1
|
Weighman K, Viaene K, Koch J, De Schamphelaere K. Using a dynamic energy budget model to investigate the physiological mode of action of lead (Pb) to Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106617. [PMID: 37369157 DOI: 10.1016/j.aquatox.2023.106617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Lymnaea stagnalis is a notably sensitive species for a variety of metals, including lead (Pb). However, the mechanism(s) of lead toxicity to L. stagnalis currently remain incompletely understood. Under dynamic energy budget (DEB) theory, different physiological modes of action (PMoAs) result in the emergence of distinct changes to the life histories of exposed organisms. This work aims to better understand the PMoA of lead toxicity to L. stagnalis by applying DEB modeling to previously published datasets. After calibration, the model was utilized to evaluate the relative likelihood of several PMoAs. Assuming decreased assimilation, the L. stagnalis DEB model was able to capture most, but not all, trends in experimentally observed endpoints, including growth, reproduction, and food ingestion. The weight-of-evidence suggests that decreased assimilation via a decrease in food ingestion is the most plausible PMoA for chronic lead toxicity in L. stagnalis. Collectively, our results illustrate how mechanistic modeling can create added value for conventional individual-level toxicity test data by enabling inferences about potential physiological mechanisms of toxicity.
Collapse
Affiliation(s)
- Kristi Weighman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium.
| | - Karel Viaene
- Arche Consulting, Liefkenstraat 35D, Ghent, Belgium
| | - Josef Koch
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Karel De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Souza AT, Ilarri M, Campos J, Ribas FO, Marques JC, Martins I. Boom and bust: Simulating the effects of climate change on the population dynamics of a global invader near the edge of its native range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158294. [PMID: 36030867 DOI: 10.1016/j.scitotenv.2022.158294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Despite the increasing awareness of climate change, few studies have used the Intergovernmental Panel on Climate Change (IPCC) scenarios to simulate the effects of climate change on estuarine populations of crustaceans. The objective of this study was to investigate the effects of temperature and salinity fluctuations on the population dynamics of the shore crab Carcinus maenas at the southern edge of its native range. To this end, a population dynamics model was developed based on experimental and literature data on the biology, ecology and physiology of the species. Results showed that the shore crab will be more affected by changes in temperature than in salinity. The parameter sensitivity analysis revealed that the larval phase of the species is the most sensitive stage of the shore crab life cycle. Three IPCC scenarios (SSP1-2.6, SSP2-4.5, and SSP3-8.5) were used to simulate the effects of temperature increase on the population of C. maenas in the near- (2040), mid- (2060), and long-term (2100). Two scenarios of drought conditions accompanied by the estimated salinity change were also simulated (10 % and 40 % drought). Results suggested that slight increases in temperature (up to 2 °C) lead to a strong increase on the density of C. maenas in the mid-term, while further temperature increases lead to a decline or local extinction of the shore crab population at the southern edge of its distribution range. Results indicated that a salinity increase in the estuary had a negative effect on the shore crab population. Given the importance of the species to temperate coastal ecosystems, both population increase and local extinction are likely to have significant impacts on estuarine communities and food webs, with unknown ecological and socioeconomic consequences.
Collapse
Affiliation(s)
- Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic.
| | - Martina Ilarri
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Joana Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Felipe O Ribas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - João Carlos Marques
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000 Coimbra, Portugal
| | - Irene Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
3
|
Campos J, Ribas F, Bio A, Freitas V, Souza AT, van der Veer HW. Body condition and energy content of the shore crab Carcinus maenas L. in a temperate coastal system: the cost of barnacle epibiosis. BIOFOULING 2022; 38:764-777. [PMID: 36210497 DOI: 10.1080/08927014.2022.2130269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The impact of barnacle epibionts on the condition of the shore crab Carcinus maenas was studied for the western Wadden Sea population. Approximately 39% of the crabs were fouled with the barnacle Balanus crenatus. Although the morphological Fulton's K condition decreased by 5.8% in fouled crabs, Linear Mixed-Effects Models (LMM) showed that only the energetic condition of the crabs was significantly affected by fouling. The energy density of fouled crabs was consistently poorer (4.1% in AFDW; 8.7% in dry weight) than that of non-fouled crabs, especially in females and green forms in dry weight (12.8% and 11.4% reduction, respectively). Cumulative infection with Sacculina carcini, detected in 4.5% of the fouled crabs, additionally reduced by 14.3% the energy density in dry weight and almost to half of the total energy of the fouled crabs. Impacts of energy density reduction on crabs' growth and reproduction are discussed.
Collapse
Affiliation(s)
- Joana Campos
- Terminal de Cruzeiros do Porto de Leixões, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Matosinhos, Portugal
| | - Felipe Ribas
- Terminal de Cruzeiros do Porto de Leixões, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Matosinhos, Portugal
| | - Ana Bio
- Terminal de Cruzeiros do Porto de Leixões, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Matosinhos, Portugal
| | - Vânia Freitas
- Terminal de Cruzeiros do Porto de Leixões, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Matosinhos, Portugal
| | - Allan T Souza
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Henk W van der Veer
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| |
Collapse
|
4
|
Monteiro JN, Pinto M, Crespo D, Pardal MA, Martinho F. Effects of climate variability on an estuarine green crab Carcinus maenas population. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105404. [PMID: 34225218 DOI: 10.1016/j.marenvres.2021.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The increase in frequency and intensity of extreme climate events over the last few decades has been leading to profound changes in estuarine and marine ecosystems worldwide, with strong implications for the species inhabiting these ecosystems as well as for the services provided by them. In this study, we analysed the effects of climate variability on the temporal and spatial variations in population dynamics of the green crab Carcinus maenas in the Mondego estuary (Portugal), between 2003 and 2018. In this 15-year period, a greater recruitment of C. maenas was observed during drought periods, periods which was matched by an increase in secondary production. Ontogenic stage segregation was also observed, with juveniles being found mainly in the further upriver areas of the estuary. The estuarine population was mainly composed of the green morphotype, with the orange and red morphotypes present in more downstream areas of the estuary. Redundancy analysis (RDA) showed high spatial and temporal variability of C. maenas in the estuary which was related with environmental changes over the 15-year period. A correlation between C. maenas biological features and several local-scale (salinity and river runoff) and large-scale (North Atlantic Oscillation index and Eastern Atlantic pattern) environmental variables was identified through cumulative sums analysis (CUSUM), indicating a strong environmental control on C. maenas population dynamics. This paper shows the importance of relatively long-term datasets to unravel the effects of extreme weather events due to climate change on key epibenthic estuarine species, and also how they might cope with a changing marine environment.
Collapse
Affiliation(s)
- João N Monteiro
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CCMAR- Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Miguel Pinto
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CCMAR- Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Daniel Crespo
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Filipe Martinho
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
5
|
Piscopo R, Coppola F, Almeida Â, De Marchi L, Russo T, Esteves VI, Soares AMVM, Pretti C, Chiellini F, Polese G, Freitas R. Effects of temperature on caffeine and carbon nanotubes co-exposure in Ruditapes philippinarum. CHEMOSPHERE 2021; 271:129775. [PMID: 33736227 DOI: 10.1016/j.chemosphere.2021.129775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
In the marine environment, organisms are exposed to a high and increasing number of different contaminants that can interact among them. In addition, abiotic factors can change the dynamics between contaminants and organisms, thus increasing or even decreasing the toxic effect of a particular compound. In this study, the effects of caffeine (CAF) and functionalized multi-walled carbon nanotubes (f-MWCNTs) induced in the clam Ruditapes philippinarum were evaluated, acting alone and in combination (MIX), under two temperature levels (18 and 21 °C). To assess the impact of such compounds, their interaction and the possible influence of temperature, biochemical and histopathological markers were investigated. The effects of f-MWCNTs and caffeine appear to be clearly negative at the control temperature, with lower protein content in contaminated clams and a significant decrease in their metabolism when both pollutants were acting in combination. Also, at control temperature, clams exposed to pollutants showed increased antioxidant capacity, especially when caffeine was acting alone, although cellular damages were still observed at CAF and f-MWCNTs treatments. Increased biotransformation capacity at 18 °C and MIX treatment may explain lower caffeine concentration observed. At increased temperature differences among treatments were not so evident as at 18 °C, with a similar biological pattern among contaminated and control clams. Higher caffeine accumulation at MIX treatment under warming conditions may result from clams' inefficient biotransformation capacity when exposed to increased temperatures.
Collapse
Affiliation(s)
- Raffaele Piscopo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal; Department of Biology, University of Naples Federico II, 80126, Italy
| | - Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Lucia De Marchi
- Department of Biology, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Portugal
| | | | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
6
|
Keller M, Molenaar P, de Leeuw J, Mooij W, Rijnsdorp A, van de Wolfshaar K. Temperature effects on egg and larval development rate in European smelt, Osmerus eperlanus, experiments and a 50 year hindcast. JOURNAL OF FISH BIOLOGY 2020; 96:1422-1433. [PMID: 32154578 PMCID: PMC7383854 DOI: 10.1111/jfb.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
This study investigates the effect of water temperature on the development rate of eggs and larvae, the duration of the endogenous feeding period and its consequences for recruitment of smelt (Osmerus eperlanus) in Dutch lakes IJsselmeer and Markermeer. This study measured temperature-dependent egg and larval development rates as well as mortality rates from fertilization till the moment of absorption of the yolk-sac and from yolk-sac depletion onwards in temperature-controlled indoor experiments. Using multinomial modelling the authors found significant differences in development time of egg development stages under different temperature regimes. Based on historic water temperatures, the model predicted that the larval endogenous feeding period has advanced at a rate of about 2.9 days per decade in a more than 50 year period since 1961, yet there was no change in the duration of the endogenous feeding period. As zooplankton is more responsive to daylight than water temperature cues, a mismatch between the peak of the onset of exogenous feeding of smelt and the peak of zooplankton blooms could lead to high mortality and therefore low recruitment of smelt. Such a mismatch might contribute to a decline in the smelt population in Lake IJsselmeer and Lake Markermeer.
Collapse
Affiliation(s)
- Marieke Keller
- Aquaculture and Fisheries GroupWageningen UniversityWageningenThe Netherlands
- WMR, Wageningen Marine Research, Wageningen URIJmuidenThe Netherlands
| | - Pieke Molenaar
- Aquaculture and Fisheries GroupWageningen UniversityWageningenThe Netherlands
- WMR, Wageningen Marine Research, Wageningen URIJmuidenThe Netherlands
| | - Joep de Leeuw
- Aquaculture and Fisheries GroupWageningen UniversityWageningenThe Netherlands
- WMR, Wageningen Marine Research, Wageningen URIJmuidenThe Netherlands
| | - Wolf Mooij
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Department of Aquatic Ecology and Water Quality ManagementWageningen UniversityWageningenThe Netherlands
| | - Adriaan Rijnsdorp
- WMR, Wageningen Marine Research, Wageningen URIJmuidenThe Netherlands
| | | |
Collapse
|
7
|
Ward JL, Korn V, Auxier AN, Schoenfuss HL. Temperature and Estrogen Alter Predator-Prey Interactions between Fish Species. Integr Org Biol 2020; 2:obaa008. [PMID: 33791552 PMCID: PMC7671136 DOI: 10.1093/iob/obaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A variety of environmental estrogens are commonly detected in human-impacted waterways. Although much is known about the effects of these environmental estrogens on the reproductive physiology and behavior of individuals within species, comparatively less is known about how these compounds alter the outcomes of interactions between species. Furthermore, few studies have considered how the effects of contaminants are modulated by natural variation in abiotic factors, such as temperature. To help fill this knowledge gap, we conducted a factorial experiment to examine the independent and combined effects of estrone (E1) and temperature on the outcome of predator-prey interactions between two common North American freshwater fishes, fathead minnows (Pimephales promelas) and bluegill sunfish (Lepomis macrochirus). Larval fathead minnows and adult sunfish were exposed to either a low (mean±standard deviation, 90.1 ± 18 ng/L; n = 16) or high (414 ± 147 ng/L; n = 15) concentration of E1 or to a solvent control for 30 days at one of four natural seasonal temperatures (15°C, 18°C, 21°C, and 24°C) before predation trials were performed. Exposure to E1 was associated with a significant increase in larval predation mortality that was independent of temperature. Across all temperature treatments, approximately 74% of control minnows survived; this survivorship significantly exceeded that of minnows exposed to either concentration of E1 (49% and 53% for minnows exposed to the low and high concentrations, respectively). However, exposure to E1 also impaired the prey-capture success of sunfish, partially mitigating predation pressure on exposed minnows. Overall prey-capture success by sunfish showed an inverted U-shaped distribution with temperature, with maximal prey consumption occurring at 21°C. This study illustrates the vulnerability of organismal interactions to estrogenic pollutants and highlights the need to include food web interactions in assessments of risk.
Collapse
Affiliation(s)
- J L Ward
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - V Korn
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| | - A N Auxier
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| |
Collapse
|
8
|
Ng'onga M, Kalaba FK, Mwitwa J, Nyimbiri B. The interactive effects of rainfall, temperature and water level on fish yield in Lake Bangweulu fishery, Zambia. J Therm Biol 2019; 84:45-52. [PMID: 31466785 DOI: 10.1016/j.jtherbio.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/15/2022]
Abstract
Climate variability and climate change have negative impacts on fisheries ecosystems and people who derive livelihoods from them. Zambian climate is projected to increase 2 °C in mean temperature by 2070, and further reports suggest that rainfall will drop by 8-30% of the normal average. This study was undertaken to determine the effects of rainfall, temperature and water level on fish yield. The study used both primary and secondary data sources. The major statistical techniques employed in this research include estimation of mean frequencies and correlation coefficients, as well as multivariate regression analyses, to determine the relationships among climate (temperature, rainfall), water level, and fish yield, using the Statistical Package for Social Sciences. The results showed an increase in temperature of 0.3 °C, a decrease in rainfall of 3% and a water-level loss of 1.7 m since 1974. During the same period, fish yield increased by 53%, compared to increases in fishers and boats of 57% and 55%, respectively. The resultant Catch per Unit of Effort (CpUE) decreased from 12 kg/net/night to 1.5 kg/net/night. Findings indicate that there are significant correlations between temperature, rainfall (one-year lag), water level and fish yield. Based on the results, there is strong recommendation to incorporate climate variability and change in the modelling of fisheries management to reduce the impacts of climate variability and change on fisheries-based livelihoods.
Collapse
Affiliation(s)
| | | | - Jacob Mwitwa
- Kapasa Makasa University Campus, Copperbelt University, Great North Road, P.O Box 480195, Chinsali, Zambia
| | - Bright Nyimbiri
- Kapasa Makasa University Campus, Copperbelt University, Great North Road, P.O Box 480195, Chinsali, Zambia
| |
Collapse
|
9
|
Climate warming reduces the reproductive advantage of a globally invasive intertidal mussel. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
The influence of temperature stress on the physiology of the Atlantic surfclam, Spisula solidissima. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:66-73. [PMID: 29689308 DOI: 10.1016/j.cbpa.2018.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Atlantic surfclam populations have significantly declined in state and federal waters from the south shore of Long Island, New York to the Delmarva Peninsula since the early 2000s. Previous studies have demonstrated that surfclams in this geographic range show signs of physiological stress, suggested to be a result of increasing ocean temperatures. In this study, we examined the effect of 2 temperature regimes (19 °C and 23 °C) on surfclam physiology. These temperatures were chosen because they represent maximal (23 °C) and minimal (19 °C) temperatures prevailing in New York clamming areas during summer. Results demonstrated enhanced energy metabolism and significant reductions in filtration rate, scope for growth, and immune functions in clams exposed to the warmer temperature treatment. Although net energy gains remained positive in both treatments under our experimental conditions, the findings suggest that temperature stress is involved in the recent observations of surfclams in poor condition. The impact of elevated temperatures on phytoplankton quantity/quality and other environmental variables in combination with the direct impact on surfclam filtration and metabolic rates could lead to a negative energy balance. While some uncertainties remain about population-scale impacts of overall warming trends, we fear that future increases in temperature may lead to the collapse of the Atlantic surfclam between New York and Virginia, especially within inshore regions.
Collapse
|
11
|
Dong YW, Li XX, Choi FMP, Williams GA, Somero GN, Helmuth B. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc Biol Sci 2018; 284:rspb.2016.2367. [PMID: 28469014 DOI: 10.1098/rspb.2016.2367] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
Biogeographic distributions are driven by cumulative effects of smaller scale processes. Thus, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (Tb), microclimatic conditions, and behavioural thermoregulation. To understand interactions among these variables, we analysed the thermal tolerances of three species of intertidal snails from different latitudes along the Chinese coast, and estimated potential Tb in different microhabitats at each site. We then empirically determined the temperatures at which heart rate decreased sharply with rising temperature (Arrhenius breakpoint temperature, ABT) and at which it fell to zero (flat line temperature, FLT) to calculate thermal safety margins (TSM). Regular exceedance of FLT in sun-exposed microhabitats, a lethal effect, was predicted for only one mid-latitude site. However, ABTs of some individuals were exceeded at sun-exposed microhabitats in most sites, suggesting physiological impairment for snails with poor behavioural thermoregulation and revealing inter-individual variations (physiological polymorphism) of thermal limits. An autocorrelation analysis of Tb showed that predictability of extreme temperatures was lowest at the hottest sites, indicating that the effectiveness of behavioural thermoregulation is potentially lowest at these sites. These results illustrate the critical roles of mechanistic studies at small spatial scales when predicting effects of climate change.
Collapse
Affiliation(s)
- Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiao-Xu Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Francis M P Choi
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - George N Somero
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Brian Helmuth
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China.,Marine Science Center, Northeastern University, Nahant, MA 01908, USA.,School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Allan BJM, Domenici P, Watson SA, Munday PL, McCormick MI. Warming has a greater effect than elevated CO 2 on predator-prey interactions in coral reef fish. Proc Biol Sci 2017; 284:rspb.2017.0784. [PMID: 28659450 DOI: 10.1098/rspb.2017.0784] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 11/12/2022] Open
Abstract
Ocean acidification and warming, driven by anthropogenic CO2 emissions, are considered to be among the greatest threats facing marine organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects, which could impact key ecological processes. We tested the independent and combined effects of short-term exposure to elevated CO2 and temperature on the predator-prey interactions of a common pair of coral reef fishes (Pomacentrus wardi and its predator, Pseudochromis fuscus). We found that predator success increased following independent exposure to high temperature and elevated CO2 Overall, high temperature had an overwhelming effect on the escape behaviour of the prey compared with the combined exposure to elevated CO2 and high temperature or the independent effect of elevated CO2 Exposure to high temperatures led to an increase in attack and predation rates. By contrast, we observed little influence of elevated CO2 on the behaviour of the predator, suggesting that the attack behaviour of P. fuscus was robust to this environmental change. This is the first study to address how the kinematics and swimming performance at the basis of predator-prey interactions may change in response to concurrent exposure to elevated CO2 and high temperatures and represents an important step to forecasting the responses of interacting species to climate change.
Collapse
Affiliation(s)
- Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia .,Department of Marine Biology and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Paolo Domenici
- CNR-IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, 09170 Torregrande (Oristano), Italy
| | - Sue Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Department of Marine Biology and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
13
|
Lewis NS, DeWitt TH. Effect of Green Macroalgal Blooms on the Behavior, Growth, and Survival of Cockles ( Clinocardium nuttallii) in Pacific NW Estuaries. MARINE ECOLOGY PROGRESS SERIES 2017; 582:105-120. [PMID: 29375170 PMCID: PMC5783308 DOI: 10.3354/meps12328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nutrient over-enrichment can produce adverse ecological effects within coastal ecosystems and negatively impact the production of ecosystem goods and services. In small estuaries of the U.S. Pacific Northwest, seasonal blooms of green macroalgae (GMA; Family Ulvaceae) are primarily associated with natural nutrient input, rather than anthropogenic sources. This provided us a unique opportunity to investigate the effects of naturally-stimulated macroalgal blooms on intertidal bivalves. Clinocardium nuttallii (heart cockles) are an important species for shellfisheries in the region. In summer population surveys, we found that cockles emerged from the sediment with greater frequency as GMA biomass increased. Experimental manipulation of GMA biomass in the field showed that GMA elicited emergence, evoked above-ground lateral movement, inhibited shell growth, and increased mortality (by 34.0 ± 15.2%) in cockles. Laboratory experiments revealed that the interaction of a weighted barrier at the sediment surface and GMA presence elicited rapid emergence among cockles. Risk assessment of the emergence response in cockles showed that the in situ emergent population experienced 11.0 ± 8.0% mortality due to gull predation, while laboratory exposure to elevated temperatures (≥34 °C) slowed valve-closure, inhibited reburial, and increased mortality, which could have translated to 7.1 ± 1.5% in situ mortality. We found that cockles avoided mortality due to burial below GMA mats by emerging from the sediment, but that behavior consequently put them at risk of mortality due to heat stress or gull predation. Regardless of nutrient source, our research showed that GMA blooms pose a threat to the survival of intertidal bivalves.
Collapse
Affiliation(s)
- Nathaniel S. Lewis
- ORISE Research Fellow, Pacific Coastal Ecology Branch, Western Ecology Division, U.S. Environmental Protection Agency, Newport, OR 97365, USA
| | - Theodore H. DeWitt
- Pacific Coastal Ecology Branch, Western Ecology Division, U.S. Environmental Protection Agency, Newport, OR 97365, USA
| |
Collapse
|
14
|
Monaco CJ, Wethey DS, Helmuth B. Thermal sensitivity and the role of behavior in driving an intertidal predator–prey interaction. ECOL MONOGR 2016. [DOI: 10.1002/ecm.1230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cristián J. Monaco
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - David S. Wethey
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| | - Brian Helmuth
- Marine Science Center Northeastern University Nahant Massachusetts 01908 USA
| |
Collapse
|
15
|
Torossian J, Kordas R, Helmuth B. Cross-Scale Approaches to Forecasting Biogeographic Responses to Climate Change. ADV ECOL RES 2016. [DOI: 10.1016/bs.aecr.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Allan BJM, Domenici P, Munday PL, McCormick MI. Feeling the heat: the effect of acute temperature changes on predator-prey interactions in coral reef fish. CONSERVATION PHYSIOLOGY 2015; 3:cov011. [PMID: 27293696 PMCID: PMC4778461 DOI: 10.1093/conphys/cov011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 05/21/2023]
Abstract
Recent studies demonstrate that the elevated temperatures predicted to occur by the end of the century can affect the physiological performance and behaviour of larval and juvenile fishes; however, little is known of the effect of these temperatures on ecological processes, such as predator-prey interactions. Here, we show that exposure to elevated temperatures significantly affected the predator-prey interactions of a pair of common reef fish, the planktivorous damselfish (Pomacentrus wardi) and the piscivorous dottyback (Pseudochromis fuscus). When predators exposed to elevated temperatures interacted with prey exposed in a similar manner, maximal attack speeds increased. This effect coupled with decreasing prey escape speeds and escape distances led to increased predation rates. Prey exposed to elevated temperatures also had decreased reaction distances and increased apparent looming threshold, suggesting that their sensory performance was affected. This occurred despite the increase in maximal attack speeds, which in other species has been shown to increase reaction distances. These results suggest that the escape performance of prey is sensitive to short-term increases in ambient temperature. As marine environments become more thermally variable in the future, our results demonstrate that some predators may become more successful, suggesting that there will be strong selection for the maintenance of maximal escape performance in prey. In the present era of rapid climate change, understanding how changes to individual performance influence the relationships between predators and their prey will be increasingly important in predicting the effects of climate change within ecosystems.
Collapse
Affiliation(s)
- Bridie J. M. Allan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Paolo Domenici
- CNR-IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, Torregrande (Oristano), Italy
| | - Phillip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
17
|
Miller LP, Matassa CM, Trussell GC. Climate change enhances the negative effects of predation risk on an intermediate consumer. GLOBAL CHANGE BIOLOGY 2014; 20:3834-3844. [PMID: 24947942 DOI: 10.1111/gcb.12639] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
Predators are a major source of stress in natural systems because their prey must balance the benefits of feeding with the risk of being eaten. Although this 'fear' of being eaten often drives the organization and dynamics of many natural systems, we know little about how such risk effects will be altered by climate change. Here, we examined the interactive consequences of predator avoidance and projected climate warming in a three-level rocky intertidal food chain. We found that both predation risk and increased air and sea temperatures suppressed the foraging of prey in the middle trophic level, suggesting that warming may further enhance the top-down control of predators on communities. Prey growth efficiency, which measures the efficiency of energy transfer between trophic levels, became negative when prey were subjected to predation risk and warming. Thus, the combined effects of these stressors may represent an important tipping point for individual fitness and the efficiency of energy transfer in natural food chains. In contrast, we detected no adverse effects of warming on the top predator and the basal resources. Hence, the consequences of projected warming may be particularly challenging for intermediate consumers residing in food chains where risk dominates predator-prey interactions.
Collapse
Affiliation(s)
- Luke P Miller
- Department of Marine and Environmental Sciences and the Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | | | | |
Collapse
|
18
|
Monaco CJ, Wethey DS, Helmuth B. A Dynamic Energy Budget (DEB) model for the keystone predator Pisaster ochraceus. PLoS One 2014; 9:e104658. [PMID: 25166351 PMCID: PMC4148243 DOI: 10.1371/journal.pone.0104658] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022] Open
Abstract
We present a Dynamic Energy Budget (DEB) model for the quintessential keystone predator, the rocky-intertidal sea star Pisaster ochraceus. Based on first principles, DEB theory is used to illuminate underlying physiological processes (maintenance, growth, development, and reproduction), thus providing a framework to predict individual-level responses to environmental change. We parameterized the model for P. ochraceus using both data from the literature and experiments conducted specifically for the DEB framework. We devoted special attention to the model’s capacity to (1) describe growth trajectories at different life-stages, including pelagic larval and post-metamorphic phases, (2) simulate shrinkage when prey availability is insufficient to meet maintenance requirements, and (3) deal with the combined effects of changing body temperature and food supply. We further validated the model using an independent growth data set. Using standard statistics to compare model outputs with real data (e.g. Mean Absolute Percent Error, MAPE) we demonstrated that the model is capable of tracking P. ochraceus’ growth in length at different life-stages (larvae: MAPE = 12.27%; post-metamorphic, MAPE = 9.22%), as well as quantifying reproductive output index. However, the model’s skill dropped when trying to predict changes in body mass (MAPE = 24.59%), potentially because of the challenge of precisely anticipating spawning events. Interestingly, the model revealed that P. ochraceus reserves contribute little to total biomass, suggesting that animals draw energy from structure when food is limited. The latter appears to drive indeterminate growth dynamics in P. ochraceus. Individual-based mechanistic models, which can illuminate underlying physiological responses, offer a viable framework for forecasting population dynamics in the keystone predator Pisaster ochraceus. The DEB model herein represents a critical step in that direction, especially in a period of increased anthropogenic pressure on natural systems and an observed recent decline in populations of this keystone species.
Collapse
Affiliation(s)
- Cristián J. Monaco
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - David S. Wethey
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Brian Helmuth
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|
19
|
Ruokolainen L, McCann K. Environmental weakening of trophic interactions drives stability in stochastic food webs. J Theor Biol 2013; 339:36-46. [DOI: 10.1016/j.jtbi.2013.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 07/05/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
20
|
Ohlberger J. Climate warming and ectotherm body size - from individual physiology to community ecology. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12098] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Ohlberger
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; PO Box 1066 Blindern; 0316; Oslo; Norway
| |
Collapse
|
21
|
Zimmer EI, Jager T, Ducrot V, Lagadic L, Kooijman SALM. Juvenile food limitation in standardized tests: a warning to ecotoxicologists. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2195-204. [PMID: 22843241 PMCID: PMC3475972 DOI: 10.1007/s10646-012-0973-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2012] [Indexed: 05/02/2023]
Abstract
Standard ecotoxicological tests are as simple as possible and food sources are mainly chosen for practical reasons. Since some organisms change their food preferences during the life-cycle, they might be food limited at some stage if we do not account for such a switch. As organisms tend to respond more sensitively to toxicant exposure under food limitation, the interpretation of test results may then be biased. Using a reformulation of the von Bertalanffy model to analyze growth data of the pond snail Lymnaea stagnalis, we detected food limitation in the early juvenile phase. The snails were held under conditions proposed for a standardized test protocol, which prescribes lettuce as food source. Additional experiments showed that juveniles grow considerably faster when fed with fish flakes. The model is based on Dynamic Energy Budget (DEB) theory, which allows for mechanistic interpretation of toxic effects in terms of changes in energy allocation. In a simulation study with the DEB model, we compared the effects of three hypothetical toxicants in different feeding situations. The initial food limitation when fed with lettuce always intensified the effect of the toxicants. When fed with fish flakes, the predicted effect of the toxicants was less pronounced. From this study, we conclude that (i) the proposed test conditions for L. stagnalis are not optimal, and require further investigation, (ii) fish flakes are a better food source for juvenile pond snails than lettuce, (iii) analyzing data with a mechanistic modeling approach such as DEB allows identifying deviations from constant conditions, (iv) being unaware of food limitation in the laboratory can lead to an overestimation of toxicity in ecotoxicological tests.
Collapse
Affiliation(s)
- Elke I. Zimmer
- Department of Theoretical Biology, Faculty of Earth & Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - T. Jager
- Department of Theoretical Biology, Faculty of Earth & Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - V. Ducrot
- INRA, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, UMR0985 Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042 Rennes, France
| | - L. Lagadic
- INRA, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, UMR0985 Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042 Rennes, France
| | - S. A. L. M. Kooijman
- Department of Theoretical Biology, Faculty of Earth & Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Wither A, Bamber R, Colclough S, Dyer K, Elliott M, Holmes P, Jenner H, Taylor C, Turnpenny A. Setting new thermal standards for transitional and coastal (TraC) waters. MARINE POLLUTION BULLETIN 2012; 64:1564-1579. [PMID: 22705072 DOI: 10.1016/j.marpolbul.2012.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 06/01/2023]
Abstract
The construction of a new generation of coastal power stations in the UK and other western European countries has highlighted the absence of robust standards for thermal discharges to transitional and coastal waters. The proposed discharge volumes are greater than hitherto, yet there has been little independent critical examination of their potential impact, whilst much of the existing guidance has been adapted from freshwater practice. This review considers the available knowledge on the tolerance and behaviour of fish and other marine biota to heated effluents. Appropriate ways are suggested of grouping fish species to reflect their sensitivity to thermal effects. The plethora of existing standards are considered and their validity assessed in a framework of predicted seawater temperature rise. Those species or groups of organisms most likely to be affected are identified and finally specific recommendations for thermal standards consistent with long term sustainability are proposed.
Collapse
Affiliation(s)
- Andrew Wither
- National Oceanography Centre, 6 Brownlow Street, Liverpool L3 5DA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Grigaltchik VS, Ward AJW, Seebacher F. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship. Proc Biol Sci 2012; 279:4058-64. [PMID: 22859598 DOI: 10.1098/rspb.2012.1277] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.
Collapse
Affiliation(s)
- Veronica S Grigaltchik
- School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
24
|
MacNeil MA, Graham NAJ, Cinner JE, Dulvy NK, Loring PA, Jennings S, Polunin NVC, Fisk AT, McClanahan TR. Transitional states in marine fisheries: adapting to predicted global change. Philos Trans R Soc Lond B Biol Sci 2011; 365:3753-63. [PMID: 20980322 DOI: 10.1098/rstb.2010.0289] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.
Collapse
Affiliation(s)
- M Aaron MacNeil
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland 4810, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Freitas V, Cardoso JFMF, Lika K, Peck MA, Campos J, Kooijman SALM, van der Veer HW. Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species. Philos Trans R Soc Lond B Biol Sci 2011; 365:3553-65. [PMID: 20921053 DOI: 10.1098/rstb.2010.0049] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Temperature tolerance and sensitivity were examined for some North Atlantic marine species and linked to their energetics in terms of species-specific parameters described by dynamic energy budget (DEB) theory. There was a general lack of basic information on temperature tolerance and sensitivity for many species. Available data indicated that the ranges in tolerable temperatures were positively related to optimal growth temperatures. However, no clear relationships with temperature sensitivity were established and no clear differences between pelagic and demersal species were observed. The analysis was complicated by the fact that for pelagic species, experimental data were completely absent and even for well-studied species, information was incomplete and sometimes contradictory. Nevertheless, differences in life-history strategies were clearly reflected in parameter differences between related species. Two approaches were used in the estimation of DEB parameters: one based on the assumption that reserve hardly contributes to physical volume; the other does not make this assumption, but relies on body-size scaling relationships, using parameter values of a generalized animal as pseudo-data. Temperature tolerance and sensitivity seemed to be linked with the energetics of a species. In terms of growth, relatively high temperature optima, sensitivity and/or tolerance were related to lower relative assimilation rates as well as lower maintenance costs. Making the step from limited observations to underlying mechanisms is complicated and extrapolations should be carefully interpreted. Special attention should be devoted to the estimation of parameters using body-size scaling relationships predicted by the DEB theory.
Collapse
Affiliation(s)
- Vânia Freitas
- NIOZ-Royal Netherlands Institute for Sea Research, PO Box 59, 1790 Den Burg Texel, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
|