1
|
Ma J, Lu Y, Cai Y, Zhi Y, Li W, Pan X. Acrolein exposure associated with kidney damage: a cross‑sectional study. Sci Rep 2025; 15:8682. [PMID: 40082533 PMCID: PMC11906920 DOI: 10.1038/s41598-025-93698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Acrolein (Acr) is a common volatile toxic substance excreted by the kidneys. There are no studies that specifically look at the effects of Acr on kidney function. This study was designed to investigate the relationship between Acr and kidney damage. A cross-sectional study of data (n = 4951) from the 2011-2018 National Health and Nutrition Examination Survey (NHANES) was conducted. Participants' urinary Acr concentration, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio (UACR) were recorded based on laboratory tests. The number of participants with chronic kidney disease (CKD) was counted. Urinary Acr concentration was divided into quartiles. The association of urinary Acr with CKD and eGFR was investigated using multivariate linear regression, multivariate logistic regression, and smooth curve fitting. Subgroup analyses, interaction tests and sensitivity analyses were used to examine the independence of the Acr-CKD and Acr-eGFR associations in the population. In 4951 participants, urinary Acr concentration was positively associated with CKD risk and negatively associated with eGFR. In the fully adjusted model, each log2Acr increase of one unit was associated with a 6% increased risk of CKD (OR = 1.06, 95% CI 1.01, 1.13) and a 0.54 mL/min/1.73 m2 decrease in eGFR (β = - 0.54, 95% CI - 0.95, - 0.13). For categorical log2Acr, for each log2Acr increase of one unit, the risk of CKD was 29% higher in the Q4 group than in the Q1 group (OR = 1.29, 95% CI 1.01, 1.64), while eGFR was 1.9 mL/min/1.73 m2 lower in the Q4 group than in the Q1 group (β = - 1.90, 95% CI - 3.65, - 0.14). Smooth curve fitting confirmed urinary Acr's nonlinear positive and negative correlations with CKD and eGFR. According to subgroup analyses, sensitivity analyses and interaction tests, the confounding variables did not affect the independent correlations of urinary Acr with CKD and eGFR. Our study found that Acr exposure was significantly associated with kidney damage. Our study provides a new piece of research evidence to support a link between the volatile toxic substance Acr and a decline in kidney function.
Collapse
Affiliation(s)
- Jianchao Ma
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, People's Republic of China
| | - Youqi Lu
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, People's Republic of China
| | - Yang Cai
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yuling Zhi
- The Second Ward of the Department of Affective Disorders, Nanning Fifth People's Hospital, Guangxi Province, Nanning, 530001, People's Republic of China
| | - Wei Li
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaojie Pan
- The Key Laboratory of Clinical Diagnosis and Treatment Research of High Incidence Diseases in Guangxi, Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China.
| |
Collapse
|
2
|
Xie S, Perrais M, Golshayan D, Wuerzner G, Vaucher J, Thomas A, Marques-Vidal P. Association between urinary heavy metal/trace element concentrations and kidney function: a prospective study. Clin Kidney J 2025; 18:sfae378. [PMID: 39950154 PMCID: PMC11822291 DOI: 10.1093/ckj/sfae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 02/16/2025] Open
Abstract
Background Chronic kidney disease (CKD) is an important public health problem. Although cross-sectional studies have identified many heavy metals/trace elements associated with reduced kidney function, prospective studies are needed to determine the pathogenic role of these elements in the development and progression of CKD. Methods To explore the association between baseline urinary heavy metal/trace element concentrations and long-term impaired kidney function (IKF)/CKD, as well as the incidence of rapid decline in kidney function in a population-based exploratory prospective study, with mean age 51.9 years at baseline whose urinary trace elements concentrations have been determined by inductively coupled plasma mass spectrometry. IKF was defined by a reduced estimated glomerular filtration rate (eGFR) between 60 and 90 mL/min/1.73 m2, and CKD was defined as an eGFR <60 mL/min/1.73 m2. Rapid eGFR decline was defined as a decrease ≥3 mL/min/1.73 m2/year. Results Over a mean follow-up of 12.5 years, 123 participants (2.6%) experienced rapid decline in kidney function, and 1455 (31.7%) developed IKF or CKD. After adjusting for covariates including baseline eGFR, we found that urinary vanadium [hazard ratio (HR) = 1.07, 1.03-1.12], cobalt (HR = 1.69, 1.21-2.37), nickel (HR = 1.19, 1.08-1.3), copper (HR = 1.03, 1.01-1.06), selenium (HR = 1.33, 1.02-1.73), molybdenum (HR = 1.48, 1.2-1.82) and iodine (HR = 1.1, 1.02-1.2) were associated with an increased risk of new incident IKF or CKD cases during the follow-up. Also, urinary copper [odds ratio (OR) = 1.12, 1.04-1.21], silver (OR = 1.83, 1-3.35), molybdenum (OR = 1.02, 1.01-1.04) and cadmium (OR = 1.05, 1.01-1.09) were associated with an increased risk of rapid eGFR decline. Conclusion In the general population, several urinary heavy metals/trace elements are associated with a rapid decline in kidney function or new cases of IKF/CKD.
Collapse
Affiliation(s)
- Sisi Xie
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Maïwenn Perrais
- Faculty Unit of Toxicology, University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Vaucher
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Medicine and Specialties, Internal Medicine, Fribourg Hospital and University of Fribourg, Fribourg, Switzerland
| | - Aurélien Thomas
- Faculty Unit of Toxicology, University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Zhang C, Zhang Y, Guo J, Liu C. A fluorescent probe for specific dual recognition of Ni 2+ and pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124685. [PMID: 38909561 DOI: 10.1016/j.saa.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Nickel ion (Ni2+) and pH play an important role in environment and living organisms. A fluorescent probe "naphthalimide- s-triazine" (NCNS) for targeted dual detection of Ni2+ and pH was synthesized. As a result, NCNS exhibits excellent optical properties: a much larger Stokes shift (140 nm), eminent changes of fluorescence intensity and significant red-shift both for Ni2+ and pH. As for the detection of Ni2+, the selectivity is high and the anti-interference is strong. NCNS can fluorescently detect Ni2+ in a wider pH range from 4.0 to 10.5. It provides a much lower limit of detection (LOD, 20.03 nM), a rapid response time (150 s) and six times reversibility, showing the high sensitivity. Particularly, NCNS can be applied to fluorescently detect Ni2+ in actual water samples and HA-VSMC imaging. In the detection of pH, the probe generates a ratiometric fluorescence in a wide pH range (3.0 ∼ 12.3). NCNS has been successfully made test paper both for Ni2+ and pH. The mechanisms of the double recognition are verified by the density functional theory (DFT) calculations and the nuclear magnetic resonance (NMR) titration experiments.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China.
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China.
| |
Collapse
|
4
|
Price NF, Lin PID, Cardenas A, Rifas-Shiman SL, Zota AR, Hivert MF, Oken E, Aris IM, Sanders AP. Prenatal metal exposures and kidney function in adolescence in Project Viva. Environ Health 2024; 23:94. [PMID: 39478558 PMCID: PMC11526622 DOI: 10.1186/s12940-024-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND The developing kidney is vulnerable to prenatal environmental factors such as metal exposure, potentially altering the risk of later-life kidney dysfunction. This study examines the relationship between prenatal metal exposures, individually and as mixtures, and adolescent kidney function in Project Viva, a prospective longitudinal birth cohort in Massachusetts, USA. METHODS We used data on metals measured in blood during pregnancy including 15 in the first trimester and four in the second trimester. We calculated estimated glomerular filtration rate (eGFR) in adolescents (mean: 17.7 years) using cystatin C- (eGFRcys) and creatinine-based (eGFRcreat) equations for children. We used linear regression for single metal analyses, and Bayesian kernel machine regression and quantile-based g-computation for mixture analyses, adjusting for relevant covariates. To account for multiple comparisons in the single metal analyses, we applied the Holm-Bonferroni procedure to control the false discovery rate. RESULTS This study included 371 participants with first trimester metals and adolescent eGFR, and 256 with second trimester metals. Each doubling in first trimester cadmium concentration was associated with lower adolescent eGFRcys (β:-1.51; 95% CI:-2.83, -0.18). Each doubling in first trimester chromium (β:-1.45; 95% CI:-2.71, -0.19), nickel (β:-1.91; 95% CI:-3.65, -0.16), and vanadium (β:-1.69; 95% CI:-3.21, -0.17) was associated with lower adolescent eGFRcreat. After adjusting for multiple comparisons, p-values for associations between adolescent eGFR and chromium, nickel, vanadium and cadmium did not meet the criteria for significance. Metal mixture analyses did not identify statistically significant associations with adolescent eGFR. CONCLUSIONS These findings have important implications for future studies investigating the potential mechanisms through which prenatal metal exposures affect long-term kidney health in children.
Collapse
Affiliation(s)
- Natalie F Price
- Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Alison P Sanders
- Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Zhang J, Gao Y, Li Y, Liu D, Sun W, Liu C, Zhao X. Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney. BIOLOGY 2024; 13:655. [PMID: 39336083 PMCID: PMC11429462 DOI: 10.3390/biology13090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024]
Abstract
Although the human body needs nickel as a trace element, too much nickel exposure can be hazardous. The effects of nickel on cells include inducing oxidative stress, interfering with DNA damage repair, and altering epigenetic modifications. Glucose metabolism and lipid metabolism are closely related to oxidative stress; however, their role in nickel-induced damage needs further study. In Institute of Cancer Research (ICR) mice, our findings indicated that nickel stress increased the levels of blood lipid indicators (triglycerides, high-density lipoprotein, and cholesterol) by about 50%, blood glucose by more than two-fold, and glycated serum protein by nearly 20%. At the same time, nickel stress increased oxidative stress (malondialdehyde) and inflammation (Interleukin 6) by about 30% in the kidney. Based on next-generation sequencing technology, we detected and analyzed differentially expressed genes in the kidney caused by nickel stress. Bioinformatics analysis and experimental verification showed that nickel inhibited the expression of genes related to lipid metabolism and the AMPK and PPAR signaling pathways. The finding that nickel induces kidney injury and inhibits key genes involved in lipid metabolism and the AMPK and PPAR signaling pathways provides a theoretical basis for a deeper understanding of the mechanism of nickel-induced kidney injury.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yahong Gao
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yuewen Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
| | - Dongdong Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Wenpeng Sun
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Xiujuan Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M, Potkonjak N. Metals on the Menu-Analyzing the Presence, Importance, and Consequences. Foods 2024; 13:1890. [PMID: 38928831 PMCID: PMC11203375 DOI: 10.3390/foods13121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Metals are integral components of the natural environment, and their presence in the food supply is inevitable and complex. While essential metals such as sodium, potassium, magnesium, calcium, iron, zinc, and copper are crucial for various physiological functions and must be consumed through the diet, others, like lead, mercury, and cadmium, are toxic even at low concentrations and pose serious health risks. This study comprehensively analyzes the presence, importance, and consequences of metals in the food chain. We explore the pathways through which metals enter the food supply, their distribution across different food types, and the associated health implications. By examining current regulatory standards for maximum allowable levels of various metals, we highlight the importance of ensuring food safety and protecting public health. Furthermore, this research underscores the need for continuous monitoring and management of metal content in food, especially as global agricultural and food production practices evolve. Our findings aim to inform dietary recommendations, food fortification strategies, and regulatory policies, ultimately contributing to safer and more nutritionally balanced diets.
Collapse
Affiliation(s)
- Vedran Milanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Tasić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Andreja Leskovac
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Sandra Petrović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Miloš Mitić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Mirjana Novković
- Group for Muscle Cellular and Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia;
| | - Nebojša Potkonjak
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| |
Collapse
|
7
|
Ortega-Romero M, Rojas-Lima E, Rubio-Gutiérrez JC, Aztatzi-Aguilar OG, Narváez-Morales J, Esparza-García M, Barrera-Hernández Á, Mejia MÁ, Mendez-Hernández P, Medeiros M, Barbier OC. Associations among environmental exposure to trace elements and biomarkers of early kidney damage in the pediatric population. Biometals 2024; 37:721-737. [PMID: 38642266 DOI: 10.1007/s10534-024-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population. METHODS In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass. RESULTS The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters. DISCUSSION and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.
Collapse
Affiliation(s)
- Manolo Ortega-Romero
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Elodia Rojas-Lima
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan Carlos Rubio-Gutiérrez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Mariela Esparza-García
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ángel Barrera-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Miguel Ángel Mejia
- Fundación Franco-Mexicana Para La Medicina, I.A.P, Ciudad de México, Mexico
| | - Pablo Mendez-Hernández
- Departamento de Calidad y Educación en Salud, Secretaría de Salud de Tlaxcala, Tlaxcala, Mexico
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Mara Medeiros
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Yin H, Li X, Wang C, Li X, Liu J. Nickel induces mitochondrial damage in renal cells in vitro and in vivo through its effects on mitochondrial biogenesis, fusion, and fission. Chem Biol Interact 2024; 394:110975. [PMID: 38552765 DOI: 10.1016/j.cbi.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Nickel (Ni) and its compounds are common, widely distributed components of hazardous waste in the chemical industry. Excessive exposure to Ni can cause kidney damage in humans and animals. We investigated the impact of Ni on renal mitochondria using in vivo and in vitro models of Ni nephrotoxicity, and explored the Ni nephrotoxic mechanism. We showed that nickel chloride (NiCl2) damaged the renal mitochondria, causing mitochondrial swelling, breakage of the mitochondrial cristae, increased levels of mitochondrial reactive oxygen species (mt-ROS), and depolarization of the mitochondrial membrane potential (MMP). The levels of the mitochondrial respiratory chain complexes I-IV were reduced in the kidneys of mice treated with NiCl2. In addition, NiCl2 treatment inhibited mitochondrial biogenesis in renal cells by down-regulating mRNA and the protein expression of TFAM, PGC-1α, and NRF1. Moreover, NiCl2 reduced the levels of the proteins involved in mitochondrial fusion, including Mfn1 and Mfn2, while significantly augmenting the levels of the proteins Fis1 and Drip1 involved in mitochondrial fission in renal cells. Taken together, these results suggested that NiCl2 inhibited mitochondrial biogenesis, suppressed mitochondrial fusion, and promoted mitochondrial fission, resulting in mitochondrial dysfunction in renal cells, ultimately causing renal injury. This study provided novel insights into the mechanisms of nephrotoxicity of Ni and new ideas for the development of targeted treatments for Ni-induced kidney injury.
Collapse
Affiliation(s)
- Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xinglai Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Chengbi Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xiaocong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| |
Collapse
|
9
|
Yin H, Wang C, Guo H, Li X, Liu J. The mechanism of nickel-induced autophagy and its role in nephrotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116150. [PMID: 38430579 DOI: 10.1016/j.ecoenv.2024.116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/04/2024]
Abstract
Nickel (Ni), an environmental health hazard, is nephrotoxic to humans, but the exact mechanism is unknown. This study aims to identify whether nephrotoxicity is associated with autophagy. Here, nickel chloride (NiCl2) increased autophagy in TCMK-1 cells. NiCl2 induces autophagy through Akt and AMPK/mTOR pathways. Next, oxidative stress was investigated in NiCl2-induced autophagy. The findings demonstrated that the antioxidant (NAC) or mitochondrial targeted antioxidant (Mito-TEMPO) attenuated NiCl2-induced autophagy, reversed the influence on AMPK-mTOR and Akt pathways. Additionally, our study examined the role of autophagy in NiCl2-induced nephrotoxicity. Autophagy inhibition with 3-MA could inhibit cell viability and increase apoptosis in the TCMK-1 cells, however, autophagy promotion with rapamycin relieved cytotoxicity and decreased apoptosis. Additionally, co-treatment with Z-VAD-FMK reduced cytotoxicity, but did not affect autophagy. Besides, NiCl2 can increase the level of mitophagy in vivo and vitro. Mitophagy inhibition could inhibit cell viability and increase apoptosis in the TCMK-1 cells, whereas, promotion of mitophagy could increase cell viability and decrease apoptosis. In summary, above-mentioned results showed that NiCl2 induces autophagy in TCMK-1 cells through oxidative stress-dependent AMPK/AKT-mTOR pathway, autophagy plays a role in reducing NiCl2-induced renal toxicity, and a major mechanism in autophagy's inhibitory effect on NiCl2-induced apoptosis may be mitophagy.
Collapse
Affiliation(s)
- Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Chengbi Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaocong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
10
|
Zhao H, Fang L, Chen Y, Ma Y, Xu S, Ni J, Chen X, Wang G, Pan F. Associations of exposure to heavy metal mixtures with kidney stone among U.S. adults: A cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96591-96603. [PMID: 37580472 DOI: 10.1007/s11356-023-29318-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Assessing the effects of heavy metals (HMs) on kidney stone is often limited to analyzing individual metal exposures, with studies on the effects of exposure to mixtures of HMs being scarce. To comprehensively evaluate the relationship between exposure to mixed HMs and kidney stones, we analyzed data from the National Health and Nutrition Examination Survey (NHANES) from 2007-2016, which included 7809 adults. We used multiple statistical methods, including multiple logistic regression models, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp) and bayesian kernel machine regression (BKMR), to assess the association between single HM and mixed exposure to HMs and kidney stones. Firstly, in single exposure analysis, urinary cadmium (Cd) and cobalt (Co) demonstrated a positive association with the risk of kidney stones. Secondly, various other approaches consistently revealed that mixed exposure to HMs exhibited a positive association with kidney stone risk, primarily driven by Cd, Co, and barium (Ba) in urine, with these associations being particularly notable among the elderly population. Finally, both BKMR and survey-weighted generalized linear models consistently demonstrated a significant synergistic effect between urinary Co and urinary uranium (Ur) in elevating the risk of kidney stones. Overall, this study provides new epidemiological evidence that mixed exposure to HMs is associated with an increased risk of kidney stones. Further prospectively designed studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuyang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Du G, Song X, Zhou F, Ouyang L, Li Q, Ruan S, Yang S, Rao S, Wan X, Xie J, Feng C, Fan G. Association between multiple metal(loid)s exposure and renal function: a cross-sectional study from southeastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94552-94564. [PMID: 37532974 DOI: 10.1007/s11356-023-29001-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
In the real world, humans are exposed to multiple metal(loid)s (designated hereafter metals) that contain essential metals as well as toxic metals. Exposure to the metal mixture was assumed to be associated with renal function impairment; however, there is no consensus on available studies. Therefore, we here explored the association between multiple metals exposure and indicators of renal function in the general population from southeastern China. A total of 11 metals with 6 human essential metals and 5 toxic metals were determined in the selected 720 subjects. In addition, serum uric acid (SUA), serum creatinine (SCR), and the estimated glomerular filtration rate (eGFR) were measured or calculated as indicators of renal function. Using multiple flexible statistical models of generalized linear model, elastic net regression, and Bayesian kernel machine regression, the joint as well as the individual effect of metals within the mixture, and the interactions between metals were explored. When exposed to the metal mixture, the statistically non-significantly increased SUA, the significantly increased SCR, and the significantly declined eGFR were observed. In addition, the declined renal function may be primarily attributed to lead (Pb), arsenic (As), and nickel (Ni) exposure. Finally, interactions, such as the synergistic effect between Pb and Mo on SUA, whereas the antagonistic effect between Ni and Cd on SCR and eGFR were identified. Our finding suggests that combined exposure to multiple metals would impair renal function. Therefore, reducing exposure to toxic heavy metals of Pb, As, and Cd and limiting exposure to the human essential metal of Ni would protect renal function.
Collapse
Affiliation(s)
- Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiaoguang Song
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Province Center for Disease Control and Prevention, Institute of Environmental Health, 555 Beijingdong Road, Qingshanhu District, Nanchang, Jiangxi, 330046, People's Republic of China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shiying Ruan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Stress, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
12
|
Su X, Zhang Z, Qiu S, Zeng B, Yang M, Huang X, Zou X, Yang L. Association between nickel exposure and body compositions in the United States: a population-based cross-sectional study. BMC Public Health 2023; 23:1632. [PMID: 37626316 PMCID: PMC10463381 DOI: 10.1186/s12889-023-16483-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Increasing body fat or decreasing muscle and bone mass were associated with worse health outcomes in the adult population. The effects of nickel exposure on body composition are not known. The aim of the current study was to investigate the relationship between urinary nickel levels and body compositions. MATERIALS AND METHODS Two thousand seven hundred sixty-two participants were included in the analysis from the National Health and Nutrition Examination Surveys of 2017-2018 after excluding participants who have missing data on urinary nickel and those with missing all body mass component data. We used weighted generalized linear models to explore the relationship between urinary nickel and body mass components under interpolating missing covariable values. Simultaneously, sensitivity analyses and subgroup analysis were conducted to verify stability of analysis result. Curve fitting and saturation effect analysis were used to explore the possible nonlinear relationship between urine nickel and body compositions. RESULTS Among the 2,762 participants, the average urinary nickel level was 1.58 ug/L. The weighted generalized linear models, the sensitivity analyses and subgroup analyses found no significant linear relationship between urinary nickel and body compositions. For body weight, BMI, TLM, ALM, TRF, TOF and BMC, the urine nickel saturation effect values were 0.76, 0.74, 0.5, 0.67, 0.64, 0.48, and 0.45 ug/L, respectively. For each 1 ug/L rise in urinary nickel levels at levels below the turning point, body weight increases (β = 9.06, 95% CI = 2.75, 15.36, p = 0.01), BMI increases (β = 3.20, 95% CI = 1.36, 5.05, p = < 0.001), TLM decreases (β = -47.39, 95% CI = -97.38, 2.59, p = 0.06), ALM decreases (β = -37.25, 95% CI = -63.25, -11.24, p = 0.01), TRF increases (β = 20.68, 95% CI = 1.50, 39.86, p = 0.03), TOF increases (β = 57.92, 95% CI = -0.12, 115.95, p = 0.05), and BMC decreases (β = -6.84, 95% CI = -12.64, -1.04, p = 0.02). CONCLUSIONS In summary, our study demonstrated that a dose-response relationship exists between urinary nickel and body compositions, with a low inflection point level of urinary nickel for the saturation effect.
Collapse
Affiliation(s)
- Xingyang Su
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zilong Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zeng
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mi Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyi Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Rawee P, Kremer D, Nolte IM, Leuvenink HGD, Touw DJ, De Borst MH, Bakker SJL, Hanudel MR, Eisenga MF. Iron Deficiency and Nephrotoxic Heavy Metals: A Dangerous Interplay? Int J Mol Sci 2023; 24:5315. [PMID: 36982393 PMCID: PMC10049453 DOI: 10.3390/ijms24065315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Heavy metals are common in our environment, and all individuals are exposed to them to some extent. These toxic metals have several harmful effects on the body, including the kidney, which is a very sensitive organ. Indeed, heavy metal exposure has been linked to an increased risk of chronic kidney disease (CKD) and its progression, which may be explained by the well-established nephrotoxic effects of these metals. In this hypothesis and narrative literature review, we will shed light on the potential role that another highly common problem in patients with CKD, iron deficiency, may play in the damaging effects of heavy metal exposure in this patient group. Iron deficiency has previously been linked with an increased uptake of heavy metals in the intestine due to the upregulation of iron receptors that also take up other metals. Furthermore, recent research suggests a role of iron deficiency in the retention of heavy metals in the kidney. Therefore, we hypothesize that iron deficiency plays a crucial role in the damaging effects of heavy metal exposure in patients with CKD and that iron supplementation might be a strategy to combat these detrimental processes.
Collapse
Affiliation(s)
- Pien Rawee
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Martin H. De Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Mark R. Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michele F. Eisenga
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| |
Collapse
|
14
|
Wu L, Shi Y, Kong C, Zhang J, Chen S. Dietary Inflammatory Index and Its Association with the Prevalence of Coronary Heart Disease among 45,306 US Adults. Nutrients 2022; 14:4553. [PMID: 36364813 PMCID: PMC9656485 DOI: 10.3390/nu14214553] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Inflammation plays a pivotal in the occurrence and development of coronary heart disease (CHD). We aim to investigate the association between the Dietary Inflammatory Index (DII) and CHD in the present study. In this cross-sectional study, adult participants from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were enrolled. The social demographic information, lifestyle factors, blood biochemical measurements, dietary information, and CHD status of all the participants were systematically collected. Multivariable logistic regression was adopted to investigate the association between the risk of CHD and the DII. Besides, restricted cubic spline (RCS) analysis was used to explore whether there was a nonlinear association of the DII and CHD. Subgroup analysis stratified by sex, age, race/ethnicity, and BMI was conducted to evaluate the association of the DII and CHD among different populations. A total of 45,306 adults from NHANES (1999-2018) were included. Compared with individuals without CHD, the DIIs of the participants with CHD were significantly elevated. A positive association was observed between the DII and CHD in multivariable logistic analysis after adjusting for age, sex, race/ethnicity, education levels, smoking, drinking, diabetes, hypertension, and body mass index (BMI). Results of RCS analysis suggested a nonlinear relationship between the DII and CHD. In addition, the increment of the DII had a greater impact on female individuals compared with male individuals. The DII is closely associated with the risk of CHD. For better prevention and treatment of CHD, more attention should be paid to controlling dietary inflammation.
Collapse
|