1
|
Duan C, Yang L, Chen W, Zhou D, Cao S, Zhang Y, Li G, Chen H, Tian C. Long-term thermal stress reshapes the tolerance of head kidney of Hong Kong catfish (Clarias fuscus) to acute heat shock by regulating energy metabolism and immune response. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101437. [PMID: 39933313 DOI: 10.1016/j.cbd.2025.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Elevated water temperatures caused by climate warming can affect fish survival. However, fish can maintain normal physiological functions through physiological plasticity. When temperature fluctuations exceed their tolerance range, even stress-resistant species like Siluriformes are affected. It is known that fish have adaptive regulation mechanisms to reshape their tolerance to temperature stress, but the ability to respond to acute thermal shock and recover after adaptive remodeling remains unclear. This study investigated the effects of different culture temperatures on the ability of Hong Kong catfish (Clarias fuscus) to respond to acute heat stress and stress recovery. C. fuscus were cultured at normal temperature (NT, 26 °C) or high temperature (HT, 34 °C) for 90 days, and then their head kidney transcriptome was analyzed after acute heat stress (34 °C) and subsequent recovery (26 °C). The results revealed 8165 differentially expressed genes (DEGs) in the NT group and 8537 DEGs in the HT group during the entire temperature treatment process, with each group responding differently to various stages of temperature treatment. Enrichment analysis showed that both NT and HT groups had enriched pathways related to energy metabolism and immune response during acute heat stress. However, acute heat stress disrupted the energy supply and oxidative metabolism in the NT group, while enhancing the HT group's ability to respond to repeated heat stress. This experiment demonstrated that high-temperature culture reshaped the energy metabolism balance in the head kidney tissue, improving anti-stress and stress recovery abilities. These findings lay a foundation for further research on the plasticity of fish in coping with acute temperature changes.
Collapse
Affiliation(s)
- Cunyu Duan
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Lei Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Wanying Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Shouxiong Cao
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Ignatz EH, Allen MS, Hall JR, Sandrelli RM, Fast MD, Perry GML, Rise ML, Gamperl AK. Application of genomic tools to study and potentially improve the upper thermal tolerance of farmed Atlantic salmon (Salmo salar). BMC Genomics 2025; 26:294. [PMID: 40128646 PMCID: PMC11934803 DOI: 10.1186/s12864-025-11482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The Atlantic salmon (Salmo salar) aquaculture industry must mitigate the impacts of rising ocean temperatures and the increased prevalence/severity of marine heat waves. Therefore, we investigated the genetic architecture and gene expression (transcriptomics) responsible for determining a salmon's upper thermal tolerance. RESULTS A genome-wide association study (GWAS) was conducted using fin clips of salmon from a previous incremental thermal maximum (ITMax) challenge (n = 251) and the North American 50 K SNP chip. ITMax was a highly polygenic trait with low/moderate heritability (mean SNP-based h2 = 0.20 and pedigree-based h2 = 0.25). Using data from the same fish, a separate GWAS assessed thermal-unit growth coefficient (TGC). Five significant SNPs were detected on chromosomes three and five, and high heritability estimates were calculated for TGC measured as fish grew from 12 to 20 °C (mean SNP-based h2 = 0.62 and pedigree-based h2 = 0.64). RNA-seq analyses of liver samples (n = 5-6 family-1 temperature-1) collected from the four most and four least tolerant families at 10 and 20 °C were also used to provide insights into potential mechanisms modulating this species' thermal tolerance. Between the top and bottom families, 347 and 175 differentially expressed transcripts (FDR-adjusted p < 0.01; fold-change ≥|2.0|) were identified at 10 and 20 °C, respectively. GO term enrichment analysis revealed unique responses to elevated temperature between family rankings (e.g., 'blood coagulation', 'sterol metabolic process' and 'synaptic growth at neuromuscular junction'). qPCR analyses further confirmed differences pertaining to cholesterol metabolism (lpl), inflammation (epx, elf3, ccl20), apoptosis (htra1b, htra2, anxa5b), angiogenesis (angl4, pdgfa), nervous system processes (insyn2a, kcnj11l) and heat stress (serpinh1b-1, serpinh1b-2). Three differentially expressed transcripts (i.e., ppp1r9a, gal3st1a, f5) were located in close proximity (± 120 kbp) to near-significant SNPs from the GWAS. Interestingly, ppp1r9a and gal3st1a have putative neurological functions, while f5 regulates blood coagulation. CONCLUSIONS These analyses provide several putative biomarkers of upper thermal tolerance in salmon that could prove valuable in helping the industry develop more temperature-tolerant fish. Further, our study supports previous reports that ITMax has low/moderate heritability in this species, and suggests that TGC at elevated temperatures is highly heritable.
Collapse
Affiliation(s)
- Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada.
- Marine Affairs Program, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| | - Melissa S Allen
- Center for Aquaculture Technologies, San Diego, CA, 92121, USA
| | - Jennifer R Hall
- Aquatic Research Cluster, Ocean Sciences Centre, CREAIT Network, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - Mark D Fast
- Atlantic Veterinary College, University of Prince Edward Island, CIA 4P3, Charlottetown, PE, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
3
|
Waraniak J, Batchelor S, Wagner T, Keagy J. Landscape transcriptomic analysis detects thermal stress responses and potential adaptive variation in wild brook trout (Salvelinus fontinalis) during successive heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178960. [PMID: 40022980 DOI: 10.1016/j.scitotenv.2025.178960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Extreme weather events, such as heatwaves, are becoming more frequent and intense as a result of climate change. Critically, such extreme weather events can be more important drivers of extirpation and selection than changes in annual or seasonal averages and they pose a particularly large threat to poikilothermic organisms. In this study, we evaluated the transcriptomic response of a coldwater adapted fish species, the eastern brook trout (Salvelinus fontinalis), to two successive heatwaves during July and August 2022. We sampled brook trout at eight time points from four streams (N = 116 fish), sequenced mRNA from gill samples using TagSeq, and quantified expression levels of 32,670 unique transcripts. Multivariate analyses found that overall expression patterns in response to water temperature change were similar among streams. These analyses further detected groups of genes involved in immune response and oxygen carrier activity that were upregulated and downregulated respectively at higher water temperatures. We also detected 43 genes that were differentially expressed at different time points and followed the same expression pattern during the two heatwaves. Of these genes, 42 covaried with water temperature and most (27, 62.8 %) exhibited responses that varied by stream. Some of the differentially expressed genes, including heat shock proteins and cold-inducible RNA binding proteins, have been widely linked to temperature responses in experimental studies, whereas other genes we identified have functions that have not been well-studied in relationship to temperature or have unknown functions. This study shows the utility of landscape transcriptomic approaches to identify important biological processes governing wild organismal responses to short-term stressors. The results of this study can guide future investigations to identify phenotypic and genetic diversity that contribute to adaptive responses to heatwaves and improve predictions of how populations will respond to future climate change.
Collapse
Affiliation(s)
- Justin Waraniak
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, The Pennsylvania State University, 421 Forest Resources Building, University Park, PA 16802, USA.
| | - Sarah Batchelor
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, The Pennsylvania State University, 421 Forest Resources Building, University Park, PA 16802, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, PA 16802, USA
| | - Jason Keagy
- Department of Ecosystem Science and Management, The Pennsylvania State University, 410 Forest Resources Building, University Park, PA 16802, USA
| |
Collapse
|
4
|
Beaudreau N, Page TM, Drolet D, McKindsey CW, Howland KL, Calosi P. Using a metabolomics approach to investigate the sensitivity of a potential Arctic-invader and its Arctic sister-species to marine heatwaves and traditional harvesting disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170167. [PMID: 38242480 DOI: 10.1016/j.scitotenv.2024.170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.
Collapse
Affiliation(s)
- Nicholas Beaudreau
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Tessa M Page
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - David Drolet
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Christopher W McKindsey
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Kimberly L Howland
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| |
Collapse
|
5
|
Fernández I, Larrán AM, de Paz P, Riesco MF. The Direct Effects of Climate Change on Tench ( Tinca tinca) Sperm Quality under a Real Heatwave Event Scenario. Animals (Basel) 2024; 14:778. [PMID: 38473163 DOI: 10.3390/ani14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Global aquaculture growth will most probably face specific conditions derived from climate change. In fact, the most severe impacts of these changes will be suffered by aquatic populations in restrictive circumstances, such as current aquaculture locations, which represent a perfect model to study global warming effects. Although the impact of temperature on fish reproduction has been characterized in many aspects, this study was focused on recreating more realistic models of global warming, particularly considering heatwave phenomena, in order to decipher its effects on male gametes (spermatozoa). For this purpose, thermal stress via a heatwave simulation (mimicking a natural occurring heatwave, from 24 to 30 °C) was induced in adult tench (Tinca tinca) males and compared with a control group (55.02 ± 16.44 g of average body wet weight). The impact of the thermal stress induced by this climate change event was assessed using cellular and molecular approaches. After the heatwave recreation, a multiparametric analysis of sperm quality, including some traditional parameters (such as sperm motility) and new ones (focus on redox balance and sperm quality biomarkers), was performed. Although sperm concentration and the volume produced were not affected, the results showed a significant deleterious effect on motility parameters (e.g., reduced progressive motility and total motility during the first minute post-activation). Furthermore, the sperm produced under the thermal stress induced by this heatwave simulation exhibited an increased ROS content in spermatic cells, confirming the negative effect that this thermal stress model (heatwave recreation) might have had on sperm quality. More importantly, the expression of some known sperm quality and fertilization markers was decreased in males exposed to thermal stress. This present study not only unveils the potential effects of climate change in contemporary and future fish farming populations (and their underlying mechanisms) but also provides insights on how to mitigate and/or avoid thermal stress due to heatwave events.
Collapse
Affiliation(s)
- Ignacio Fernández
- Spanish Institute of Oceanography (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro nº 52, 36390 Vigo, Spain
| | - Ana M Larrán
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
| | - Paulino de Paz
- Cell Biology Area, Department of Molecular Biology, Universidad de León, Campus de Vegazana, sn, 24071 León, Spain
| | - Marta F Riesco
- Cell Biology Area, Department of Molecular Biology, Universidad de León, Campus de Vegazana, sn, 24071 León, Spain
| |
Collapse
|
6
|
Ignatz EH, Hall JR, Eslamloo K, Kurt Gamperl A, Rise ML. Characterization and transcript expression analyses of four Atlantic salmon (Salmo salar) serpinh1 paralogues provide evidence of evolutionary divergence. Gene 2024; 894:147984. [PMID: 37952747 DOI: 10.1016/j.gene.2023.147984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Atlantic salmon (Salmo salar) are not only the world's most economically important farmed fish in terms of total value, but also a salmonid, which means that they are invaluable for studies of the evolutionary fate of genes following multiple whole-genome duplication (WGD) events. In this study, four paralogues of the molecular chaperone serpinh1 were characterized in Atlantic salmon, as while this gene is considered to be a sensitive biomarker of heat stress in salmonids, mammalian studies have also identified it as being essential for collagen structural assembly and integrity. The four salmon paralogues were cloned and sequenced so that in silico analyses at the nucleotide and deduced amino acid levels could be performed. In addition, qPCR was used to measure: paralogue- and sex-specific constitutive serpinh1 expression across 17 adult tissues; and their expression in the liver and head kidney of male Atlantic salmon as affected by stress phenotype (high vs. low responder), increased temperature, and injection with a multi-valent vaccine. Compared to the other three paralogues, serpinh1a-2 had a unique constitutive expression profile across the 17 tissues. Although stress phenotype had minimal impact on the transcript expression of the four paralogues, injection with a commercial vaccine containing several formalin inactivated bacterins increased the expression of most paralogues (by 1.1 to 4.5-fold) across both tissues. At 20 °C, the expression levels of serpinh1a-1 and serpinh1a-2 were generally lower (by -1.1- to -1.6-fold), and serpinh1b-1 and serpinh1b-2 were 10.2- to 19.0-fold greater, in comparison to salmon held at 12 °C. With recent studies suggesting a putative link between serpinh1 and upper thermal tolerance in salmonids, the current research is a valuable first step in elucidating the potential mechanisms involved. This research: supports the use of serpinh1b-1 and serpinh1b-2 as a biomarkers of heat stress in salmon; and provides evidence of neo- and/or subfunctionalization between the paralogues, and important insights into how multiple genome duplication events can potentially lead to evolutionary divergence.
Collapse
Affiliation(s)
- Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
7
|
Kraskura K, Anderson CE, Eliason EJ. Pairing lab and field studies to predict thermal performance of wild fish. J Therm Biol 2024; 119:103780. [PMID: 38302373 DOI: 10.1016/j.jtherbio.2023.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
In thermally variable ecosystems, temperatures can change extensively on hourly and seasonal timescales requiring ectotherms to possess a broad thermal tolerance (critical thermal minima [CTmin] and maxima [CTmax]). However, whether fish acclimate in the laboratory similarly as they acclimatize in the field under comparable thermal variation is unclear. We used temperature data from a tidal salt marsh to design 21-day lab-acclimation treatments (static: 12, 17, 22, 27 °C; daily variation with mean 22 °C: i) range 17-27 °C, ii) range 17-27 °C with irregular extremes within 12-32 °C). We compared thermal limits in lab-acclimated and field-acclimatized eurythermal arrow goby (Clevelandia ios). Variable temperature-acclimated and acclimatized fish had similar CTmin and CTmax. Notably, arrow gobies showed rapid plasticity in their absolute thermal tolerance within one tidal cycle. The daily mean and max temperatures experienced were positively related to CTmax and CTmin, respectively. This study demonstrates that ecologically informed lab acclimation treatments can yield tolerance results that are applicable to wild fish.
Collapse
Affiliation(s)
- Krista Kraskura
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Claire E Anderson
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
8
|
Carrillo-Longoria JA, Gaylord G, Andrews L, Powell M. Effect of temperature on growth, survival, and chronic stress responses of Arctic Grayling juveniles. TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY 2024; 153:3-22. [PMID: 38854661 PMCID: PMC11156260 DOI: 10.1002/tafs.10453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
Arctic Grayling Thymallus arcticus are Holarctically distributed, with a single native population in the conterminous United States occurring in the Big Hole River, Montana, where water temperatures can fluctuate throughout the year from 8 to 18 °C. A gradual increase in mean water temperature has been reported in this river over the past 20 years due to riparian habitat changes and climate change effects. We hypothesized that exposing Arctic Grayling to higher temperatures would result in lower survival, decreased growth, and increased stress responses. Over a 144-day trial, Arctic Grayling juveniles were subjected to water temperatures ranging from 8-26 °C to measure the effects on growth, survival, gene expression and antioxidant enzyme activity. Fish growth increased with increasing water temperature up to 18 °C, beyond which survival was reduced. Fish did not survive at temperatures above 22 °C. In response to temperatures above 16 °C, a 3-fold and 1.5-fold increase in gene expression was observed for superoxide dismutase (SOD) and glutathione peroxidase (GPx), respectively, but no changes were seen in the ratio of Heat Shock Protein 70 (HSP70) and heat shock protein 90 (HSP90) expression. Enzyme activities of SOD and GPx also rose at temperatures above 16 °C, indicating heightened oxidative stress. Catalase (CAT) gene expression and enzyme activity decreased with rising temperatures, suggesting a preference for the GPx pathway, as GPx could also be providing help with lipid peroxidation. An increase of Thiobarbituric acid reactive substances (TBARS) was also recorded, which corresponded with rising temperatures. Our findings thus underscore the vulnerability of Arctic Grayling to minor changes in water temperature. Further increases in mean water temperature could significantly compromise survival of Arctic Grayling in the Big Hole River.
Collapse
Affiliation(s)
- Javier-Alonso Carrillo-Longoria
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| | - Gibson Gaylord
- U.S. Fish and Wildlife Service, Bozeman Fish Technology Center, Bozeman, MT, USA
| | - Lukas Andrews
- Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209
| | - Madison Powell
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| |
Collapse
|
9
|
Li QQ, Zhang J, Wang HY, Niu SF, Wu RX, Tang BG, Wang QH, Liang ZB, Liang YS. Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress. Animals (Basel) 2023; 13:2053. [PMID: 37443851 DOI: 10.3390/ani13132053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.
Collapse
Affiliation(s)
- Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Hong-Yang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
10
|
Dubey MK, Kamalam BS, Rajesh M, Sarma D, Pandey A, Baral P, Sharma P. Exposure to different temperature regimes at early life stages affects hatching, developmental morphology, larval growth, and muscle cellularity in rainbow trout, Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:219-238. [PMID: 36826625 DOI: 10.1007/s10695-023-01175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/13/2023] [Indexed: 05/04/2023]
Abstract
In this study, the effects of temperature on hatching, yolk-sac absorption, larval metamorphosis, post-metamorphic growth, developmental morphology, and muscle cellularity were assessed in rainbow trout, during its early development (until 52 days post-hatching, dph). From the eyed-ova stage, embryos were exposed to either low (8 ± 1 °C, LT-8) or high (16 ± 1 °C, HT-16) temperatures until hatching. Following hatching, half of the sac-fry from LT-8 group were shifted to higher temperature (16 ± 1 °C, LHT-16), and half from HT-16 group were shifted to medium temperature (13 ± 1 °C, HMT-13), for larval rearing. Incubating the eyed-ova at 16 °C preceded the hatching by 6 days, synchronized hatching duration, and minimized hatchlings' size-variation. However, it yielded smaller and morphologically less developed individuals compared to those incubated continuously at 8 ± 1 °C. Post-hatch shifting of sac-fry to high and medium temperatures, respectively, from the initial low and high regimes differentially affected the length and weight of fish. The effect on length was immediate and temporary, but on weight, it appeared to be permanent. Red muscle hypertrophy was observed to be high in HT-16 and HMT-13 individuals (high-temperature incubated groups). White muscle hypertrophy was high in HT-16 and LHT-16 individuals (high post-hatch rearing temperature groups). The effect of early-life temperature regimes on developmental morphology was found to be strong at 22 dph (82.5%) and comparatively weak at 52 dph (65%). The post-hatch rearing temperature caused an immediate but temporary effect on fin development, mainly pectoral, caudal, and anal fin (seen only at 22 dph, not at 52 dph). Contrarily, incubation temperature affected fin position, in a delayed but persistent manner (subtle at 22 dph, but stronger at 52 dph). Overall, this study provides new insights on temperature-dependent changes in developmental morphology, muscle cellularity, and larval growth in rainbow trout and shows that incubation temperature affects ontogeny profoundly than post-hatch thermal regimes.
Collapse
Affiliation(s)
- Maneesh Kumar Dubey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India
| | - Biju Sam Kamalam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India
| | - Manchi Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India
| | - Debajit Sarma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India
| | - Anupam Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India
| | - Pratibha Baral
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India
| | - Prakash Sharma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India.
| |
Collapse
|
11
|
Idenyi JN, Eya JC, Abanikannda MF, Huber DH, Gannam AL, Sealey WM. Dynamics of mitochondrial adaptation and energy metabolism in rainbow trout (Oncorhynchus mykiss) in response to sustainable diet and temperature. J Anim Sci 2023; 101:skad348. [PMID: 37813378 PMCID: PMC10625652 DOI: 10.1093/jas/skad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Impacts of plant-based ingredients and temperatures on energy metabolism in rainbow trout was investigated. A total of 288 fish (mean body weight: 45.6 g) were fed four isocaloric, isolipidic, and isonitrogenous diets containing 40% protein and 20% lipid and formulated as 100% animal-based protein (AP) and a blend of 50% fish oil (FO) and 50% camelina oil (CO); 100% AP and100% CO; 100% plant-based protein (PP) and a blend of 50% FO and 50% CO or 100% PP and 100% CO at 14 or 18 °C for 150 d. Diet did not significantly affect weight gain (WG) (P = 0.1902), condition factor (CF) (P = 0.0833) or specific growth rate (SGR) (P = 0.1511), but diet significantly impacted both feed efficiency (FE) (P = 0.0076) and feed intake (FI) (P = 0.0076). Temperature did not significantly affect WG (P = 0.1231), FE (P = 0.0634), FI (P = 0.0879), CF (P = 0.8277), or SGR (P = 0.1232). The diet × temperature interaction did not significantly affect WG (P = 0.7203), FE (P = 0.4799), FI (P = 0.2783), CF (P = 0.5071), or SGR (P = 0.7429). Furthermore, temperature did not influence protein efficiency ratio (P = 0.0633), lipid efficiency ratio (P = 0.0630), protein productive value (P = 0.0756), energy productive value (P = 0.1048), and lipid productive value (P = 0.1386); however, diet had significant main effects on PER (P = 0.0076), LPV (P = 0.0075), and PPV (P = 0.0138). Temperature regimens induced increased activities of mitochondrial complexes I (P = 0.0120), II (P = 0.0008), III (P = 0.0010), IV (P < 0.0001), V (P < 0.0001), and citrate synthase (CS) (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), and CS (P = 0.0122) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), and III (P < 0.0001) in the liver. Similarly, dietary composition significantly affected complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the intestine; complexes I (P < 0.0001), II (P < 0.0001), III (P = 0.0002), IV (P < 0.0001), V (P = 0.0060), and CS (P < 0.0001) in the muscle; and complexes I (P < 0.0001), II (P < 0.0001), IV (P < 0.0001), V (P < 0.0001), and CS (P < 0.0001) in the liver activities except complex III activities in intestine (P = 0.0817) and liver (P = 0.4662). The diet × temperature interaction impacted CS activity in the intestine (P = 0.0010), complex II in the muscle (P = 0.0079), and complexes I (P = 0.0009) and II (P = 0.0348) in the liver. Overall, comparing partial to full dietary substitution of FO with CO, partial dietary replacement showed similar effects on complex activities.
Collapse
Affiliation(s)
- John N Idenyi
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Jonathan C Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mosope F Abanikannda
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - David H Huber
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Ann L Gannam
- Abernathy Fish Technology Center Longview, 1440 Abernathy Creek Road, WA 98632, USA
| | - Wendy M Sealey
- USDA ARS Bozeman Fish Technology Center 4050 Bridger Canyon Road, Bozeman, MT 59715-8433, USA
| |
Collapse
|
12
|
Leclerc MA, Guivarc'h L, Lazzari CR, Pincebourde S. Thermal tolerance of two Diptera that pollinate thermogenic plants. J Therm Biol 2022; 109:103339. [DOI: 10.1016/j.jtherbio.2022.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
|
13
|
High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. BIOLOGY 2022; 11:biology11070990. [PMID: 36101373 PMCID: PMC9312335 DOI: 10.3390/biology11070990] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
Simple Summary The red cusk-eel (Genypterus chilensis) is a native Chilean species important for aquaculture diversification in Chile. The effect of high-temperature stress on the liver, a key organ for fish metabolism, is unknown. In this study we determined for the first time the effects of high-temperature stress on the liver of red cusk-eel. The results showed that high-temperature stress increased hepatic enzyme activity in the plasma of stressed fish. Additionally, this stressor generated oxidative damage in liver, and generated a transcriptional response with 1239 down-regulated and 1339 up-regulated transcripts associated with several processes, including unfolded protein response, heat shock response and oxidative stress, among others. Together, these results indicate that high-temperature stress generates a relevant impact on liver, with should be considered for the aquaculture and fisheries industry of this species under a climate change scenario. Abstract Environmental stressors, such as temperature, are relevant factors that could generate a negative effect on several tissues in fish. A key fish species for Chilean aquaculture diversification is the red cusk-eel (Genypterus chilensis), a native fish for which knowledge on environmental stressors effects is limited. This study evaluated the effects of high-temperature stress on the liver of red cusk-eel in control (14 °C) and high-temperature (19 °C) groups using multiple approaches: determination of plasmatic hepatic enzymes (ALT, AST, and AP), oxidative damage evaluation (AP sites, lipid peroxidation, and carbonylated proteins), and RNA-seq analysis. High-temperature stress generated a significant increase in hepatic enzyme activity in plasma. In the liver, a transcriptional regulation was observed, with 1239 down-regulated and 1339 up-regulated transcripts. Additionally, high-temperature stress generated oxidative stress in the liver, with oxidative damage and transcriptional modulation of the antioxidant response. Furthermore, an unfolded protein response was observed, with several pathways enriched, as well as a heat shock response, with several heat shock proteins up regulated, suggesting candidate biomarkers (i.e., serpinh1) for thermal stress evaluation in this species. The present study shows that high-temperature stress generated a major effect on the liver of red cusk-eel, knowledge to consider for the aquaculture and fisheries of this species.
Collapse
|