1
|
Guo J, Zhao W, Xiao X, Liu S, Liu L, Zhang L, Li L, Li Z, Li Z, Xu M, Peng Q, Wang J, Wei Y, Jiang N. Reprogramming exosomes for immunity-remodeled photodynamic therapy against non-small cell lung cancer. Bioact Mater 2024; 39:206-223. [PMID: 38827172 PMCID: PMC11141154 DOI: 10.1016/j.bioactmat.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Traditional treatments against advanced non-small cell lung cancer (NSCLC) with high morbidity and mortality continue to be dissatisfactory. Given this situation, there is an urgent requirement for alternative modalities that provide lower invasiveness, superior clinical effectiveness, and minimal adverse effects. The combination of photodynamic therapy (PDT) and immunotherapy gradually become a promising approach for high-grade malignant NSCLC. Nevertheless, owing to the absence of precise drug delivery techniques as well as the hypoxic and immunosuppressive characteristics of the tumor microenvironment (TME), the efficacy of this combination therapy approach is less than ideal. In this study, we construct a novel nanoplatform that indocyanine green (ICG), a photosensitizer, loads into hollow manganese dioxide (MnO2) nanospheres (NPs) (ICG@MnO2), and then encapsulated in PD-L1 monoclonal antibodies (anti-PD-L1) reprogrammed exosomes (named ICG@MnO2@Exo-anti-PD-L1), to effectively modulate the TME to oppose NSCLC by the synergy of PDT and immunotherapy modalities. The ICG@MnO2@Exo-anti-PD-L1 NPs are precisely delivered to the tumor sites by targeting specially PD-L1 highly expressed cancer cells to controllably release anti-PD-L1 in the acidic TME, thereby activating T cell response. Subsequently, upon endocytic uptake by cancer cells, MnO2 catalyzes the conversion of H2O2 to O2, thereby alleviating tumor hypoxia. Meanwhile, ICG further utilizes O2 to produce singlet oxygen (1O2) to kill tumor cells under 808 nm near-infrared (NIR) irradiation. Furthermore, a high level of intratumoral H2O2 reduces MnO2 to Mn2+, which remodels the immune microenvironment by polarizing macrophages from M2 to M1, further driving T cells. Taken together, the current study suggests that the ICG@MnO2@Exo-anti-PD-L1 NPs could act as a novel drug delivery platform for achieving multimodal therapy in treating NSCLC.
Collapse
Affiliation(s)
- Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Shanshan Liu
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lu Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Li
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Mengxia Xu
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Bijie Municipal Health Bureau, Guizhou province, 551700, China
- Health Management Center, the Affiliated Hospital of Guizhou Medical University
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Wang SS, Shao S, Singh A, Hombu R, Lovell JF, Matta KL, Neelamegham S. Photosensitizer-thioglycosides enhance photodynamic therapy by augmenting cellular uptake. Carbohydr Res 2024; 539:109119. [PMID: 38653028 PMCID: PMC11760509 DOI: 10.1016/j.carres.2024.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Photodynamic therapy (PDT) uses photosensitizing agents along with light to ablate tissue, including cancers. Such light-driven localized delivery of free-radical oxygen to kill target tissue depends on photosensitizer cell penetration efficacy. While the attachment of monosaccharides and disaccharides to photosensitizers has been shown to potentially provide improved photosensitizer delivery, the range of glycan entities tested thus far is limited. We sought to expand such knowledge by coupling N-acetylglucosamine (GlcNAc) to pyropheophorbides as thioglycosides, and then testing photosensitizer efficacy. To this end, GlcNAc was conjugated to both pyropheophorbide-a and methyl pyropheophorbide-a. Among the entities tested, the conjugation of N-acetylglucosamine to methyl pyropheophorbide-a ('PSe') as thioglycoside enhanced cell uptake both in the presence and absence of human serum proteins, relative to other compounds tested. The enhanced PSe penetrance into cells resulted in higher cell death upon illumination with 665 nm light. While acting as a potent photosensitizer, PSe did not affect cellular carbohydrate profiles. Overall, the study presents a new pyropheophorbide glycoconjugate with strong in vitro PDT efficacy.
Collapse
Affiliation(s)
- Shuen-Shiuan Wang
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Shuai Shao
- Department of Biomedical Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Arun Singh
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Ryoma Hombu
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Khushi L Matta
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, State University of New York, Buffalo, NY, 14260, USA; Clinical and Translational Research Center, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
La’ah AS, Chiou SH. Cutting-Edge Therapies for Lung Cancer. Cells 2024; 13:436. [PMID: 38474400 PMCID: PMC10930724 DOI: 10.3390/cells13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Lung cancer remains a formidable global health challenge that necessitates inventive strategies to improve its therapeutic outcomes. The conventional treatments, including surgery, chemotherapy, and radiation, have demonstrated limitations in achieving sustained responses. Therefore, exploring novel approaches encompasses a range of interventions that show promise in enhancing the outcomes for patients with advanced or refractory cases of lung cancer. These groundbreaking interventions can potentially overcome cancer resistance and offer personalized solutions. Despite the rapid evolution of emerging lung cancer therapies, persistent challenges such as resistance, toxicity, and patient selection underscore the need for continued development. Consequently, the landscape of lung cancer therapy is transforming with the introduction of precision medicine, immunotherapy, and innovative therapeutic modalities. Additionally, a multifaceted approach involving combination therapies integrating targeted agents, immunotherapies, or traditional cytotoxic treatments addresses the heterogeneity of lung cancer while minimizing its adverse effects. This review provides a brief overview of the latest emerging therapies that are reshaping the landscape of lung cancer treatment. As these novel treatments progress through clinical trials are integrated into standard care, the potential for more effective, targeted, and personalized lung cancer therapies comes into focus, instilling renewed hope for patients facing challenging diagnoses.
Collapse
Affiliation(s)
- Anita Silas La’ah
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
4
|
Sun W, Zhang Q, Wang X, Jin Z, Cheng Y, Wang G. Clinical Practice of Photodynamic Therapy for Non-Small Cell Lung Cancer in Different Scenarios: Who Is the Better Candidate? Respiration 2024; 103:193-204. [PMID: 38354707 PMCID: PMC10997268 DOI: 10.1159/000535270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a relatively safe and highly selectivity antitumor treatment, which might be increasingly used as a supplement to conventional therapies. A clinical overview and detailed comparison of how to select patients and lesions for PDT in different scenarios are urgently needed to provide a basis for clinical treatment. SUMMARY This review demonstrates the highlights and obstacles of applying PDT for lung cancer and underlines points worth considering when planning to initiate PDT. The aim was to make out the appropriate selection and help PDT develop efficacy and precision through a better understanding of its clinical use. KEY MESSAGES Increasing evidence supports the feasibility and safety of PDT in the treatment of non-small cell lung cancer. It is important to recognize the factors that influence the efficacy of PDT to develop individualized management strategies and implement well-designed procedures. These important issues should be worth considering in the present and further research.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China,
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
6
|
Claes E, Wener R, Neyrinck AP, Coppens A, Van Schil PE, Janssens A, Lapperre TS, Snoeckx A, Wen W, Voet H, Verleden SE, Hendriks JMH. Innovative Invasive Loco-Regional Techniques for the Treatment of Lung Cancer. Cancers (Basel) 2023; 15:cancers15082244. [PMID: 37190172 DOI: 10.3390/cancers15082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Surgical resection is still the standard treatment for early-stage lung cancer. A multimodal treatment consisting of chemotherapy, radiotherapy and/or immunotherapy is advised for more advanced disease stages (stages IIb, III and IV). The role of surgery in these stages is limited to very specific indications. Regional treatment techniques are being introduced at a high speed because of improved technology and their possible advantages over traditional surgery. This review includes an overview of established and promising innovative invasive loco-regional techniques stratified based on the route of administration, including endobronchial, endovascular and transthoracic routes, a discussion of the results for each method, and an overview of their implementation and effectiveness.
Collapse
Affiliation(s)
- Erik Claes
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Reinier Wener
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Arne P Neyrinck
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Anesthesia and Algology Unit, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Axelle Coppens
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Paul E Van Schil
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Annelies Janssens
- Department of Thoracic Oncology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Thérèse S Lapperre
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Annemiek Snoeckx
- Faculty of Medicine and Health Sciences, University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Department of Radiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Wen Wen
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Hanne Voet
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stijn E Verleden
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Jeroen M H Hendriks
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| |
Collapse
|
7
|
Karshieva SS, Glinskaya EG, Dalina AA, Akhlyustina EV, Makarova EA, Khesuani YD, Chmelyuk NS, Abakumov MA, Khochenkov DA, Mironov VA, Meerovich GA, Kogan EA, Koudan EV. Antitumor activity of photodynamic therapy with tetracationic derivative of synthetic bacteriochlorin in spheroid culture of liver and colon cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103202. [PMID: 36400167 DOI: 10.1016/j.pdpdt.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.
Collapse
Affiliation(s)
- Saida Sh Karshieva
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia
| | - Elizaveta G Glinskaya
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Alexandra A Dalina
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov st. 32, Moscow 119991, Russia
| | | | - Elena A Makarova
- Organic Intermediates and Dyes Institute, B. Sadovaya st. 1/4, Moscow 123001, Russia
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe shosse 68, Moscow 115409, Russia
| | - Nelly S Chmelyuk
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Maxim A Abakumov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Dmitriy A Khochenkov
- N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia; Togliatti State University, Belorusskaya st. 14, Togliatti 445667, Russia
| | - Vladimir A Mironov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia
| | - Gennady A Meerovich
- National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Vavilov st. 38, Moscow 119991, Russia
| | - Evgeniya A Kogan
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia.
| |
Collapse
|
8
|
Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology 2022; 20:415. [PMID: 36109734 PMCID: PMC9479390 DOI: 10.1186/s12951-022-01613-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal cancer (GIC) is a common malignant tumour of the digestive system that seriously threatens human health. Due to the unique organ structure of the gastrointestinal tract, endoscopic and MRI diagnoses of GIC in the clinic share the problem of low sensitivity. The ineffectiveness of drugs and high recurrence rates in surgical and drug therapies are the main factors that impact the curative effect in GIC patients. Therefore, there is an urgent need to improve diagnostic accuracies and treatment efficiencies. Nanotechnology is widely used in the diagnosis and treatment of GIC by virtue of its unique size advantages and extensive modifiability. In the diagnosis and treatment of clinical GIC, surface-enhanced Raman scattering (SERS) nanoparticles, electrochemical nanobiosensors and magnetic nanoparticles, intraoperative imaging nanoparticles, drug delivery systems and other multifunctional nanoparticles have successfully improved the diagnosis and treatment of GIC. It is important to further improve the coordinated development of nanotechnology and GIC diagnosis and treatment. Herein, starting from the clinical diagnosis and treatment of GIC, this review summarizes which nanotechnologies have been applied in clinical diagnosis and treatment of GIC in recent years, and which cannot be applied in clinical practice. We also point out which challenges must be overcome by nanotechnology in the development of the clinical diagnosis and treatment of GIC and discuss how to quickly and safely combine the latest nanotechnology developed in the laboratory with clinical applications. Finally, we hope that this review can provide valuable reference information for researchers who are conducting cross-research on GIC and nanotechnology.
Collapse
Affiliation(s)
- Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kun Dai
- Department of Neonatal Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qianyuan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
9
|
Crous A, Abrahamse H. Photodynamic therapy of lung cancer, where are we? Front Pharmacol 2022; 13:932098. [PMID: 36110552 PMCID: PMC9468662 DOI: 10.3389/fphar.2022.932098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer remains the leading threat of death globally, killing more people than colon, breast, and prostate cancers combined. Novel lung cancer treatments are being researched because of the ineffectiveness of conventional cancer treatments and the failure of remission. Photodynamic therapy (PDT), a cancer treatment method that is still underutilized, is a sophisticated cancer treatment that shows selective destruction of malignant cells via reactive oxygen species production. PDT has been extensively studied in vitro and clinically. Various PDT strategies have been shown to be effective in the treatment of lung cancer. PDT has been shown in clinical trials to considerably enhance the quality of life and survival in individuals with incurable malignancies. Furthermore, PDT, in conjunction with the use of nanoparticles, is currently being researched for use as an effective cancer treatment, with promising results. PDT and the new avenue of nanoPDT, which are novel treatment options for lung cancer with such promising results, should be tested in clinical trials to determine their efficacy and side effects. In this review, we examine the status and future potentials of nanoPDT in lung cancer treatment.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
10
|
Dukh M, Cacaccio J, Durrani FA, Kumar I, Watson R, Tabaczynski WA, Joshi P, Missert JR, Baumann H, Pandey RK. Impact of mono- and di-β-galactose moieties in in vitro / in vivo anticancer efficacy of pyropheophorbide-carbohydrate conjugates by photodynamic therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 5:100047. [PMID: 36568335 PMCID: PMC9776133 DOI: 10.1016/j.ejmcr.2022.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the impact of mono- and di-β-galactose moieties in tumor uptake and photodynamic therapy (PDT) efficacy, HPPH [3-(1'-hexyloxy)ethyl-3-devinylpyropheophorobide-a], the meso pyropheophorbide-a [3-ethyl-3-devinyl-pyropheophorbide-a], and the corresponding 20-benzoic acid analogs were used as starting materials. Reaction of the intermediates containing one or two carboxylic acid functionalities with 1-aminogalactose afforded the desired 172- or 20(4')- mono- and 172, 20(4')-di galactose conjugated photosensitizers (PSs) with and without a carboxylic acid group. The overall lipophilicity caused by the presence of galactose in combination with either an ethyl or (1'-hexyloxy)ethyl side chain at position-3 of the macrocycle made a significant difference in in vitro uptake by tumor cells and photoreaction upon light exposure. Interestingly, among the PSs investigated, compared to HPPH 1 the carbohydrate conjugates 2 and 11 in which β-galactose moieties are conjugated at positions 172 and 20(4') of meso-pyro pheophorbide-a showed similar in vitro efficacy in FaDu cell lines, but in SCID mice bearing FaDu tumors (head & neck) Ps 11 gave significantly improved long-term tumor cure.
Collapse
Affiliation(s)
- Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | | | - Ishaan Kumar
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | - Ramona Watson
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Penny Joshi
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Heinz Baumann
- Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ravindra K. Pandey
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA,Corresponding author. (R.K. Pandey)
| |
Collapse
|
11
|
Cacaccio JC, Durrani FA, Missert JR, Pandey RK. Photodynamic Therapy in Combination with Doxorubicin Is Superior to Monotherapy for the Treatment of Lung Cancer. Biomedicines 2022; 10:857. [PMID: 35453607 PMCID: PMC9024488 DOI: 10.3390/biomedicines10040857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously shown that a radioactive (123I)-analog of methyl 3-(1'-(iodobexyloxy) ethyl-3-devinylpyropheophorbide-a (PET-ONCO), derived from chlorophyll-a can be used for positron emission tomography (PET) imaging of a variety of tumors, including those where 18F-FDG shows limitations. In this study, the photodynamic therapy (PDT) efficacy of the corresponding non-radioactive photosensitizer (PS) was investigated in a variety of tumor types (NSCLC, SCC, adenocarcinoma) derived from lung cancer patients in mice tumor models. The in vitro and in vivo efficacy was also investigated in combination with doxorubicin, and a significantly enhanced long-term tumor response was observed. The toxicity and toxicokinetic profile of the iodinated PS was also evaluated in male and female Sprague-Dawley rats and Beagle dog at variable doses (single intravenous injections) to assess reversibility or latency of any effects over a 28-day dose free period. The no-observed-adverse-effect (NOAEL) of the PS was considered to be 6.5 mg/kg for male and female rats, and for dogs, 3.45 mg/kg, the highest dose levels evaluated, respectively. The corresponding plasma Cmax and AYClast for male and female rats were 214,000 and 229,000 ng/mL and 3,680,000 and 3,810,000 h * ng/mL, respectively. For male and female dogs, the corresponding plasma Cmax and AYClast were 76,000 and 92,400 ng/mL and 976,000 and 1,200,000 h * ng/mL, respectively.
Collapse
Affiliation(s)
- Joseph C. Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| | - Farukh A. Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| | | | - Ravindra K. Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| |
Collapse
|
12
|
Xu Y, Luo C, Wang J, Chen L, Chen J, Chen T, Zeng Q. Application of nanotechnology in the diagnosis and treatment of bladder cancer. J Nanobiotechnology 2021; 19:393. [PMID: 34838048 PMCID: PMC8626998 DOI: 10.1186/s12951-021-01104-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer (BC) is a common malignancy in the genitourinary system and the current theranostic approaches are unsatisfactory. Sensitivity and specificity of current diagnosis methods are not ideal and high recurrence and progression rates after initial treatment indicate the urgent need for management improvements in clinic. Nanotechnology has been proposed as an effective method to improve theranosis efficiency for both non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). For example, gold nanoparticles (AuNPs) have been developed for simple, fast and sensitive urinary sample test for bladder cancer diagnosis. Nanoparticles targeting bladder cancers can facilitate to distinguish the normal and abnormal bladder tissues during cystoscopy and thus help with the complete removal of malignant lesions. Both intravenous and intravesical agents can be modified by nanotechnology for targeted delivery, high anti-tumor efficiency and excellent tolerability, exhibiting encouraging potential in bladder cancer treatment. Photosensitizers and biological agents can also be delivered by nanotechnology, intermediating phototherapy and targeted therapy. The management of bladder cancer remained almost unchanged for decades with unsatisfactory effect. However, it is likely to change with the fast-developed nanotechnology. Herein we summarized the current utility of nanotechnology in bladder cancer diagnosis and treatment, providing insights for the future designing and discovering novel nanoparticles for bladder cancer management. ![]()
Collapse
Affiliation(s)
- Yadong Xu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jieqiong Wang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| | - Qinsong Zeng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Dapkute D, Pleckaitis M, Bulotiene D, Daunoravicius D, Rotomskis R, Karabanovas V. Hitchhiking Nanoparticles: Mesenchymal Stem Cell-Mediated Delivery of Theranostic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43937-43951. [PMID: 34499462 DOI: 10.1021/acsami.1c10445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles. In this study, we have constructed a complex composed of photoluminescent quantum dots (QDs) and a photosensitizer chlorin e6 (Ce6) to obtain multifunctional nanoparticles, combining cancer diagnostic and therapeutic properties. QDs serve as energy donors-excited QDs transfer energy to the attached Ce6 via Förster resonance energy transfer, which in turn generates reactive oxygen species. Here, the physicochemical properties of the QD-Ce6 complex and singlet oxygen generation were measured, and the stability in protein-rich media was evaluated, showing that the complex remains the most stable in protein-free medium. In vitro studies on MSC and cancer cell response to the QD-Ce6 complex revealed the complex-loaded MSCs' potential to transport theranostic nanoparticles and induce cancer cell death. In vivo studies proved the therapeutic efficacy, as the survival of tumor-bearing mice was statistically significantly increased, while tumor progression and metastases were slowed down.
Collapse
Affiliation(s)
- Dominyka Dapkute
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10223 Vilnius, Lithuania
| | - Marijus Pleckaitis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10223 Vilnius, Lithuania
| | - Danute Bulotiene
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
| | - Dainius Daunoravicius
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21/27, 03101 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Biophotonics Group, Laser Research Centre, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio 3B, 08406 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, 10221 Vilnius, Lithuania
| |
Collapse
|
14
|
Inglut CT, Gray KM, Vig S, Jung JW, Stabile J, Zhang Y, Stroka KM, Huang HC. Photodynamic Priming Modulates Endothelial Cell-Cell Junction Phenotype for Light-activated Remote Control of Drug Delivery. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:7200311. [PMID: 33519171 PMCID: PMC7839980 DOI: 10.1109/jstqe.2020.3024014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The blood-brain barrier (BBB) remains a major obstacle for drug delivery to the central nervous system. In particular, the tight and adherens junctions that join the brain capillary endothelial cells limit the diffusion of various molecules from the bloodstream into the brain. Photodynamic priming (PDP) is a non-cytotoxic modality that involves light activation of photosensitizers to photochemically modulate nearby molecules without killing the cells. Here we investigate the effects of sub-lethal photochemistry on junction phenotype (i.e., continuous, punctate, or perpendicular), as well as the BBB permeability in a transwell model of human brain microvascular endothelial cells (HBMECs). We showed that PDP decreases the continuous junction architecture by ~20%, increases the perpendicular junction architecture by ~40%, and has minimal impact on cell morphology in HBMECs. Furthermore, transwell permeability assay revealed that PDP improves the HBMEC permeability to dextran or nanoliposomes by up to 30-fold for 6-9 days. These results suggest that PDP could safely reverse the mature brain endothelial junctions without killing the HBMECs. This study not only emphasizes the critical roles of PDP in the modulation junction phenotype, but also highlights the opportunity to further develop PDP-based combinations that opens the cerebrum endothelium for enhanced drug transporter across the BBB.
Collapse
Affiliation(s)
- Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jillian Stabile
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yuji Zhang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Rytlewski JD, Scalora N, Garcia K, Tanas M, Toor F, Miller B, Allen B, Milhem M, Monga V. Photodynamic Therapy Using Hippo Pathway Inhibitor Verteporfin: A Potential Dual Mechanistic Approach in Treatment of Soft Tissue Sarcomas. Cancers (Basel) 2021; 13:cancers13040675. [PMID: 33567506 PMCID: PMC7915813 DOI: 10.3390/cancers13040675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Advanced sarcomas have yet to undergo improved outcomes seen in other cancer subtypes. Verteporfin has the potential to show landmark change in sarcoma due to its anti-proliferative properties: inhibition of the Hippo pathway and as photodynamic therapy. The effect of verteporfin on the Hippo pathway is reviewed specifically in the setting of sarcoma due to increased activation of this pathway in multiple subtypes. Role and efficacy of photodynamic therapy in other malignancies is also reviewed, with additional discussion of preclinical studies demonstrating synergistic effects of photodynamic therapy within current sarcoma standard of care treatment. Future investigations of the feasibility of incorporating verteporfin into sarcoma treatment are discussed. Abstract Sarcoma is a widely varied and devastating oncological subtype, with overall five-year survival of 65% that drops to 16% with the presence of metastatic disease at diagnosis. Standard of care for localized sarcomas is predicated on local control with wide-local resection and radiation therapy, or, less commonly, chemotherapy, depending on tumor subtype. Verteporfin has the potential to be incorporated into this standard of care due to its unique molecular properties: inhibition of the upregulated Hippo pathway that frequently drives soft tissue sarcoma and photodynamic therapy-mediated necrosis due to oxidative damage. The initial anti-proliferative effect of verteporfin is mediated via binding and dissociation of YAP/TEAD proteins from the nucleus, ultimately leading to decreased cell proliferation as demonstrated in multiple in vitro studies. This effect has the potential to be compounded with use of photodynamic therapy to directly induce cellular necrosis with use of a clinical laser. Photodynamic therapy has been incorporated into multiple malignancies and has the potential to be incorporated into sarcoma treatment.
Collapse
Affiliation(s)
| | - Nicholas Scalora
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; (N.S.); (K.G.); (M.T.)
| | - Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; (N.S.); (K.G.); (M.T.)
| | - Munir Tanas
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; (N.S.); (K.G.); (M.T.)
| | - Fatima Toor
- Department of Electrical and Computer Engineering, University of Iowa Technology Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Benjamin Miller
- Department of Orthopedic Surgery, University of Iowa, Iowa City, IA 52242, USA;
| | - Bryan Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA;
| | - Mohammed Milhem
- Division of Hematology, Oncology, and Blood & Marrow Transplant, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplant, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence: ; Tel.: +1-3-193-849-497
| |
Collapse
|
16
|
Wang K, Yu B, Pathak JL. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021; 12:1154-1160. [PMID: 33442413 PMCID: PMC7797657 DOI: 10.7150/jca.51537] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide, with nearly 1.8 million-diagnosis and 1.59 million deaths. Surgery, radiotherapy, and chemotherapy in individual or combination are commonly used to treat lung cancers. Photodynamic therapy (PDT) is a highly selective method for the destruction of cancer cells by exerting cytotoxic activity on malignant cells. PDT has been the subject of numerous clinical studies and has proven to be an effective strategy for cancer therapy. Clinical studies revealed that PDT could prolong survival in patients with inoperable cancers and significantly improve quality of life. For inoperable lung cancer cases, PDT could be an effective therapy. Despite the clinical success reported, PDT is still currently underutilized to treat lung cancer and other tumors. PTD is still a new treatment approach for lung cancer mainly due to the lack of enough clinical research evaluating its' effectiveness and side effects. In this review, we discuss the current prospects and future potentials of PDT in lung cancer treatment.
Collapse
Affiliation(s)
- Kai Wang
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Boxin Yu
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
17
|
Papayan G, Goncharov S, Kazakov N, Strui A, Akopov A. Clinical potential of photodynamic diagnosis and therapy of tracheobronchial malignancies in the visible and infrared spectral ranges. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Garry Papayan
- Pavlov First State Medical University Saint‐Petersburg Russia
- Almazov Federal Medical Research Center Saint‐Petersburg Russia
| | | | - Nikita Kazakov
- Pavlov First State Medical University Saint‐Petersburg Russia
| | - Andrey Strui
- Pavlov First State Medical University Saint‐Petersburg Russia
| | - Andrey Akopov
- Pavlov First State Medical University Saint‐Petersburg Russia
| |
Collapse
|
18
|
Gupta A, Harris K, Dhillon SS. Role of bronchoscopy in management of central squamous cell lung carcinoma in situ. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:354. [PMID: 31516900 DOI: 10.21037/atm.2019.04.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinoma in situ (SCIS) is the pre-invasive stage of squamous cell carcinoma. Early detection and management of SCIS can prevent further progression. Although surgery and external beam radiation therapy are treatment options for SCIS, smaller lesions can be easily managed by bronchoscopic modalities like photodynamic therapy (PDT), cryotherapy, mechanical debulking with biopsy forceps, electrocautery and argon plasma coagulation (APC). Endobronchial brachytherapy (EBBT) and lasers may be judiciously utilized in selected cases. Although, previous studies of treatment modalities may have inadvertently included cases of invasive carcinomas, the advent of new technologies like radial probe endobronchial ultrasound (RP-EBUS) and optical coherence tomography (OCT) can help accurately determine the of depth of invasion. Superficial extent can also be better demarcated with techniques like auto-fluorescence bronchoscopy and narrow band imaging (NBI). New drugs for PDT with deeper penetration and less phototoxicity are being developed. These advances hopefully will allow us to perform superior clinical trials in future and improve our understanding of diagnosis and management of SCIS.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Pulmonary and Critical Care Medicine, Hartford Healthcare, Norwich, CT, USA
| | - Kassem Harris
- Interventional Pulmonology Section, Pulmonary Critical Care Division, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Samjot Singh Dhillon
- Pulmonary Critical Care and Sleep Medicine, Interventional Pulmonary, The Permanente Medical Group, Roseville and Sacramento, CA, USA
| |
Collapse
|
19
|
Sun B, Chen Y, Yu H, Wang C, Zhang X, Zhao H, Chen Q, He Z, Luo C, Sun J. Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy. Acta Biomater 2019; 92:219-228. [PMID: 31078764 DOI: 10.1016/j.actbio.2019.05.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
The combination of chemotherapy with photodynamic therapy (PDT) holds promising applications in cancer therapy. However, co-encapsulation of chemotherapeutic agents and photosensitizers (PS) into the conventional nanocarriers suffers from inefficient co-loading and aggregation-caused quenching (ACQ) effect of PS trapped in dense carrier materials. Herein, we report a light-activatable photodynamic PEG-coated prodrug nanoplatform for core-shell synergistic chemo-photodynamic therapy. A novel photodynamic polymer is rationally designed and synthesized by conjugating pyropheophorbide a (PPa) to polyethylene glycol 2000 (PEG2k). PPa is used as the hydrophobic and photodynamic moiety of the amphipathic PPa-PEG2k polymer. Then, a core-shell nanoassembly is prepared, with an inner core of a reactive oxygen species (ROS)-responsive oleate prodrug of paclitaxel (PTX) and an outer layer of PPa-PEG2k. PPa-PEG2k serves for both PEGylation and PDT. Instead of being trapped in the inner core, PPa in the outer PPa-PEG2k layer significantly alleviates the ACQ effect. Under laser irradiation, ROS generated by PPa-PEG2k not only is used for PDT but also synergistically promotes PTX release in combination with the endogenous ROS overproduced in tumor cells. The photodynamic PEG-coated nanoassemblies demonstrated synergistic antitumor activity in vivo. Such a unique nanoplatform, with an inner chemotherapeutic core and an outer photodynamic PEG shell, provides a new strategy for synergistic chemo-photodynamic therapy. STATEMENT OF SIGNIFICATION: The combination of chemotherapy with photodynamic therapy (PDT) holds promising prospects in cancer therapy. However, it remains a tremendous challenge to effectively co-deliver chemotherapeutic drugs and photosensitizers into tumors. Herein, we construct a photodynamic PEGylation-coated prodrug-nanoplatform for high-efficiency synergistic cancer therapy, which is composed of a light-activatable PPa-PEG2k shell and a ROS-responsive paclitaxel (PTX) prodrug core. The PPa-PEG2k-generated ROS not only was used for synergistic PTX release but also synergistically facilitated tumor cell apoptosis in combination with PTX-initiated chemo-cytotoxicity. The light-activatable nanoassemblies exhibited multiple drug delivery advantages including high co-loading efficiency, self-enhanced PTX release, extended circulation time, favorable biodistribution, and potent synergistic anticancer activity. Our findings provide a new strategy for the rational design of advanced nano-DDS for high-efficiency combinational chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Han Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Chen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xuanbo Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Hanqing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
20
|
Chen L, Ye X, Hu K, Zhai Y, Li W, Wang X, Yang J. Population pharmacokinetic modeling and simulation of HPPH in Chinese patients with esophageal carcinoma. Xenobiotica 2019; 50:170-177. [PMID: 30901299 DOI: 10.1080/00498254.2019.1597315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1. 2-[1-Hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), a second-generation photosensitizer, has been widely employed in photodynamic therapy (PDT) for the treatment of malignant lesions. The objective of this study was to characterize the pharmacokinetics of HPPH in Chinese patients using a population pharmacokinetic (PopPK) approach.2. For the first time, a PopPK model of HPPH for Chinese (n = 20) was developed (registration number: CTR20160425). The pharmacokinetics of HPPH was described by a three-compartment model with linear elimination. Through the stepwise addition (p < 0.05) and backward elimination (p < 0.001) approach, fat-free mass (FFM) was identified to be the most significant covariate and V1 increased with FFM. Visual predictive check (VPC) was employed for the evaluation of the final model. Subsequent full covariate analysis indicated that FFM has considerable impact (∼30%) on HPPH exposure and fat mass also has a modest (∼25%) impact.3. The simulations suggested that a dose adjustment of HPPH may be necessary for Chinese and the dose of 3 mg/m2 should be appropriate. HPPH exposure increases with fat mass while being inversely related to FFM. HPPH-PDT for overweight patients should be monitored with more caution and PDT conditions should be optimized if necessary.
Collapse
Affiliation(s)
- Lin Chen
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Xuxiao Ye
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kuan Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yu Zhai
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Wenping Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Xin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou, China
| | - Jin Yang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Abstract
Current advances in guided bronchoscopy methods permit minimally invasive access to essentially any area of the lungs. This provides a potential means to treat patients with localized lung malignancies who might not otherwise tolerate conventional treatment, which commonly relies on surgical resection. Ablation methods have long been used for bronchoscopic treatment of central airway malignancies and percutaneous treatment of peripheral lung cancer. This article reviews ablation technologies being adapted for use with guided bronchoscopy and the current state of investigation for the treatment of peripheral lung malignancies.
Collapse
Affiliation(s)
- David W Hsia
- Division of Respiratory and Critical Care Physiology and Medicine, Harbor-UCLA Medical Center, 1000 West Carson Street, Box #402, Torrance, CA 90502, USA.
| | - Ali I Musani
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine and University Hospital, 12631 East 17th Avenue, M/S C323, Office #8102, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Development and application of a physiologically based pharmacokinetic model for HPPH in rats and extrapolate to humans. Eur J Pharm Sci 2019; 129:68-78. [DOI: 10.1016/j.ejps.2018.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023]
|
23
|
Manghnani PN, Wu W, Xu S, Hu F, Teh C, Liu B. Visualizing Photodynamic Therapy in Transgenic Zebrafish Using Organic Nanoparticles with Aggregation-Induced Emission. NANO-MICRO LETTERS 2018; 10:61. [PMID: 30393709 PMCID: PMC6199111 DOI: 10.1007/s40820-018-0214-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 05/26/2023]
Abstract
Photodynamic therapy (PDT) employs accumulation of photosensitizers (PSs) in malignant tumor tissue followed by the light-induced generation of cytotoxic reactive oxygen species to kill the tumor cells. The success of PDT depends on optimal PS dosage that is matched with the ideal power of light. This in turn depends on PS accumulation in target tissue and light administration time and period. As theranostic nanomedicine is driven by multifunctional therapeutics that aim to achieve targeted tissue delivery and image-guided therapy, fluorescent PS nanoparticle (NP) accumulation in target tissues can be ascertained through fluorescence imaging to optimize the light dose and administration parameters. In this regard, zebrafish larvae provide a unique transparent in vivo platform to monitor fluorescent PS bio-distribution and their therapeutic efficiency. Using fluorescent PS NPs with unique aggregation-induced emission characteristics, we demonstrate for the first time the real-time visualization of polymeric NP accumulation in tumor tissue and, more importantly, the best time to conduct PDT using transgenic zebrafish larvae with inducible liver hyperplasia as an example.
Collapse
Affiliation(s)
- Purnima Naresh Manghnani
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Proteos Building, Biopolis Drive, Singapore, 138673, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
24
|
Yang B, Wang K, Zhang D, Sun B, Ji B, Wei L, Li Z, Wang M, Zhang X, Zhang H, Kan Q, Luo C, Wang Y, He Z, Sun J. Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy. Biomater Sci 2018; 6:2965-2975. [DOI: 10.1039/c8bm00899j] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the context of prodrug nanomedicines for cancer therapy, one of the great challenges is the slow and variable release of the parent drug in tumors.
Collapse
|
25
|
Lameijer LN, Ernst D, Hopkins SL, Meijer MS, Askes SHC, Le Dévédec SE, Bonnet S. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells. Angew Chem Int Ed Engl 2017; 56:11549-11553. [PMID: 28666065 PMCID: PMC5601216 DOI: 10.1002/anie.201703890] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/12/2017] [Indexed: 01/31/2023]
Abstract
We describe two water-soluble ruthenium complexes, [1]Cl2 and [2]Cl2 , that photodissociate to release a cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with a low dose (21 J cm-2 ) of red light in an oxygen-independent manner. Using a specific NAMPT activity assay, up to an 18-fold increase in inhibition potency was measured upon red-light activation of [2]Cl2 , while [1]Cl2 was thermally unstable. For the first time, the dark and red-light-induced cytotoxicity of these photocaged compounds could be tested under hypoxia (1 % O2 ). In skin (A431) and lung (A549) cancer cells, a 3- to 4-fold increase in cytotoxicity was found upon red-light irradiation for [2]Cl2 , whether the cells were cultured and irradiated with 1 % or 21 % O2 . These results demonstrate the potential of photoactivated chemotherapy for hypoxic cancer cells, in which classical photodynamic therapy, which relies on oxygen activation, is poorly efficient.
Collapse
Affiliation(s)
- Lucien N Lameijer
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Daniël Ernst
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Samantha L Hopkins
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Michael S Meijer
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Sven H C Askes
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
26
|
Lameijer LN, Ernst D, Hopkins SL, Meijer MS, Askes SHC, Le Dévédec SE, Bonnet S. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703890] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lucien N. Lameijer
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; P.O Box 9502 2300 RA Leiden The Netherlands
| | - Daniël Ernst
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; P.O Box 9502 2300 RA Leiden The Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; P.O Box 9502 2300 RA Leiden The Netherlands
| | - Michael S. Meijer
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; P.O Box 9502 2300 RA Leiden The Netherlands
| | - Sven H. C. Askes
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; P.O Box 9502 2300 RA Leiden The Netherlands
| | - Sylvia E. Le Dévédec
- Leiden Academic Centre for Drug Research; Leiden University; Gorlaeus Laboratories; P.O Box 9502 2300 RA Leiden The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; P.O Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
27
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 603] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
28
|
Tu PH, Huang WJ, Wu ZL, Peng QZ, Xie ZB, Bao J, Zhong MH. Induction of cell death by pyropheophorbide-α methyl ester-mediated photodynamic therapy in lung cancer A549 cells. Cancer Med 2017; 6:631-639. [PMID: 28181425 PMCID: PMC5345688 DOI: 10.1002/cam4.1012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/03/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Pyropheophorbide‐α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa‐mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit‐8 was employed for cell viability assessment. Reactive oxygen species levels were determined by fluorescence microscopy and flow cytometry. Cell morphology was evaluated by Hoechst staining and transmission electron microscopy. Mitochondrial membrane potential, cellular apoptosis and cell cycle distribution were evaluated flow‐cytometrically. The protein levels of apoptotic effectors were examined by Western blot. We found that the photocytotoxicity of MPPa showed both drug‐ and light‐ dose dependent characteristics in A549 cells. Additionally, MPPa‐PDT caused cell apoptosis by reducing mitochondrial membrane potential, increasing reactive oxygen species (ROS) production, inducing caspase‐9/caspase‐3 signaling activation as well as cell cycle arrest at G0/G1 phase. These results suggested that MPPa‐PDT mainly kills cells by apoptotic mechanisms, with overt curative effects, indicating that MPPa should be considered a potent photosensitizer for lung carcinoma treatment.
Collapse
Affiliation(s)
- Ping-Hua Tu
- Department of respiratory medicine, The Central Hospital of Xiaogan, Xiaogan, China
| | - Wen-Jun Huang
- Department of respiratory medicine, The Central Hospital of Xiaogan, Xiaogan, China
| | - Zhan-Ling Wu
- Department of respiratory medicine, The Central Hospital of Xiaogan, Xiaogan, China
| | - Qing-Zhen Peng
- Department of respiratory medicine, The Central Hospital of Xiaogan, Xiaogan, China
| | - Zhi-Bin Xie
- Department of respiratory medicine, The Central Hospital of Xiaogan, Xiaogan, China
| | - Ji Bao
- Department of respiratory medicine, The Central Hospital of Xiaogan, Xiaogan, China
| | - Ming-Hua Zhong
- Department of respiratory medicine, The Central Hospital of Xiaogan, Xiaogan, China
| |
Collapse
|
29
|
Lin TY, Li Y, Liu Q, Chen JL, Zhang H, Lac D, Zhang H, Ferrara KW, Wachsmann-Hogiu S, Li T, Airhart S, deVere White R, Lam KS, Pan CX. Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials 2016; 104:339-51. [PMID: 27479049 PMCID: PMC5412594 DOI: 10.1016/j.biomaterials.2016.07.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
The overall prognosis of bladder cancer has not been improved over the last 30 years and therefore, there is a great medical need to develop novel diagnosis and therapy approaches for bladder cancer. We developed a multifunctional nanoporphyrin platform that was coated with a bladder cancer-specific ligand named PLZ4. PLZ4-nanoporphyrin (PNP) integrates photodynamic diagnosis, image-guided photodynamic therapy, photothermal therapy and targeted chemotherapy in a single procedure. PNPs are spherical, relatively small (around 23 nm), and have the ability to preferably emit fluorescence/heat/reactive oxygen species upon illumination with near infrared light. Doxorubicin (DOX) loaded PNPs possess slower drug release and dramatically longer systemic circulation time compared to free DOX. The fluorescence signal of PNPs efficiently and selectively increased in bladder cancer cells but not normal urothelial cells in vitro and in an orthotopic patient derived bladder cancer xenograft (PDX) models, indicating their great potential for photodynamic diagnosis. Photodynamic therapy with PNPs was significantly more potent than 5-aminolevulinic acid, and eliminated orthotopic PDX bladder cancers after intravesical treatment. Image-guided photodynamic and photothermal therapies synergized with targeted chemotherapy of DOX and significantly prolonged overall survival of mice carrying PDXs. In conclusion, this uniquely engineered targeting PNP selectively targeted tumor cells for photodynamic diagnosis, and served as effective triple-modality (photodynamic/photothermal/chemo) therapeutic agents against bladder cancers. This platform can be easily adapted to individualized medicine in a clinical setting and has tremendous potential to improve the management of bladder cancer in the clinic.
Collapse
Affiliation(s)
- Tzu-Yin Lin
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Qiangqiang Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jui-Lin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 403, Taiwan
| | - Hongyong Zhang
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana Lac
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Hua Zhang
- Department of Biomedical Engineering, University of California Davis, Sacramento, CA 95817, USA
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California Davis, Sacramento, CA 95817, USA
| | - Sebastian Wachsmann-Hogiu
- Department of Pathology and Laboratory Medicine and Center for Biophotonics Science and Technology, University of California Davis, Sacramento, CA 95817, USA
| | - Tianhong Li
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA; VA Northern California Health Care System, Mather, CA 95655, USA
| | | | - Ralph deVere White
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Chong-Xian Pan
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA; VA Northern California Health Care System, Mather, CA 95655, USA; Department of Urology, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
30
|
Klein EE, Brock K, Fontenot J, Yu Y. Technical Advances in Oncology Outside of Radiation Medicine. Int J Radiat Oncol Biol Phys 2016; 95:1323-1326. [PMID: 27479719 DOI: 10.1016/j.ijrobp.2016.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 11/17/2022]
|