the positional information concept. In the 'chemical school', the term 'pattern formation' regularly implies reaction-diffusion models. In the 'mechanical school', the term 'morphogenesis' is more frequently used in relation to mechanical instabilities. Major differences among these three schools pertain to the concept of self-organization, and models can be classified as morphostatic or morphodynamic. Various examples illustrate the distorted picture that arises from the distinction among differentiation, growth, pattern formation and morphogenesis, based on the idea that the underlying mechanisms are respectively chemical or mechanical. Emerging quantitative approaches integrate the concepts and methods of complex sciences and emphasize the interplay between hierarchical levels of organization via mechano-chemical interactions. They draw upon recent improvements in mathematical and numerical morphogenetic models and upon considerable progress in collecting new quantitative data. This review highlights a variety of such models, which exhibit important advances, such as hybrid, stochastic and multiscale simulations.
Collapse
Affiliation(s)
- Séverine Urdy
- Paläontologisches Institut und Museum der Universität Zürich, Switzerland.
| |
Collapse
|
43
|
Mirabet V, Besnard F, Vernoux T, Boudaoud A. Noise and robustness in phyllotaxis. PLoS Comput Biol 2012; 8:e1002389. [PMID: 22359496 PMCID: PMC3280957 DOI: 10.1371/journal.pcbi.1002389] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/30/2011] [Indexed: 11/18/2022] Open
Abstract
A striking feature of vascular plants is the regular arrangement of lateral organs on the stem, known as phyllotaxis. The most common phyllotactic patterns can be described using spirals, numbers from the Fibonacci sequence and the golden angle. This rich mathematical structure, along with the experimental reproduction of phyllotactic spirals in physical systems, has led to a view of phyllotaxis focusing on regularity. However all organisms are affected by natural stochastic variability, raising questions about the effect of this variability on phyllotaxis and the achievement of such regular patterns. Here we address these questions theoretically using a dynamical system of interacting sources of inhibitory field. Previous work has shown that phyllotaxis can emerge deterministically from the self-organization of such sources and that inhibition is primarily mediated by the depletion of the plant hormone auxin through polarized transport. We incorporated stochasticity in the model and found three main classes of defects in spiral phyllotaxis--the reversal of the handedness of spirals, the concomitant initiation of organs and the occurrence of distichous angles--and we investigated whether a secondary inhibitory field filters out defects. Our results are consistent with available experimental data and yield a prediction of the main source of stochasticity during organogenesis. Our model can be related to cellular parameters and thus provides a framework for the analysis of phyllotactic mutants at both cellular and tissular levels. We propose that secondary fields associated with organogenesis, such as other biochemical signals or mechanical forces, are important for the robustness of phyllotaxis. More generally, our work sheds light on how a target pattern can be achieved within a noisy background.
Collapse
Affiliation(s)
- Vincent Mirabet
- Laboratoire Joliot-Curie, CNRS, ENS, Université de Lyon, Lyon, France
- Laboratoire Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, Lyon, France
| | - Fabrice Besnard
- Laboratoire Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, Lyon, France
- * E-mail: (TV); (AB)
| | - Arezki Boudaoud
- Laboratoire Joliot-Curie, CNRS, ENS, Université de Lyon, Lyon, France
- Laboratoire Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, Lyon, France
- * E-mail: (TV); (AB)
| |
Collapse
|
44
|
Abraham-Shrauner B, Pickard BG. A model for leaf initiation: determination of phyllotaxis by waves in the generative circle. PLANT SIGNALING & BEHAVIOR 2011; 6:1755-68. [PMID: 22212121 PMCID: PMC3329350 DOI: 10.4161/psb.6.11.17506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A biophysical model is proposed for how leaf primordia are positioned on the shoot apical: meristem in both spiral and whorl phyllotaxes. Primordia are initiated by signals that propagate: in the epidermis in both azimuthal directions away from the cotyledons or the most recently: specified primordia. The signals are linear waves as inferred from the spatial periodicity of the: divergence angle and a temporal periodicity. The periods of the waves, which represent actively: transported auxin, are much smaller than the plastochron interval. Where oppositely directed: waves meet at one or more angular positions on the periphery of the generative circle, auxin: concentration builds and as in most models this stimulates local movement of auxin to: underlying cells, where it promotes polarized cell division and expansion. For higher order: spirals the wave model requires asymmetric function of auxin transport; that is, opposite wave: speeds differ. An algorithm for determination of the angular positions of leaves in common leaf: phyllotaxic configurations is proposed. The number of turns in a pattern repeat, number of leaves: per level and per pattern repeat, and divergence angle are related to speed of auxin transport and: radius of the generative circle. The rule for composition of Fibonacci or Lucas numbers: associated with some phyllotaxes is discussed. A subcellular model suggests how the shoot: meristem might specify either symmetric or asymmetric transport of auxin away from the: forming primordia that produce it. Biological tests that could make or break the mathematical: and molecular hypotheses are proposed.
Collapse
Affiliation(s)
- Barbara Abraham-Shrauner
- Department of Electrical and Systems Engineering, and Gladys Levis Allen Laboratory of Plant Sensory Physiology, Washington University, St. Louis, MO, USA.
| | | |
Collapse
|
45
|
Chandler JW. Founder cell specification. TRENDS IN PLANT SCIENCE 2011; 16:607-13. [PMID: 21924666 DOI: 10.1016/j.tplants.2011.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/09/2011] [Accepted: 08/20/2011] [Indexed: 05/08/2023]
Abstract
Lateral organs arise from individual or groups of cells either on the flanks of meristems or within defined cellular positional contexts. The first event in organogenesis is founder cell specification. Auxin is one necessary signal in different organ specification contexts, but it is difficult to distinguish between correlative and causal signals and evidence is emerging that other signals exist and that the interplay between these signals is important for organ initiation. This review analyses the progress in understanding which signals contribute to founder cell specification and outlines the emerging complexities in the perception of positional information that are context-dependent and reliant on the establishment and coordination of different types of competencies.
Collapse
Affiliation(s)
- John W Chandler
- Institute of Developmental Biology, Cologne Biocenter, Cologne University, Zuelpicher Strasse 47b, D-50674 Cologne, Germany.
| |
Collapse
|
46
|
Band LR, King JR. Multiscale modelling of auxin transport in the plant-root elongation zone. J Math Biol 2011; 65:743-85. [PMID: 22015980 DOI: 10.1007/s00285-011-0472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 08/17/2011] [Indexed: 01/02/2023]
Abstract
In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics.
Collapse
Affiliation(s)
- L R Band
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, Nottingham LE12 5RD, UK.
| | | |
Collapse
|
47
|
Kwiatkowska D, Nakielski J. Mechanics of the Meristems. MECHANICAL INTEGRATION OF PLANT CELLS AND PLANTS 2011. [DOI: 10.1007/978-3-642-19091-9_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Mirabet V, Das P, Boudaoud A, Hamant O. The role of mechanical forces in plant morphogenesis. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:365-85. [PMID: 21332360 DOI: 10.1146/annurev-arplant-042110-103852] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The shape of an organism relies on a complex network of genetic regulations and on the homeostasis and distribution of growth factors. In parallel to the molecular control of growth, shape changes also involve major changes in structure, which by definition depend on the laws of mechanics. Thus, to understand morphogenesis, scientists have turned to interdisciplinary approaches associating biology and physics to investigate the contribution of mechanical forces in morphogenesis, sometimes re-examining theoretical concepts that were laid out by early physiologists. Major advances in the field have notably been possible thanks to the development of computer simulations and live quantitative imaging protocols in recent years. Here, we present the mechanical basis of shape changes in plants, focusing our discussion on undifferentiated tissues. How can growth be translated into a quantified geometrical output? What is the mechanical basis of cell and tissue growth? What is the contribution of mechanical forces in patterning?
Collapse
Affiliation(s)
- Vincent Mirabet
- INRA, CNRS, ENS, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
49
|
Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 2010; 8:e1000516. [PMID: 20976043 PMCID: PMC2957402 DOI: 10.1371/journal.pbio.1000516] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023] Open
Abstract
Imaging and computational modeling of the Arabidopsis shoot meristem epidermis suggests that biomechanical signals coordinately regulate auxin efflux carrier distribution and microtubule patterning to orchestrate the extent and directionality of growth. Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis. The proper development of plant organs such as leaves or flowers depends both on localized growth, which can be controlled by the plant hormone auxin, and directional growth, which is dependent on each cell's microtubule cytoskeleton. In this paper we show that at the shoot apex where organs initiate the orientation of the microtubule cytoskeleton is correlated with the orientation of the auxin transporter PIN1, suggesting coordination between growth patterning at the tissue level and directional growth at the cellular level. Recent work has indicated that mechanical signals play a role in orienting the plant microtubule network, and here we show that such signals can also orient PIN1. In addition, we demonstrate through mathematical modeling that an auxin transport system that is coordinated by mechanical signals akin to those we observed in vivo is sufficient to give rise to the patterns of organ outgrowth found in the plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Marcus G. Heisler
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | | | - Pawel Krupinski
- Computational Biology and Biological Physics Group, Department of Theoretical Physics, Lund University, Lund, Sweden
| | | | - Carolyn Ohno
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Henrik Jönsson
- Computational Biology and Biological Physics Group, Department of Theoretical Physics, Lund University, Lund, Sweden
- * E-mail: (HJ); (JT); (EMM)
| | - Jan Traas
- INRA, CNRS, ENS, Université de Lyon, Lyon Cedex, France
- * E-mail: (HJ); (JT); (EMM)
| | - Elliot M. Meyerowitz
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (HJ); (JT); (EMM)
| |
Collapse
|
50
|
Alim K, Frey E. Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 33:165-173. [PMID: 20571847 DOI: 10.1140/epje/i2010-10604-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
The dynamic patterning of the plant hormone auxin and its efflux facilitator the PIN protein are the key regulators for the spatial and temporal organization of plant development. In particular auxin induces the polar localization of its own efflux facilitator. Due to this positive feedback, auxin flow is directed and patterns of auxin and PIN arise. During the earliest stage of vein initiation in leaves auxin accumulates in a single cell in a rim of epidermal cells from which it flows into the ground meristem tissue of the leaf blade. There the localized auxin supply yields the successive polarization of PIN distribution along a strand of cells. We model the auxin and PIN dynamics within cells with a minimal canalization model. Solving the model analytically we uncover an excitable polarization front that triggers a polar distribution of PIN proteins in cells. As polarization fronts may extend to opposing directions from their initiation site, we suggest a possible resolution to the puzzling occurrence of bipolar cells, thus we offer an explanation for the development of closed, looped veins. Employing non-linear analysis, we identify the role of the contributing microscopic processes during polarization. Furthermore, we deduce quantitative predictions on polarization fronts establishing a route to determine the up to now largely unknown kinetic rates of auxin and PIN dynamics.
Collapse
Affiliation(s)
- K Alim
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Theresienstr. 37, D-80333, München, Germany.
| | | |
Collapse
|