1
|
Fukushima T, Nakamura K, Terai H, Ohgino K, Kawano R, Ishikawa M, Emoto K, Takaoka H, Saito A, Ito F, Nukaga S, Ikemura S, Kawada I, Masuda K, Yasuda H, Okita H, Asakura K, Soejima K, Kosaki K, Nishihara H, Fukunaga K. Clinical Sequence Revealed the Prevalence and Biological Significance of Somatic Pathogenic Variants in Thoracic Cancer: Implications for Germline Status. Clin Lung Cancer 2025:S1525-7304(25)00058-0. [PMID: 40340154 DOI: 10.1016/j.cllc.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE Presumed germline pathogenic variants (PGPVs) are occasionally detected in thoracic cancer and their frequency and functional significance remain underexplored. We investigated the prevalence and biological significance of PGPVs identified in comprehensive genomic profiling (CGP) panels in patients with thoracic cancer. PATIENTS AND METHODS Between January 2021 and August 2023, 204 patients with thoracic cancer were included in this study. A somatic cancer genomic profile system-FoundationOne CDx or an in-house system (Rapid-Neo)-was used for next-generation sequencing-based cancer gene panel tests. Potential PGPVs were identified by evaluating the variant allele frequency (VAF; cutoff > 10%) and pathogenicity based on ClinVar. RESULTS PGPVs were detected at a frequency of 9.7% from cohort 1 and 8.1% from cohort 2 in thoracic cancer, based on real-world comprehensive genomic profiling panel testing. Copy number plot did not indicate any homologous recombination deficiency patterns in cases with BRCA1, BRCA2, and RAD51D pathogenic variants in thoracic cancer compared with those in hereditary breast and ovarian cancers. Only one hit of MSH6 pathogenic germline variant was observed for lung cancer tissue in the case of Lynch syndrome; therefore, high tumor mutational burden/microsatellite instability or mismatch repair deficiency was not observed, unlike that in endometrial cancer tissue in the same individual. CONCLUSION This study underscores the importance of identifying PGPVs through CGP testing conducted in patients with thoracic cancer. Using frequency and functional analysis. Further investigation is warranted regarding the clinical significance of these PGPVs in managing patients with thoracic cancer and their families.
Collapse
Affiliation(s)
- Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kohei Nakamura
- Center for Cancer Genomics, Keio University School of Medicine, Tokyo, Japan.
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan; Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Ryutaro Kawano
- Center for Cancer Genomics, Keio University School of Medicine, Tokyo, Japan
| | - Marin Ishikawa
- Center for Cancer Genomics, Keio University School of Medicine, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hatsuyo Takaoka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Ayaka Saito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Fumimaro Ito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Shigenari Nukaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Shinnosuke Ikemura
- Department of Respiratory Medicine, Faculty of Medicine University of Yamanashi, Yamanashi, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan; Center of Medical Genomics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Asakura
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Department of Respiratory Medicine, Faculty of Medicine University of Yamanashi, Yamanashi, Japan
| | - Kenjiro Kosaki
- Center of Medical Genomics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Center for Cancer Genomics, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Zhou DDX, Dalrymple J, Klingberg D, Lin FPY, Lord SJ, Cooper WA, Zaheed M, Simes RJ, John T, Lee CK. Clinical Impact of Somatic Genomic Variants of Oncogenes and Tumor Suppressor Genes in Previously Treated Advanced Non-Small Cell Lung Cancer. JCO Precis Oncol 2025; 9:e2400673. [PMID: 40239138 DOI: 10.1200/po-24-00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE Next-generation sequencing in non-small cell lung cancer (NSCLC) identifies somatic genomic variants (SGVs) in cancer susceptibility genes (CSGs). We hypothesized that SGVs would be associated with poorer overall survival (OS) but greater benefit with immune checkpoint inhibitors over chemotherapy. We investigated the prevalence and predictive value of SGVs, using data from OAK and POPLAR trials comparing atezolizumab with docetaxel. METHODS We curated a list of SGVs (excluding TP53, EGFR, ALK, and ROS1) on the basis of CSGs associated with tumorigenesis. We classified participants as SGV mutant or wild-type using baseline plasma analyzed by the FoundationOne Liquid CDx assay. Cox regression analyses and interaction tests between SGV status and treatment were performed. RESULTS Of 762 participants, 29% harbored an SGV. The SGV mutant group had worse OS (hazard ratio [HR], 1.28, 95% CI, 1.06 to 1.54), and within each treatment arm (docetaxel: HR, 1.31; atezolizumab: HR, 1.27). In the atezolizumab arm, the SGV mutant group compared with wild-type had worse OS in the PD-L1 high (HR, 1.31 [95% CI, 0.59 to 2.91]) and low (HR, 1.38 [95% CI, 0.98 to 1.93]) subgroups. SGV with missense, splice, and nonsense mutations had significantly worse OS than wild-type in the docetaxel arm (log-rank P = .01) but not in the atezolizumab arm (log-rank P = .33). SGV status did not predict greater OS benefit with atezolizumab over docetaxel (interaction P = .67). CONCLUSION In advanced NSCLC after chemotherapy progression, plasma-detected SGVs are common, and associated with inferior OS. Plasma SGV status should be considered as a stratification factor in future trials.
Collapse
Affiliation(s)
- Deborah Di-Xin Zhou
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- St George Hospital, Kogarah, NSW, Australia
| | | | | | - Frank Po-Yen Lin
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Sarah J Lord
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Wendy A Cooper
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, NSW, Australia
- Faculty of Medicine and Health and Western Sydney University School of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Milita Zaheed
- Prince of Wales Hereditary Cancer Centre, Randwick, NSW, Australia
| | - Robert John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Thomas John
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Chee Khoon Lee
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- St George Hospital, Kogarah, NSW, Australia
| |
Collapse
|
3
|
Carapezza G, Minardi SP, Noci S, Pintarelli G, Zanutto S, Incarbone M, Tosi D, Dragani TA, Colombo F, Pierotti MA, Gariboldi M. Germline Whole-Exome Sequencing in Non-Smoker Lung Cancer Patients Reveals Pathogenic Variants in Lung Cancer Driver Genes. Genes Chromosomes Cancer 2025; 64:e70040. [PMID: 40119744 PMCID: PMC11929153 DOI: 10.1002/gcc.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
Approximately 10%-15% of all lung cancers arise in non-smokers. Although there are no established aetiological factors, non-smokers with a family history of cancer have an increased risk of lung cancer, implying host genetic factors in lung cancer susceptibility. We sought to identify, in a cohort of 75 patients recruited before lung lobectomy, germline alterations with a strong association with lung cancer. Whole-exome sequencing was performed on genomic DNA from peripheral blood. Six resources were used to select pathogenic germline variants with strong clinical significance. In total, 33 pathogenic or likely pathogenic variants in 31 genes were identified. Of these, 13 were located in cancer-predisposing genes (nine were lung cancer drivers), most of which were involved in DNA repair mechanisms and diseases of metabolism. Among DNA repair-related genes, BRCA1 and BRCA2, and ATM have also been identified in other studies on non-smokers. Our results strongly support the hypothesis that a number of non-smoker lung cancer patients carry germline variants in cancer-predisposing genes, suggesting that lung cancer patients, particularly non-smokers, should be considered for germline molecular testing.
Collapse
Affiliation(s)
- Giovanni Carapezza
- Cogentech S.R.L.Benefit C. With Only Stakeholder Fondazione IFOM ETSMilanoItaly
| | | | - Sara Noci
- Fondazione IRCCS Istituto Nazionale Dei TumoriMilanoItaly
| | | | | | | | - Davide Tosi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | | | - Francesca Colombo
- National Research CouncilInstitute for Biomedical TechnologiesSegrateItaly
| | | | | |
Collapse
|
4
|
An M, Chen C, Xiang J, Li Y, Qiu P, Tang Y, Liu X, Gu Y, Qin N, He Y, Zhu M, Jiang Y, Dai J, Jin G, Ma H, Wang C, Hu Z, Shen H. Systematic identification of pathogenic variants of non-small cell lung cancer in the promoters of DNA-damage repair genes. EBioMedicine 2024; 110:105480. [PMID: 39631147 DOI: 10.1016/j.ebiom.2024.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Deficiency in DNA-damage repair (DDR) genes, often due to disruptive coding variants, is linked to higher cancer risk. Our previous study has revealed the association between rare loss-of-function variants in DDR genes and the risk of lung cancer. However, it is still challenging to study the predisposing role of rare regulatory variants of these genes. METHODS Based on whole-genome sequencing data from 2984 patients with non-small cell lung cancer (NSCLC) and 3020 controls, we performed massively parallel reporter assays on 1818 rare variants located in the promoters of DDR genes. Pathway- or gene-level burden analyses were performed using Firth's logistic regression or generalized linear model. FINDINGS We identified 750 rare functional regulatory variants (frVars) that showed allelic differences in transcriptional activity within the promoter regions of DDR genes. Interestingly, the burden of frVars was significantly elevated in cases (odds ratio [OR] = 1.17, p = 0.026), whereas the burden of variants prioritized solely based on bioinformatics annotation was comparable between cases and controls (OR = 1.04, p = 0.549). Among the frVars, 297 were down-regulated transcriptional activity (dr-frVars) and 453 were up-regulated transcriptional activity (ur-frVars); especially, dr-frVars (OR = 1.30, p = 0.008) rather than ur-frVars (OR = 1.06, p = 0.495) were significantly associated with risk of NSCLC. Individuals with NSCLC carried more dr-frVars from Fanconi anemia, homologous recombination, and nucleotide excision repair pathways. In addition, we identified seven genes (i.e., BRCA2, GTF2H1, DDB2, BLM, ALKBH2, APEX1, and RAD51B) with promoter dr-frVars that were associated with lung cancer susceptibility. INTERPRETATION Our findings indicate that functional promoter variants in DDR genes, in addition to protein-truncating variants, can be pathogenic and contribute to lung cancer susceptibility. FUNDING National Natural Science Foundation of China, Youth Foundation of Jiangsu Province, Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancer of Chinese Academy of Medical Sciences, and Natural Science Foundation of Jiangsu Province.
Collapse
Affiliation(s)
- Mingxing An
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pinyu Qiu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiru Tang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuanlin He
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China.
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
5
|
Zhen T, Sun T, Xiong B, Liu H, Wang L, Chen Y, Sun H. New insight into targeting the DNA damage response in the treatment of glioblastoma. Chin J Nat Med 2024; 22:869-886. [PMID: 39428180 DOI: 10.1016/s1875-5364(24)60694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Glioblastoma (GBM) is the most common invasive malignant tumor in human brain tumors, representing the most severe grade of gliomas. Despite existing therapeutic approaches, patient prognosis remains dismal, necessitating the exploration of novel strategies to enhance treatment efficacy and extend survival. Due to the restrictive nature of the blood-brain barrier (BBB), small-molecule inhibitors are prioritized in the treatment of central nervous system tumors. Among these, DNA damage response (DDR) inhibitors have garnered significant attention due to their potent therapeutic potential across various malignancies. This review provides a detailed analysis of DDR pathways as therapeutic targets in GBM, summarizes recent advancements, therapeutic strategies, and ongoing clinical trials, and offers perspectives on future directions in this rapidly evolving field. The goal is to present a comprehensive outlook on the potential of DDR inhibitors in improving GBM management and outcomes.
Collapse
Affiliation(s)
- Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Pan K, Owens J, Elamin Y, Lu C, Routbort M, Zhang J, Fossella F, Negrao MV, Altan M, Pozadzides J, Skoulidis F, Tsao A, Cascone T, Heymach JV, Ostrin E, Le X. Mutational Characteristics and Clinical Outcomes for Lung Adenocarcinoma With EGFR Germline Mutations. J Thorac Oncol 2024; 19:1438-1448. [PMID: 38866326 DOI: 10.1016/j.jtho.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Germline mutations driving lung cancer have been infrequently reported in the literature, with EGFR T790M being a known germline mutation identified in 1% of NSCLCs. Typically, a somatic EGFR mutation is acquired to develop lung adenocarcinoma. Osimertinib has become a standard-of-care treatment for EGFR T790M-positive lung cancer. METHODS We perform a retrospective analysis through the Lung Cancer Moon Shot GEMINI database at the University of Texas MD Anderson Cancer Center. Of the patients that underwent cell-free DNA analysis, germline mutations were identified by those with high variant allelic fraction approximating 50%, followed by further confirmation on genetic testing. RESULTS We identified 22 patients with germline EGFR mutations, with the majority harboring an EGFR T790M mutation (95.5%) and an EGFR L858R somatic mutation (50%). Notably, most patients were female (86.4%), non-smokers (81.8%), white (86.4%), had a family history of lung cancer (59.1%), and stage IV at diagnosis (72.7%). A distinct radiographic pattern of small multifocal ground-glass pulmonary nodules was observed in the majority of our cohort (72.7%). Among the 18 with advanced-stage NSCLC, 12 patients (66.7%) were treated with first-line osimertinib, demonstrating a median progression-free survival (PFS) of 16.9 months (95% confidence interval [CI]: 6.3-not reached [NR]). Others were treated with first-line afatinib (11.1%) or chemotherapy (22.2%). Among the 17 patients treated with osimertinib (in first or second-line), median PFS was 20.4 months (95% CI: 6.3-NR) and median overall survival was 82.0 months (95% CI: 28.4-NR). CONCLUSIONS Based on our institutional cohort, NSCLC driven by EGFR germline mutations occurs more frequently in non-smoking, white females with multi-focal pulmonary nodules radiographically. Osimertinib for advanced germline EGFR-mutated NSCLC renders similar PFS compared to somatic T790M EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Kelsey Pan
- Department of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Jennifer Owens
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Yasir Elamin
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Charles Lu
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Mark Routbort
- Department of Hematopathology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Frank Fossella
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Jenny Pozadzides
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Anne Tsao
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Edwin Ostrin
- Department of General Internal Medicine and Pulmonary Medicine, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas.
| |
Collapse
|
7
|
Pujol JL, Erich Eberhardt WE. Familial Lung Cancers Caused by EGFR Germline Mutations: The Frequency Is Probably Underestimated but Specific Genotypic Features and Some Particular Disease Characteristics Should Help Their Screening. J Thorac Oncol 2024; 19:1364-1366. [PMID: 39370216 DOI: 10.1016/j.jtho.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Jean Louis Pujol
- Thoracic Oncology Unit, University Hospital of Montpellier, Montpellier University, France
| | - Wilfried Ernst Erich Eberhardt
- Department of Medical Oncology and Ruhrlandclinic, West German Cancer Center, University Medicine Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Wang Z, Zhang Q, Wang C, Herth FJF, Guo Z, Zhang X. Multiple primary lung cancer: Updates and perspectives. Int J Cancer 2024; 155:785-799. [PMID: 38783577 DOI: 10.1002/ijc.34994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
Management of multiple primary lung cancer (MPLC) remains challenging, partly due to its increasing incidence, especially with the significant rise in cases of multiple lung nodules caused by low-dose computed tomography screening. Moreover, the indefinite pathogenesis, diagnostic criteria, and treatment selection add to the complexity. In recent years, there have been continuous efforts to dissect the molecular characteristics of MPLC and explore new diagnostic approaches as well as treatment modalities, which will be reviewed here, with a focus on newly emerging evidence and future perspectives, hope to provide new insights into the management of MPLC and serve as inspiration for future research related to MPLC.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Chaoyang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| | - Felix J F Herth
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
- Department of Pneumology and Critical Care Medicine Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Zhiping Guo
- Department of Health Management, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan Provincial Key Laboratory of Chronic Diseases and Health Management, Zhengzhou, Henan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Diagnosis and Treatment for Pulmonary Nodules, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Arrieta O, Caballé-Pérez E, Hernández-Pedro N, Romero-Nuñez E, Lucio-Lozada J, Castillo-Ruiz C, Acevedo-Castillo K, María Álvarez-Gómez R, Molina-Garay C, Jiménez-Olivares M, Carrillo-Sánchez K, Cristina Mendoza-Caamal E, Cardona AF, Remon J, Alaez-Verson C. Prevalence of pathogenic or likely pathogenic germline variants in cancer predisposition genes among selected patients with lung adenocarcinoma: The GERMLUNG study. Lung Cancer 2024; 194:107864. [PMID: 38945003 DOI: 10.1016/j.lungcan.2024.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Pathogenic or likely pathogenic germline variants (PGVs) in cancer predisposition genes may play a role in lung cancer (LC) susceptibility. However, determining an eligible population for genetic testing remains uncertain. This study aimed to assess the prevalence of PGVs in a selected cohort of individuals with lung adenocarcinoma. METHODS A cross-sectional cohort study was conducted to assess the PGVs rate in lung adenocarcinoma patients with a family history of LC, young-onset presentation, history of never/light smoking, or actionable genomic alterations (AGAs). Sequencing was performed using Sophia Hereditary Cancer Solution panel F, including 144 cancer predisposition genes. Variants classified as pathogenic or likely pathogenic were included for further analysis. RESULTS Of 201 patients, 43 (21.4 %) exhibited PGVs, among which 64.5 % were DNA damage repair genes, and 86.1 % were clinically actionable. The main PGVs were in ATM (9.3 %), TP53 (6.9 %), BRCA2 (6.9 %), and CHEK2 (6.9 %) genes. PGVs were associated with male sex (adjusted odds ratio [aOR] 2.46, 95 % CI 1.15-5.32, p = 0.021), along with a trend toward association with AGAs (aOR 6.04, 95 % CI 0.77-49.74, p = 0.094). CONCLUSIONS In this study, a high PGVs prevalence was identified based on our selection criteria, which represents an effective strategy to identify candidates for germline genomic testing, potential screening strategies in close relatives, and personalized therapeutic modalities. Our results warrant further exploration in other populations to confirm them.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico; Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Enrique Caballé-Pérez
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Norma Hernández-Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Eunice Romero-Nuñez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - José Lucio-Lozada
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Cesar Castillo-Ruiz
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Karla Acevedo-Castillo
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Rosa María Álvarez-Gómez
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico.
| | - Carolina Molina-Garay
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Marco Jiménez-Olivares
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | - Karol Carrillo-Sánchez
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| | | | - Andrés F Cardona
- Thoracic Oncology Unit and Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo, Cancer Treatment and Research Center (CTIC), Bogotá, Colombia.
| | - Jordi Remon
- Gustave Roussy Cancer Campus, Medical Oncology Department, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| | - Carmen Alaez-Verson
- Genomic Diagnosis Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| |
Collapse
|
10
|
Laguna JC, García-Pardo M, Alessi J, Barrios C, Singh N, Al-Shamsi HO, Loong H, Ferriol M, Recondo G, Mezquita L. Geographic differences in lung cancer: focus on carcinogens, genetic predisposition, and molecular epidemiology. Ther Adv Med Oncol 2024; 16:17588359241231260. [PMID: 38455708 PMCID: PMC10919138 DOI: 10.1177/17588359241231260] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Lung cancer poses a global health challenge and stands as the leading cause of cancer-related deaths worldwide. However, its incidence, mortality, and characteristics are not uniform across all regions worldwide. Understanding the factors contributing to this diversity is crucial in a prevalent disease where most cases are diagnosed in advanced stages. Hence, prevention and early diagnosis emerge as the most efficient strategies to enhance outcomes. In Western societies, tobacco consumption constitutes the primary risk factor for lung cancer, accounting for up to 90% of cases. In other geographic locations, different significant factors play a fundamental role in disease development, such as individual genetic predisposition, or exposure to other carcinogens such as radon gas, environmental pollution, occupational exposures, or specific infectious diseases. Comprehensive clinical and molecular characterization of lung cancer in recent decades has enabled us to distinguish different subtypes of lung cancer with distinct phenotypes, genotypes, immunogenicity, treatment responses, and survival rates. The ultimate goal is to prevent and individualize lung cancer management in each community and improve patient outcomes.
Collapse
Affiliation(s)
- Juan Carlos Laguna
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miguel García-Pardo
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joao Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute
| | - Carlos Barrios
- School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Navneet Singh
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Herbert Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Miquel Ferriol
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Calle Villarroel 170, Barcelona 08036, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Mao X, Lee NK, Saad SE, Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Transl Lung Cancer Res 2024; 13:375-397. [PMID: 38496700 PMCID: PMC10938103 DOI: 10.21037/tlcr-23-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Despite significant advancements in screening, diagnosis, and treatment of non-small cell lung cancer (NSCLC), it remains the primary cause of cancer-related deaths globally. DNA damage is caused by the exposure to exogenous and endogenous factors and the correct functioning of DNA damage repair (DDR) is essential to maintain of normal cell circulation. The presence of genomic instability, which results from defective DDR, is a critical characteristic of cancer. The changes promote the accumulation of mutations, which are implicated in cancer cells, but these may be exploited for anti-cancer therapies. NSCLC has a distinct genomic profile compared to other tumors, making precision medicine essential for targeting actionable gene mutations. Although various treatment options for NSCLC exist including chemotherapy, targeted therapy, and immunotherapy, drug resistance inevitably arises. The identification of deleterious DDR mutations in 49.6% of NSCLC patients has led to the development of novel target therapies that have the potential to improve patient outcomes. Synthetic lethal treatment using poly (ADP-ribose) polymerase (PARP) inhibitors is a breakthrough in biomarker-driven therapy. Additionally, promising new compounds targeting DDR, such as ATR, CHK1, CHK2, DNA-PK, and WEE1, had demonstrated great potential for tumor selectivity. In this review, we provide an overview of DDR pathways and discuss the clinical translation of DDR inhibitors in NSCLC, including their application as single agents or in combination with chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Xinru Mao
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Nung Kion Lee
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| |
Collapse
|
12
|
Hutchcraft ML, Zhang S, Lin N, Pickarski JC, Belcher EA, Wei S, Bocklage T, Miller RW, Villano JL, Cavnar MJ, Kim J, Arnold SM, Ueland FR, Kolesar JM. Feasibility and Clinical Utility of Reporting Hereditary Cancer Predisposition Pathogenic Variants Identified in Research Germline Sequencing: A Prospective Interventional Study. JCO Precis Oncol 2024; 8:e2300266. [PMID: 38295319 PMCID: PMC10843325 DOI: 10.1200/po.23.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE Patients with cancer frequently undergo research-grade germline sequencing but clinically actionable results are not routinely disclosed. The objective of this study is to evaluate the feasibility of reporting clinically relevant secondary findings (SF) identified in germline research sequencing using the institutional molecular tumor board (MTB) and the treating oncology physician. METHODS This prospective, interventional cohort study enrolled Total Cancer Care participants with any cancer diagnosis at a single institution. Patients underwent research-grade germline whole-exome sequencing, with bioinformatic analysis in a Clinical Laboratory Improvement Amendments-certified laboratory to verify pathogenic/likely pathogenic germline variants (PGVs) in any American College of Medical Genomics and Genetics SF v2.0 genes. After a protocol modification in consenting patients, the MTB reported PGVs to treating oncology physicians with recommendations for referral to a licensed genetic counselor and clinical confirmatory testing. RESULTS Of the 781 enrolled participants, 32 (4.1%) harbored cancer predisposition PGVs, 24 (3.1%) were heterozygous carriers of an autosomal recessive cancer predisposition syndrome, and 14 (1.8%) had other hereditary disease PGVs. Guideline-directed testing would have missed 37.5% (12/32) of the inherited cancer predisposition PGVs, which included BRCA1, BRCA2, MSH6, SDHAF2, SDHB, and TP53 variants. Three hundred fifteen participants consented to reporting results; results for all living patients were reported to the clinical team with half referred to a licensed genetic counselor. There was concordance between all research variants identified in patients (n = 9) who underwent clinical confirmatory sequencing. CONCLUSION MTB reporting of research-grade germline sequencing to the clinical oncology team is feasible. Over a third of PGVs identified using a universal testing strategy would have been missed by guideline-based approach, suggesting a role for expanding germline testing.
Collapse
Affiliation(s)
- Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Shulin Zhang
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY
| | - Nan Lin
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY
| | | | - Elizabeth A. Belcher
- Department of Clinical Research, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Sainan Wei
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
| | - Thèrése Bocklage
- Department of Pathology and Laboratory Medicine University of Kentucky Chandler Medical Center, Lexington, KY
| | - Rachel W. Miller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - John L. Villano
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Michael J. Cavnar
- Division of Surgical Oncology, Department of Surgery, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Joseph Kim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Susanne M. Arnold
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Frederick R. Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Comprehensive Cancer Center, Lexington, KY
| | - Jill M. Kolesar
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY
| |
Collapse
|
13
|
Arnon J, Tabi M, Rottenberg Y, Zick A, Blumenfeld P, Hamburger T, Pikarsky E, Avraham E, Levine L, Popovtzer A, Yablonski-Peretz T, Kadouri L, Nechushtan H. Clinical Characteristics, Response to Platinum-Based Chemotherapy and Poly (Adenosine Phosphate-Ribose) Polymerase Inhibitors in Advanced Lung Cancer Patients Harboring BRCA Mutations. Cancers (Basel) 2023; 15:4733. [PMID: 37835426 PMCID: PMC10571558 DOI: 10.3390/cancers15194733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The oncogenic role and clinical relevance of BRCA mutations in NSCLC remain unclear. We aim to evaluate the characteristics and clinical outcomes of patients with NSCLC harboring BRCA mutations treated at Hadassah Medical Center (HMC). We retrospectively assessed all patients with advanced NSCLC who underwent next-generation sequencing (NGS) and were found to have pathogenic somatic BRCA mutations (p-BRCA). We compared clinical outcomes in NSCLC patients with wild-type BRCA (wt-BRCA) matched by age, stage, gender, smoking, PDL-1 and driver mutations. Between 2015 and 2022, we evaluated 598 patients with advanced NSCLC using NGS and found 26 patients with p-BRCA, of whom 17 (65.4%) were carriers of germline BRCA variants and represented 1% of all BRCA carriers HMC. The median age of diagnosis was 67 years old (40-78), 13 patients (50%) had a history of smoking and 9 patients (34.6%) had additional driver mutations (EGFR, ALK, BRAF, MET or ERBB2). Objective response rate and median progression-free survival (PFS) for first-line platinum-based chemotherapy in the p-BRCA group compared to wt-BRCA controls were 72.2% and 16 months (CI 95%, 5-22), compared to 47.4% and 7 months (CI 95%, 5-9), respectively, and HR for PFS was 0.41 (CI 95%, 0.17-0.97). Six patients in the p-BRCA group were treated with advanced-line poly (adenosine-phosphate-ribose) polymerase inhibitors (PARPi), with a durable response observed in four patients (66%). In this cohort, patients with NSCLC harboring p-BRCA exhibit high-sensitivity PARPi and a prolonged response to platinum, suggesting some oncogenic role for BRCA mutations in NSCLC. The results support further prospective trials of the treatment of NSCLC harboring p-BRCA with PARPi.
Collapse
Affiliation(s)
- Johnathan Arnon
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Michael Tabi
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Yakir Rottenberg
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Philip Blumenfeld
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Tamar Hamburger
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Eli Pikarsky
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
- Department of Pathology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Eti Avraham
- Department of Pathology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Leeby Levine
- Stern College for Women, Yeshiva University, New York, NY 10033, USA
| | - Aron Popovtzer
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Tamar Yablonski-Peretz
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Luna Kadouri
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Hovav Nechushtan
- Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem 91120, Israel (L.K.); (H.N.)
- Factuality of Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| |
Collapse
|
14
|
Liu Q, Peng Q, Zhang B, Tan Y. X-ray cross-complementing family: the bridge linking DNA damage repair and cancer. J Transl Med 2023; 21:602. [PMID: 37679817 PMCID: PMC10483876 DOI: 10.1186/s12967-023-04447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Genomic instability is a common hallmark of human tumours. As a carrier of genetic information, DNA is constantly threatened by various damaging factors that, if not repaired in time, can affect the transmission of genetic information and lead to cellular carcinogenesis. In response to these threats, cells have evolved a range of DNA damage response mechanisms, including DNA damage repair, to maintain genomic stability. The X-ray repair cross-complementary gene family (XRCC) comprises an important class of DNA damage repair genes that encode proteins that play important roles in DNA single-strand breakage and DNA base damage repair. The dysfunction of the XRCC gene family is associated with the development of various tumours. In the context of tumours, mutations in XRCC and its aberrant expression, result in abnormal DNA damage repair, thus contributing to the malignant progression of tumour cells. In this review, we summarise the significant roles played by XRCC in diverse tumour types. In addition, we discuss the correlation between the XRCC family members and tumour therapeutic sensitivity.
Collapse
Affiliation(s)
- Qiang Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yueqiu Tan
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Sorscher S, LoPiccolo J, Heald B, Chen E, Bristow SL, Michalski ST, Nielsen SM, Lacoste A, Keyder E, Lee H, Nussbaum RL, Martins R, Esplin ED. Rate of Pathogenic Germline Variants in Patients With Lung Cancer. JCO Precis Oncol 2023; 7:e2300190. [PMID: 37992258 PMCID: PMC10681406 DOI: 10.1200/po.23.00190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE Germline genetic testing (GGT) is now recommended for all patients diagnosed with ovarian or pancreatic cancer and for a large proportion of patients based solely on a diagnosis of colorectal or breast cancer. However, GGT is not yet recommended for all patients diagnosed with lung cancer (LC), primarily because of a lack of evidence that supports a significant frequency of identifying pathogenic germline variants (PGVs) in these patients. This study characterizes GGT results in a cohort of patients with LC. METHODS We reviewed deidentified data for 7,788 patients with GGT (2015-2022). PGV frequencies were compared to a control cohort of unaffected individuals. GGT results were stratified by genomic ancestry, history of cancer, and PGV clinical actionability per current guidelines. RESULTS Of all patients with LC, 14.9% (1,161/7,788) had PGVs. The rate was similar when restricted to patients with no cancer family history (FH) or personal history (PH) of other cancers (14.3%). PGVs were significantly enriched in BRCA2, ATM, CHEK2, BRCA1, and mismatch repair genes compared with controls. Patients of European (EUR) genomic ancestry had the highest PGV rate (18%) and variants of uncertain significance were significantly higher in patients of non-EUR genomic ancestry. Of the PGVs identified, 61.3% were in DNA damage repair (DDR) genes and 95% were clinically actionable. CONCLUSION This retrospective study shows a LC diagnosis identifies patients with a significant likelihood of having a cancer-predisposing PGV across genomic ancestries. Enrichment of PGVs in DDR genes suggests that these PGVs may contribute to LC cancer predisposition. The frequency of PGVs among patients with LC did not differ significantly according to FH or PH of other cancers.
Collapse
Affiliation(s)
| | - Jaclyn LoPiccolo
- Hematology/Oncology Division, Dana-Farber Cancer Center, Boston, MA
| | | | | | | | | | | | | | | | - Hayan Lee
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA
| | | | - Renato Martins
- Hematology, Oncology and Palliative Care Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | | |
Collapse
|
16
|
Farinea G, Crespi V, Listì A, Righi L, Bironzo P, Merlini A, Malapelle U, Novello S, Scagliotti GV, Passiglia F. The Role of Germline Mutations in Thoracic Malignancies: Between Myth and Reality. J Thorac Oncol 2023; 18:1146-1164. [PMID: 37331604 DOI: 10.1016/j.jtho.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Considering the established contribution of environmental factors to the development of thoracic malignancies, the inherited susceptibility of these tumors has rarely been explored. However, the recent introduction of next-generation sequencing-based tumor molecular profiling in the real-word setting enabled us to deeply characterize the genomic background of patients with lung cancer with or without smoking-related history, increasing the likelihood of detecting germline mutations with potential prevention and treatment implications. Pathogenic germline variants have been detected in 2% to 3% of patients with NSCLC undergoing next-generation sequencing analysis, whereas the proportion of germline mutations associated with the development of pleural mesothelioma widely varies across different studies, ranging between 5% and 10%. This review provides an updated summary of emerging evidence about germline mutations in thoracic malignancies, focusing on pathogenetic mechanisms, clinical features, therapeutic implications, and screening recommendations for high-risk individuals.
Collapse
Affiliation(s)
- Giovanni Farinea
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Veronica Crespi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| |
Collapse
|
17
|
Hong CS, Alanya H, DiStasio M, Boulware SD, Rimmer RA, Omay SB, Erson-Omay EZ. Sporadic pituitary adenoma with somatic double-hit loss of MEN1. Pituitary 2023; 26:488-494. [PMID: 37438451 DOI: 10.1007/s11102-023-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Pituitary adenomas commonly arise in patients with MEN1 syndrome, an autosomal dominant condition predisposing to neuroendocrine tumor formation, and typically diagnosed in patients with a relevant family cancer history. In these patients with existing germline loss of MEN1 on one allele, somatic loss of the second MEN1 allele leads to complete loss of the MEN1 protein, menin, and subsequent tumor formation. METHODS Whole exome sequencing was performed on the tumor and matching blood under an institutional board approved protocol. DNA extraction and analysis was conducted according to previously described methods. RESULTS We describe a 23 year-old patient with no significant past medical history or relevant family history who underwent surgical resection of a symptomatic and medically resistant prolactinoma. Whole exome sequencing of tumor and blood samples revealed somatic loss of MEN1 at both alleles, suggesting a double hit mechanism, with no underlying germline MEN1 mutation. CONCLUSION To our knowledge, this is the first case of pituitary adenoma to arise from somatic loss of MEN1 and in the absence of an underlying germline MEN1 mutation.
Collapse
Affiliation(s)
- Christopher S Hong
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Hasan Alanya
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Marcello DiStasio
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Susan D Boulware
- Department of Pediatrics, Section of Endocrinology and Diabetes, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Ryan A Rimmer
- Department of Surgery, Division of Otolaryngology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, 300 Cedar Street, TAC S327, New Haven, CT, 06511, USA.
| |
Collapse
|
18
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
19
|
Chen Z, Wang K, Zhao L, Gong L. BRCA2 mutation in advanced lung squamous cell carcinoma treated with Olaparib and a PD-1 inhibitor: a case report. Front Oncol 2023; 13:1190100. [PMID: 37260982 PMCID: PMC10228719 DOI: 10.3389/fonc.2023.1190100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Background Mutations in the human breast cancer susceptibility gene 2 (breast cancer 2, BRCA2) increase the risk of breast, ovarian and other cancers. Olaparib, an oral poly[adenosine diphosphate (ADP)-ribose] polymerase (PARP) inhibitor, is usually prescribed to treat BRCA mutated tumors, especially breast and ovarian cancers. Programmed cell death-1 (PD-1) inhibitors have revolutionized the treatment of lung cancer and many other cancers by destroying the interaction between receptors with ligands in the tumor-immune microenvironment and enabling T cells to recognize and attack cancer cells. Case description In our study, we report a patient with advanced BRCA2 lung squamous cell carcinoma who received platinum-based chemotherapy combined with paclitaxel. Seven months later, the disease progressed. BRCA2 mutations were detected in peripheral blood by next-generation sequencing. After 2 months of treatment with Olaparib combined with Cindilimab, the patient was in partial remission and the progression-free survival (PFS) lasted for 6 months, but the patient developed immune renal damage. Conclusions This study adds to the clinical data for the treatment of BRCA2 mutant non-small cell lung cancer by demonstrating that lung squamous cell carcinoma has a good response to PARP inhibitors. It also serves as a reminder that there may still be some negative effects from targeted superimposed immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Liang Gong
- *Correspondence: Lintao Zhao, ; Liang Gong,
| |
Collapse
|
20
|
Averbuch I, Tschernichovsky R, Icht O, Goldstein DA, Mutai R, Dudnik E, Rotem O, Peled N, Allen AM, Laufer-Geva S, Goldberg Y, Zer A. Correlations between pathogenic variants in DNA repair genes and anticancer treatment efficacy in stage IV non-small cell lung cancer: A large real-world cohort and review of the literature. Thorac Cancer 2023. [PMID: 37095004 DOI: 10.1111/1759-7714.14902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Mutations in genes involved in DNA damage repair (DDR), a hallmark of cancer, are associated with increased cancer cell sensitivity to certain therapies. This study sought to evaluate the association of DDR pathogenic variants with treatment efficacy in patients with advanced non-small cell lung cancer (NSCLC). METHODS A retrospective cohort of consecutive patients with advanced NSCLC attending a tertiary medical center who underwent next-generation sequencing in 01/2015-8/2020 were clustered according to DDR gene status and compared for overall response rate (ORR), progression-free survival (PFS) (patients receiving systemic therapy), local PFS (patients receiving definitive radiotherapy), and overall survival (OS) using log-rank and Cox regression analyses. RESULTS Of 225 patients with a clear tumor status, 42 had a pathogenic/likely pathogenic DDR variant (pDDR), and 183 had no DDR variant (wtDDR). Overall survival was similar in the two groups (24.2 vs. 23.1 months, p = 0.63). The pDDR group had a higher median local PFS after radiotherapy (median 45 months vs. 9.9 months, respectively; p = 0.044), a higher ORR (88.9% vs. 36.2%, p = 0.04), and a longer median PFS (not reached vs. 6.0 months, p = 0.01) in patients treated with immune checkpoint blockade. There was no difference in ORR, median PFS, and median OS in patients treated with platinum-based chemotherapy. CONCLUSION Our retrospective data suggest that in patients with stage 4 NSCLC, pathogenic variants in DDR pathway genes may be associated with higher efficacy of radiotherapy and immune checkpoint inhibitors (ICIs). This should be further explored prospectively.
Collapse
Affiliation(s)
- Itamar Averbuch
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | | | - Oded Icht
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | | | - Raz Mutai
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | | | - Ofer Rotem
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Nir Peled
- Oncology Division, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Aaron M Allen
- Oncology Division, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Yael Goldberg
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Alona Zer
- Fishman Oncology Institute, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
21
|
Fu F, Tao X, Jiang Z, Gao Z, Zhao Y, Li Y, Hu H, Shen L, Sun Y, Zhang Y. Identification of Germline Mutations in East-Asian Young Never-Smokers with Lung Adenocarcinoma by Whole-Exome Sequencing. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:182-189. [PMID: 37197646 PMCID: PMC10110802 DOI: 10.1007/s43657-022-00062-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Recently, an increasing number of young never-smokers are diagnosed with lung cancer. The aim of this study is to investigate the genetic predisposition of lung cancer in these patients and discover candidate pathogenic variants for lung adenocarcinoma in young never-smokers. Peripheral blood was collected from 123 never-smoking east-Asian patients diagnosed with lung adenocarcinoma before the age of 40. Whole-exome sequencing (WES) was conducted on genomic DNA extracted from peripheral blood cells. As a result, 3,481 single nucleotide variants were identified. By bioinformatical tools and the published gene list associated with genetic predisposition of cancer, pathogenic variants were detected in ten germline genes: ATR, FANCD2, FANCE, GATA2, HFE, MSH2, PDGFRA, PMS2, SDHB, and WAS. Patients with pathogenic variants were more likely to occur in females (9/10, 90.0%) and have stage IV lung adenocarcinoma (4/10, 40%). Furthermore, germline mutations in 17 genes (ASB18, B3GALT5, CLEC4F, COL6A6, CYP4B1, C6orf132, EXO1, GATA4, HCK, KCP, NPHP4, PIGX, PPIL2, PPP1R3G, RRBP1, SALL4, and TTC28), which occurred in at least two patients, displayed potentially pathogenic effects. Gene ontology analysis further showed that these genes with germline mutations were mainly located in nucleoplasm and associated with DNA repair-related biological processes. The study provides spectrum of pathogenic variants and functional explanation for genetic predisposition of lung adenocarcinoma in young never-smokers, which sheds a light on prevention and early diagnosis of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00062-1.
Collapse
Affiliation(s)
- Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xiaoting Tao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhonglin Jiang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhendong Gao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yue Zhao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yuan Li
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Hong Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Libing Shen
- International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| | - Yihua Sun
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
22
|
Jin J, Cao J, Li B, Li T, Zhang J, Cao J, Zhao M, Wang L, Wang B, Tao Z, Hu X. Landscape of DNA damage response gene alterations in breast cancer: A comprehensive investigation. Cancer 2023; 129:845-859. [PMID: 36655350 DOI: 10.1002/cncr.34618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND DNA damage response (DDR) gene alterations are prevalent in breast cancer (BC) and important for treatment decisions. Intensive studies on DDR alterations in BC are still needed. METHODS The authors included 438 patients with metastatic breast cancer from their next-generation sequencing database and 1091 patients with early-stage breast cancer from The Cancer Genome Atlas (TCGA) database in the analysis to characterize molecular alterations in the DDR pathway. RESULTS Germline DDR mutations were more prevalent in younger patients and those with HER2-negative cancers. Tumors with germline DDR mutations more commonly had somatic DDR mutations, especially those with germline Fanconi anemia (FA) pathway mutations. Notably, 66.67% (four of six) of patients with germline PALB2 mutations had tumors that harbored somatic PALB2 mutations. No differences in prognosis were observed in patients with germline or tumor somatic DDR mutations compared to patients and tumors that were wild-type. Compared to early BC, the frequency of somatic DDR mutations in metastatic cancers was significantly higher (24.89% vs. 16.02%, p < .001). Higher tumor mutation burdens were observed in cancers with somatic DDR mutations, but not in cancers with germline DDR mutations. Furthermore, tumors with somatic DDR mutations showed an abundance of anticancer immunological phenotypes. Somatic FA and mismatch repair pathway mutations were associated with increased expression of immune checkpoint molecules. Although most DDR genes were significantly positively associated with expression of proliferation-related genes, PARP3 expression was negatively correlated with MKI67 expression. Lower PARP3 expression was associated with a worse prognosis in TCGA database by multivariate Cox analysis. CONCLUSIONS Patients with germline FA mutations more frequently have tumors with somatic DDR mutations. Somatic DDR mutations lead to anticancer immunological phenotypes in BC. No differences in prognosis according to germline or somatic DDR mutations were found.
Collapse
Affiliation(s)
- Juan Jin
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianing Cao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Li
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Li
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Cao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingchun Zhao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leiping Wang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Tao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Borja NA, Silva-Smith R, Huang M, Parekh DJ, Sussman D, Tekin M. Atypical ATMs: Broadening the phenotypic spectrum of ATM-associated hereditary cancer. Front Oncol 2023; 13:1068110. [PMID: 36865800 PMCID: PMC9971806 DOI: 10.3389/fonc.2023.1068110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Heterozygous, loss-of-function germline variants in ATM have been associated with an increased lifetime risk of breast, pancreas, prostate, stomach, ovarian, colorectal, and melanoma cancers. We conducted a retrospective review of thirty-one unrelated patients found to be heterozygous for a germline pathogenic variant in ATM and identified a significant proportion of patients in this cohort with cancers not currently associated with the ATM hereditary cancer syndrome, including carcinomas of the gallbladder, uterus, duodenum, kidney, and lung as well as a vascular sarcoma. A comprehensive review of the literature found 25 relevant studies where 171 individuals with a germline deleterious ATM variant have been diagnosed with the same or similar cancers. The combined data from these studies were then used to estimate the prevalence of germline ATM pathogenic variants in these cancers, which ranged between 0.45% and 2.2%. Analysis of tumor sequencing performed in large cohorts demonstrated that the frequency of deleterious somatic ATM alterations in these atypical cancers equaled or exceeded the alteration frequency in breast cancer and occurred at a significantly higher rate than in other DNA-damage response tumor suppressors, namely BRCA1 and CHEK2. Furthermore, multi-gene analysis of somatic alterations in these atypical cancers demonstrated significant co-occurrence of pathogenic alterations in ATM with BRCA1 and CHEK2, while there was significant mutual exclusivity between pathogenic alterations in ATM and TP53. This indicates that germline ATM pathogenic variants may play a role in cancer initiation and progression in these atypical ATM malignancies, potentially influencing these cancers to be driven toward DNA-damage repair deficiency and away from loss of TP53. As such, these findings provide evidence for broadening of the ATM-cancer susceptibility syndrome phenotype to improve the recognition of affected patients and provide more efficacious, germline-directed therapies.
Collapse
Affiliation(s)
- Nicholas A. Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rachel Silva-Smith
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marilyn Huang
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Dipen J. Parekh
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Daniel Sussman
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States,John P. Hussmann Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Mustafa Tekin,
| |
Collapse
|
24
|
Yang Y, Zhang G, Hu C, Luo W, Jiang H, Liu S, Yang H. The germline mutational landscape of genitourinary cancers and its indication for prognosis and risk. BMC Urol 2022; 22:196. [PMID: 36451132 PMCID: PMC9710079 DOI: 10.1186/s12894-022-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Germline mutations represent a high risk of hereditary cancers in population. The landscape and characteristics of germline mutations in genitourinary cancer are largely unknown, and their correlation with patient prognosis has not been defined. METHODS Variant data and relevant clinical data of 10,389 cancer patients in The Cancer Genome Atlas (TCGA) database was downloaded. The subset of data of 206 genitourinary cancer patients containing bladder urothelial carcinoma (BLCA), kidney chromophobe carcinoma (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP) and prostate adenocarcinoma (PRAD) cancer with germline mutation information was filtered for further analysis. Variants were classified into pathogenic, likely pathogenic and non-pathogenic categories based on American College of Medical Genetics and Genomics (ACMG) guidelines. Genome Aggregation Database (gnomAD) database was used to assist risk analysis. RESULTS There were 48, 7, 44, 45 and 62 patients with germline mutations identified in BLCA, KICH, KIRC, KIRP and PRAD, respectively. Pathogenic germline mutations from 26 genes and likely pathogenic mutations from 33 genes were revealed. GJB2, MET, MUTYH and VHL mutations ranked top in kidney cancers, and ATM and CHEK2 mutations ranked top for bladder cancer, while ATM and BRCA1 mutations ranked top for prostate cancer. Frameshift, stop gained and missense mutations were the predominant mutation types. BLCA exhibited the highest ratio of stop gained mutations (22/48 = 45.8%). No difference in patient age was found among pathogenic, likely pathogenic and non-pathogenic groups for all cancer types. The number of male patients far overweight female patients whether PRAD was included (P = 0) or excluded (P < 0.001). Patients with pathogenic or likely pathogenic germline mutations exhibited significantly worse overall survival rate than the non-pathogenic group for all genitourinary cancers. More important, analyses assisted by gnomAD database revealed that pathogenic or likely pathogenic germline mutations significantly increased the risk for genitourinary cancer in population, with the odds ratio at 14.88 (95%CI 11.80-18.77) and 33.18 (95%CI 24.90-44.20), respectively. CONCLUSIONS The germline mutational status for genitourinary cancers has been comprehensively characterized. Pathogenic and likely pathogenic germline mutations increased the risk and indicated poor prognosis of genitourinary cancers.
Collapse
Affiliation(s)
- Yong Yang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Guoying Zhang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Chen Hu
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Wei Luo
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Haiyang Jiang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Shaoyou Liu
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| | - Hong Yang
- grid.452826.fDepartment of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118 Yunnan Province People’s Republic of China
| |
Collapse
|
25
|
Murciano-Goroff YR, Schram AM, Rosen EY, Won H, Gong Y, Noronha AM, Janjigian YY, Stadler ZK, Chang JC, Yang SR, Mandelker D, Offit K, Berger MF, Donoghue MTA, Bandlamudi C, Drilon A. Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies. Nat Commun 2022; 13:7182. [PMID: 36418296 PMCID: PMC9684575 DOI: 10.1038/s41467-022-34109-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
The association between loss of BRCA1/2 and a homologous recombination deficiency phenotype is lineage dependent. In BRCA-associated cancers such as breast, ovarian, pancreas and prostate, this phenotype confers sensitivity to PARP inhibitors and platinum-therapies. Somatic reversion mutations restoring BRCA1/2 function mediate resistance, and have exclusively been reported in BRCA-associated tumors. In this study, we analyze matched tumor and normal sequencing from 31,927 patients and identify 846 (2.7%) patients with germline BRCA1/2 variants across 43 different cancer types, including 11 with somatic reversion mutations. While nine are in BRCA-associated tumors, we find two reversion mutations in non-BRCA-associated histologies, namely lung and esophagogastric adenocarcinomas. Both were detected following platinum therapy. Whole exome sequencing confirms the homologous recombination deficiency phenotype of these tumors. While reversion mutations arise in all BRCA-associated cancer types, here we show that reversion mutations arising post-platinum in non-BRCA associated histologies, while rare, may indicate BRCA1/2 mediated tumorigenesis.
Collapse
Affiliation(s)
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ezra Y Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen Won
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- LOXO Oncology at Lilly, Stamford, CT, USA
| | - Yixiao Gong
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne Marie Noronha
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jason C Chang
- Weill Cornell Medical College, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soo-Ryum Yang
- Weill Cornell Medical College, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Michael F Berger
- Weill Cornell Medical College, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
26
|
Sorscher S. Germline Testing of Patients With Non-small Cell Lung Cancers Demonstrating Incidentally Uncovered BRCA2 Apparent Pathogenic Germline Variants. Clin Lung Cancer 2022; 23:e405-e407. [PMID: 35977876 DOI: 10.1016/j.cllc.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023]
Abstract
Tumor next generation sequencing (NGS) is used to interrogate nearly every non-small cell lung cancer (NSCLC) for the purpose of identifying actionable genetic alterations. Occasionally, tumor NGS also uncovers "incidental" apparent pathogenic germline variants (PGVs), with BRCA2 being among the most common of those. If germline testing confirms a BRCA2 PGV in a patient with NSCLC, therapies targeting that BRCA2 PGV might be considered, if the patient has exhausted standard NSCLC therapeutic options. Surveillance and preventive therapies for BRCA2-related cancers would be recommended or considered for that patient, as well as for family members found to carry that same BRCA2 PGV. Here, I offer my perspective related to the evidence supporting and against germline testing in patients with NSCLCs that show incidental BRCA2 apparent PGVs. I use an example to underscore how important it is to explain to patients, before tumor NGS, the possibility of uncovering an incidental PGV. I also review the myriad uncertainties related to identifying a BRCA2 PGV, when the sole indication for germline testing was the uncovering of the incidental BRCA2 apparent PGV.
Collapse
|
27
|
Khaddour K, Felipe Fernandez M, Khabibov M, Garifullin A, Dressler D, Topchu I, Patel JD, Weinberg F, Boumber Y. The Prognostic and Therapeutic Potential of DNA Damage Repair Pathway Alterations and Homologous Recombination Deficiency in Lung Cancer. Cancers (Basel) 2022; 14:5305. [PMID: 36358724 PMCID: PMC9654807 DOI: 10.3390/cancers14215305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 03/28/2025] Open
Abstract
Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell's ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Hematology and Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Manuel Felipe Fernandez
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marsel Khabibov
- I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Airat Garifullin
- P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Danielle Dressler
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Iuliia Topchu
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jyoti D. Patel
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frank Weinberg
- Division of Hematology and Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yanis Boumber
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420012 Kazan, Russia
| |
Collapse
|
28
|
Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y, Xie Y, He Y, Jiang Y, Zhu M, Song C, Jiang T, Liu J, Zhou J, Wang N, Hua T, Liang S, Wang L, Xu J, Yin R, Chen L, Xu L, Jin G, Lin D, Hu Z, Shen H. Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 2022; 40:1223-1239.e6. [PMID: 36113475 DOI: 10.1016/j.ccell.2022.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
We present the largest whole-genome sequencing (WGS) study of non-small cell lung cancer (NSCLC) to date among 6,004 individuals of Chinese ancestry, coupled with 23,049 individuals genotyped by SNP array. We construct a high-quality haplotype reference panel for imputation and identify 20 common and low-frequency loci (minor allele frequency [MAF] ≥ 0.5%), including five loci that have never been reported before. For rare loss-of-function (LoF) variants (MAF < 0.5%), we identify BRCA2 and 18 other cancer predisposition genes that affect 5.29% of individuals with NSCLC, and 98.91% (181 of 183) of LoF variants have not been linked previously to NSCLC risk. Promoter variants of BRCA2 also have a substantial effect on NSCLC risk, and their prevalence is comparable with BRCA2 LoF variants. The associations are validated in an independent case-control study including 4,410 individuals and a prospective cohort study including 23,826 individuals. Our findings not only provide a high-quality reference panel for future array-based association studies but depict the whole picture of rare pathogenic variants for NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Juncheng Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Na Qin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingyi Fan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Congcong Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingxing An
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiwang Yan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yayun Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanlin He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ci Song
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jia Liu
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jun Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Nanxi Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Hua
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuang Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lu Wang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Guangfu Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
29
|
Mukherjee S, Carrot-Zhang J. Whole-genome sequencing of East Asian lung cancers reveals new germline pathogenic variants. Cancer Cell 2022; 40:1081-1083. [PMID: 36179687 DOI: 10.1016/j.ccell.2022.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this issue of Cancer Cell, Wang et al. use whole-genome sequencing of lung cancer cases and controls with East Asian ancestry to comprehensively characterize both common and rare variants that predispose to lung cancer. Their findings suggest that rare promoter variants in BRCA2 are associated with increased lung cancer risk.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jian Carrot-Zhang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
30
|
Liu Y, Chudgar N, Mastrogiacomo B, He D, Lankadasari MB, Bapat S, Jones GD, Sanchez-Vega F, Tan KS, Schultz N, Mukherjee S, Offit K, Bao Y, Bott MJ, Rekhtman N, Adusumilli PS, Li BT, Mayo MW, Jones DR. A germline SNP in BRMS1 predisposes patients with lung adenocarcinoma to metastasis and can be ameliorated by targeting c-fos. Sci Transl Med 2022; 14:eabo1050. [PMID: 36197962 PMCID: PMC9926934 DOI: 10.1126/scitranslmed.abo1050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
About 50% of patients with early-stage, surgically resected lung cancer will develop distant metastasis. There remains an unmet need to identify patients likely to develop recurrence and to design innovative therapies to decrease this risk. Two primary isoforms of BRMS1, v1 and v2, are present in humans. Using next-generation sequencing of BRMS1 on matched human noncancerous lung tissue and non-small cell lung cancer (NSCLC) specimens, we identified single-nucleotide polymorphism (SNP) rs1052566 that results in an A273V mutation of BRMS1v2. This SNP is homozygous (BRMS1v2A273V/A273V) in 8% of the population and correlates with aggressive biology in lung adenocarcinoma (LUAD). Mechanistically, we show that BRMS1v2 A273V abolishes the metastasis suppressor function of BRMS1v2 and promotes robust cell invasion and metastases by activation of c-fos-mediated gene-specific transcriptional regulation. BRMS1v2 A273V increases cell invasion in vitro and increases metastases in both tail-vein injection xenografts and LUAD patient-derived organoid (PDO) intracardiac injection metastasis in vivo models. Moreover, we show that BRMS1v2 A273V fails to interact with nuclear Src, thereby activating intratumoral c-fos in vitro. Higher c-fos results in up-regulation of CEACAM6, which drives metastases in vitro and in vivo. Using both xenograft and PDO metastasis models, we repurposed T5224 for treatment, a c-fos pharmacologic inhibitor investigated in clinical trials for arthritis, and observed suppression of metastases in BRMS1v2A273V/A273V LUAD in mice. Collectively, we elucidate the mechanism of BRMS1v2A273V/A273V-induced metastases and offer a putative therapeutic strategy for patients with LUAD who have this germline alteration.
Collapse
Affiliation(s)
- Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Neel Chudgar
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Di He
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Manendra B. Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Samhita Bapat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Gregory D. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | | | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yongde Bao
- Department of Microbiology, University of Virginia; Charlottesville, VA 22908, USA
| | - Matthew J. Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Natasha Rekhtman
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Department of Pathology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Bob T. Li
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Department of Medicine, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Marty W. Mayo
- Department of Biochemistry & Molecular Genetics, University of Virginia; Charlottesville, VA 22908, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Corresponding Author: David R. Jones, MD, Professor & Chief, Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 7, New York, NY 10065 USA Phone: 212-639-6428; Fax: 232-639-6686;
| |
Collapse
|
31
|
Krantz SB, Zeeshan K, Kuchta KM, Hensing TA, Mangold KA, Zheng SL, Xu J. Germline mutations in high penetrance genes are associated with worse clinical outcomes in patients with non-small cell lung cancer. JTCVS OPEN 2022; 12:399-409. [PMID: 36590722 PMCID: PMC9801288 DOI: 10.1016/j.xjon.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Objective To determine the frequency of pathogenic mutations in high-penetrance genes (HPGs) in patients with non-small cell lung cancer (NSCLC) and identify whether such mutations are associated with clinicopathologic outcomes. Methods Patients with NSCLC who had consented to participate in a linked clinical database and biorepository underwent germline DNA sequencing using a next-generation sequencing panel that included cancer-associated HPGs and cancer risk-associated single nucleotide polymorphisms (SNPs). These data were linked to the clinical database to assess for associations between germline variants and clinical phenotype using Fisher's exact test and multivariable logistic and Cox regression. Results We analyzed 151 patients, among whom 33% carried any pathogenic HPG mutation and 23% had a genetic risk score (GRS) >1.5. Among the patients without any pathogenic mutation, 31% were at cancer stage II or higher, compared with 55% of those with 2 types of HPG mutations (P = .0293); 40% of patients with both types of HPG mutations had cancer recurrence, compared with 21% of patients without both types (P = .0644). In multivariable analysis, the presence of 2 types of HPG mutations was associated with higher cancer stage (odds ratio [OR], 3.32; P = .0228), increased recurrence of primary tumor (OR, 2.93; P = .0527), shorter time to recurrence (hazard ratio [HR], 3.03; P = .0119), and decreased cancer-specific (HR, 3.53; P = .0039) and overall survival (HR, 2.44; P = .0114). Conclusions The presence of mutations in HPGs is associated with higher cancer stage, increased risk of recurrence, and worse cancer-specific and overall survival in patients with NSCLC. Further large studies are needed to better delineate the role of HPGs in cancer recurrence and the potential benefit of adjuvant treatment in patients harboring such mutations.
Collapse
Affiliation(s)
- Seth B. Krantz
- Department of Surgery, NorthShore University HealthSystem, Evanston, Ill,Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Ill,Address for reprints: Seth B. Krantz, MD, NorthShore University HealthSystem, 2650 Ridge Ave, Walgreen Suite 2507, Evanston, IL 60201.
| | - Kanwal Zeeshan
- Department of Surgery, NorthShore University HealthSystem, Evanston, Ill
| | - Kristine M. Kuchta
- Department of Bioinformatics and Research Core, NorthShore University HealthSystem, Evanston, Ill
| | - Thomas A. Hensing
- Department of Medicine, NorthShore University HealthSystem, Evanston, Ill,Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Ill
| | - Kathy A. Mangold
- Department of Pathology, NorthShore University HealthSystem, Evanston, Ill,Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Ill
| | - S. Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Ill
| | - Jianfeng Xu
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Ill,Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Ill
| |
Collapse
|
32
|
de Alencar VTL, Figueiredo AB, Corassa M, Gollob KJ, Cordeiro de Lima VC. Lung cancer in never smokers: Tumor immunology and challenges for immunotherapy. Front Immunol 2022; 13:984349. [PMID: 36091058 PMCID: PMC9448988 DOI: 10.3389/fimmu.2022.984349] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the second most common and the most lethal malignancy worldwide. It is estimated that lung cancer in never smokers (LCINS) accounts for 10-25% of cases, and its incidence is increasing according to recent data, although the reasons remain unclear. If considered alone, LCINS is the 7th most common cause of cancer death. These tumors occur more commonly in younger patients and females. LCINS tend to have a better prognosis, possibly due to a higher chance of bearing an actionable driver mutation, making them amenable to targeted therapy. Notwithstanding, these tumors respond poorly to immune checkpoint inhibitors (ICI). There are several putative explanations for the poor response to immunotherapy: low immunogenicity due to low tumor mutation burden and hence low MANA (mutation-associated neo-antigen) load, constitutive PD-L1 expression in response to driver mutated protein signaling, high expression of immunosuppressive factors by tumors cells (like CD39 and TGF-beta), non-permissive immune TME (tumor microenvironment), abnormal metabolism of amino acids and glucose, and impaired TLS (Tertiary Lymphoid Structures) organization. Finally, there is an increasing concern of offering ICI as first line therapy to these patients owing to several reports of severe toxicity when TKIs (tyrosine kinase inhibitors) are administered sequentially after ICI. Understanding the biology behind the immune response against these tumors is crucial to the development of better therapeutic strategies.
Collapse
Affiliation(s)
- Viviane Teixeira L. de Alencar
- Medical Oncology Department, Grupo Carinho de Clínicas Oncológicas, São José dos Campos, Brazil
- *Correspondence: Viviane Teixeira L. de Alencar,
| | - Amanda B. Figueiredo
- Translational Immuno-oncology Laboratory, Albert Einstein Research and Education Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Center for Research in Immuno-oncology (CRIO), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marcelo Corassa
- Medical Oncology Department, A C Camargo Cancer Center, São Paulo, Brazil
| | - Kenneth J. Gollob
- Translational Immuno-oncology Laboratory, Albert Einstein Research and Education Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Center for Research in Immuno-oncology (CRIO), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | |
Collapse
|
33
|
Mukherjee S, Bandlamudi C, Hellmann MD, Kemel Y, Drill E, Rizvi H, Tkachuk K, Khurram A, Walsh MF, Zauderer MG, Mandelker D, Topka S, Zehir A, Srinivasan P, Selvan ME, Carlo MI, Cadoo KA, Latham A, Hamilton JG, Liu YL, Lipkin SM, Belhadj S, Bond GL, Gümüş ZH, Klein RJ, Ladanyi M, Solit DB, Robson ME, Jones DR, Kris MG, Vijai J, Stadler ZK, Amos CI, Taylor BS, Berger MF, Rudin CM, Offit K. Germline Pathogenic Variants Impact Clinicopathology of Advanced Lung Cancer. Cancer Epidemiol Biomarkers Prev 2022; 31:1450-1459. [PMID: 35477182 PMCID: PMC9250622 DOI: 10.1158/1055-9965.epi-21-1287] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The genetic factors that modulate risk for developing lung cancer have not been fully defined. Here, we sought to determine the prevalence and clinical significance of germline pathogenic/likely pathogenic variants (PV) in patients with advanced lung cancer. METHODS We studied clinical and tumor characteristics of germline PV in 5,118 patients who underwent prospective genomic profiling using paired tumor-normal tissue samples in 468 cancer genes. RESULTS Germline PV in high/moderate-penetrance genes were observed in 222 (4.3%) patients; of these, 193 patients had PV in DNA damage repair (DDR) pathway genes including BRCA2 (n = 54), CHEK2 (n = 30), and ATM (n = 26) that showed high rate of biallelic inactivation in tumors. BRCA2 heterozygotes with lung adenocarcinoma were more likely to be never smokers and had improved survival compared with noncarriers. Fourteen patients with germline PV in lung cancer predisposing genes (TP53, EGFR, BAP1, and MEN1) were diagnosed at younger age compared with noncarriers, and of tumor suppressors, 75% demonstrated biallelic inactivation in tumors. A significantly higher proportion of germline PV in high/moderate-penetrance genes were detected in high-risk patients who had either a family history of any cancer, multiple primary tumors, or early age at diagnosis compared with unselected patients (10.5% vs. 4.1%; P = 1.7e-04). CONCLUSIONS These data underscore the biological and clinical importance of germline mutations in highly penetrant DDR genes as a risk factor for lung cancer. IMPACT The family members of lung cancer patients harboring PV in cancer predisposing genes should be referred for genetic counseling and may benefit from proactive surveillance.
Collapse
Affiliation(s)
| | | | | | - Yelena Kemel
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Esther Drill
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hira Rizvi
- Memorial Sloan Kettering Cancer Center, United States
| | - Kaitlyn Tkachuk
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aliya Khurram
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Michael F Walsh
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Diana Mandelker
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sabine Topka
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ahmet Zehir
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | | - Maria I Carlo
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Karen A Cadoo
- St. James’s Hospital, Trinity College Dublin, Trinity St. James’s Cancer Institute, Dublin 8, Ireland
| | - Alicia Latham
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
| | - Jada G Hamilton
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Ying L Liu
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Sami Belhadj
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gareth L Bond
- University of Birmingham, Birmingham, United Kingdom
| | - Zeynep H Gümüş
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert J Klein
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marc Ladanyi
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David R Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mark G Kris
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph Vijai
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zsofia K Stadler
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
| | | | - Barry S Taylor
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Michael F Berger
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Kenneth Offit
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
34
|
张 琳, 孟 凡, 钟 殿. [DNA Damage Repair System and Antineoplastic Agents in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:434-442. [PMID: 35747923 PMCID: PMC9244503 DOI: 10.3779/j.issn.1009-3419.2022.101.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
DNA damage repair (DDR) system plays an important role in maintaining of genomic stability. Accumulation of DNA lesions or deficiency of DDR system could drive tumorigenesis as well as promote tumor progression; meanwhile, they could also provide therapeutic opportunities and targets. Of all the antineoplastic agents of lung cancers, many of them targeted or were associated with DNA damage and repair pathways, such as chemotherapies and antibody-drug conjugates which were designed directly causing DNA damages, targeted drugs inhibiting DNA repair pathways, and immune-checkpoint inhibitors. In this review, we described the role of DNA damage and repair pathways in antitumor activity of the above agents, as well as summarized the application and clinical investigations of these antineoplastic agents in lung cancers, in order to provide more information for exploring precision and effective strategies for the treatment of lung cancer based on the mechanism of DNA damage and repair.
.
Collapse
Affiliation(s)
- 琳琳 张
- />300052 天津,天津医科大学总医院肿瘤科Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - 凡路 孟
- />300052 天津,天津医科大学总医院肿瘤科Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - 殿胜 钟
- />300052 天津,天津医科大学总医院肿瘤科Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
35
|
Bao G, Guan X, Liang J, Yao Y, Xiang Y, Li T, Zhong X. A Germline Mutation in ATR Is Associated With Lung Adenocarcinoma in Asian Patients. Front Oncol 2022; 12:855305. [PMID: 35712480 PMCID: PMC9195140 DOI: 10.3389/fonc.2022.855305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Familial lung cancer (FLC) accounts for 8% of lung adenocarcinoma. It is known that a few germline mutations are associated with risk increasing and may provide new screening and treatment option. The goal of this study is to identify an FLC gene among three members of an FLC family. METHODS To uncover somatic and embryonic mutations linked with familial lung cancer, whole exome sequencing was done on surgical tissues and peripheral blood from three sisters in a family diagnosed with pulmonary lung adenocarcinoma (LUAD). At the same time, single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data in public databases were enrolled to identify specific gene expression level. RESULTS Ataxia Telangiectasia and Rad3-Related Protein (ATR) gene C.7667C >G (p.T2556S) mutation were found in 3 patients with familial lung cancer. Whole-genome sequencing revealed that the three sisters exhibited similar somatic mutation patterns. Besides ATR mutations, common mutated genes (BRCA1, EGFR, and ROS1) that characterize LUAD were also found in 5 tumor samples. Analysis for the ATR expression in LUAD patients by single-cell sequencing data, we found ATR expression of tumor patients at high level in immune cells when compared with normal patients, but the expression of ATR in stromal cells has the opposite result. CONCLUSION We found a germline mutation in the ATR gene in three sisters of a Chinese family affected by familial lung cancer, which may be a genetic factor for lung cancer susceptibility.
Collapse
Affiliation(s)
- Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Liu J, Zhao Z, Wei S, Li B, Zhao Z. Genomic features of Chinese small cell lung cancer. BMC Med Genomics 2022; 15:117. [PMID: 35596192 PMCID: PMC9123817 DOI: 10.1186/s12920-022-01255-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is an aggressive disease with poor survival. Although molecular and clinical characteristics have been established for SCLC in western patients, limited investigation has been performed for Chinese SCLC patients. Objective In this study, we investigated the genomic features of Chinese SCLC patients. Methods A total of 75 SCLC patients were enrolled. Genomic alterations in 618 selected genes were analyzed by targeted next-generation sequencing. Results Here, we showed that TP53 (77.30%) and RB1 (30.70%) were the most prevalent genes alterations, followed by KMT2D, ALK, LRP1B, EGFR, NOTCH3, AR, CREBBP, ROS1, and BRCA2. And the most common genetic alterations were enriched in the cell cycle signaling pathway (84.00%) of Chinese SCLC patients. DNA damage repair (DDR) pathway analysis showed that the most frequently enriched DDR pathways were fanconi anaemia (FA, 29.41%) and homology recombination (HR, 21.57%). Notably, 9.33% SCLC patients in our cohort had pathogenic or likely pathogenic germline gene variants. Compared with the U Cologne cohort, a higher prevalence in EGFR, AR, BRCA2, TSC1, ATXN3, MET, MSH2, ERBB3 and FOXA1 were found in our cohort; while compared to the data from the Johns Hopkins cohort, a higher mutated frequency in TP53, KMT2D, ALK, and EGFR were found in our cohort. Moreover, a significant association was found between high tumor mutation burden (TMB) and mutations involved in TP53, CREBBP, EPHA3, KMT2D, ALK and RB1. Approximately 33.33% of patients with SCLC harbored at least one actionable alteration annotated by OncoKB, of which one patient had alterations of level 1; seventeen patients had level 3; fifteen patients possessed level 4. Conclusion Our data might provide an insightful meaning in targeted therapy for Chinese SCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01255-3.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Zhuxiang Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Binkai Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China.
| |
Collapse
|
37
|
Heitzer E, van den Broek D, Denis MG, Hofman P, Hubank M, Mouliere F, Paz-Ares L, Schuuring E, Sültmann H, Vainer G, Verstraaten E, de Visser L, Cortinovis D. Recommendations for a practical implementation of circulating tumor DNA mutation testing in metastatic non-small-cell lung cancer. ESMO Open 2022; 7:100399. [PMID: 35202954 PMCID: PMC8867049 DOI: 10.1016/j.esmoop.2022.100399] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Liquid biopsy (LB) is a rapidly evolving diagnostic tool for precision oncology that has recently found its way into routine practice as an adjunct to tissue biopsy (TB). The concept of LB refers to any tumor-derived material, such as circulating tumor DNA (ctDNA) or circulating tumor cells that are detectable in blood. An LB is not limited to the blood and may include other fluids such as cerebrospinal fluid, pleural effusion, and urine, among others. PATIENTS AND METHODS The objective of this paper, devised by international experts from various disciplines, is to review current challenges as well as state-of-the-art applications of ctDNA mutation testing in metastatic non-small-cell lung cancer (NSCLC). We consider pragmatic scenarios for the use of ctDNA from blood plasma to identify actionable targets for therapy selection in NSCLCs. RESULTS Clinical scenarios where ctDNA mutation testing may be implemented in clinical practice include complementary tissue and LB testing to provide the full picture of patients' actual predictive profiles to identify resistance mechanism (i.e. secondary mutations), and ctDNA mutation testing to assist when a patient has a discordant clinical history and is suspected of showing intertumor or intratumor heterogeneity. ctDNA mutation testing may provide interesting insights into possible targets that may have been missed on the TB. Complementary ctDNA LB testing also provides an option if the tumor location is hard to biopsy or if an insufficient sample was taken. These clinical use cases highlight practical scenarios where ctDNA LB may be considered as a complementary tool to TB analysis. CONCLUSIONS Proper implementation of ctDNA LB testing in routine clinical practice is envisioned in the near future. As the clinical evidence of utility expands, the use of LB alongside tissue sample analysis may occur in the patient cases detailed here.
Collapse
Affiliation(s)
- E Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria.
| | - D van den Broek
- Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M G Denis
- Department of Biochemistry and Molecular Biology, Nantes University Hospital, Nantes, France
| | - P Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Biobank BB-0033-00025, University Côte d'Azur, Nice, France
| | - M Hubank
- The Royal Marsden NHS Foundation Trust, London, UK
| | - F Mouliere
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - L Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, H12o-CNIO Lung Cancer Unit, Universidad Complutense & CIBERONC, Madrid, Spain
| | - E Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Center for Lung Disease (DZL) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - G Vainer
- Department of Pathology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - L de Visser
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - D Cortinovis
- SC Medical Oncology, Azienda Socio Sanitaria Territoriale (ASST) H S Gerardo Monza, Monza, Italy
| |
Collapse
|
38
|
Mangolini A, Rocca C, Bassi C, Ippolito C, Negrini M, Dell'Atti L, Lanza G, Gafà R, Bianchi N, Pinton P, Aguiari G. DETECTION OF DISEASE‐CAUSING MUTATIONS IN PROSTATE CANCER BY NGS SEQUENCING. Cell Biol Int 2022; 46:1047-1061. [PMID: 35347810 PMCID: PMC9320837 DOI: 10.1002/cbin.11803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Gene mutations may affect the fate of many tumors including prostate cancer (PCa); therefore, the research of specific mutations associated with tumor outcomes might help the urologist to identify the best therapy for PCa patients such as surgical resection, adjuvant therapy or active surveillance. Genomic DNA (gDNA) was extracted from 48 paraffin‐embedded PCa samples and normal paired tissues. Next, gDNA was amplified and analyzed by next‐generation sequencing (NGS) using a specific gene panel for PCa. Raw data were refined to exclude false‐positive mutations; thus, variants with coverage and frequency lower than 100× and 5%, respectively were removed. Mutation significance was processed by Genomic Evolutionary Rate Profiling, ClinVar, and Varsome tools. Most of 3000 mutations (80%) were single nucleotide variants and the remaining 20% indels. After raw data elaboration, 312 variants were selected. Most mutated genes were KMT2D (26.45%), FOXA1 (16.13%), ATM (15.81%), ZFHX3 (9.35%), TP53 (8.06%), and APC (5.48%). Hot spot mutations in FOXA1, ATM, ZFHX3, SPOP, and MED12 were also found. Truncating mutations of ATM, lesions lying in hot spot regions of SPOP and FOXA1 as well as mutations of TP53 correlated with poor prognosis. Importantly, we have also found some germline mutations associated with hereditary cancer‐predisposing syndrome. gDNA sequencing of 48 cancer tissues by NGS allowed to detect new tumor variants as well as confirmed lesions in genes linked to prostate cancer. Overall, somatic and germline mutations linked to good/poor prognosis could represent new prognostic tools to improve the management of PCa patients.
Collapse
Affiliation(s)
- Alessandra Mangolini
- Department of Neuroscience and RehabilitationUniversity of Ferraravia fossato di mortara, 7444121FerraraItaly
| | - Christian Rocca
- UO Urology, St Anna Hospital, via Aldo Moro 844124FerraraItaly
| | - Cristian Bassi
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | | | - Massimo Negrini
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Lucio Dell'Atti
- Division of Urology, Department of Clinical, Special and Dental Science, University Hospital "Ospedali Riuniti", Marche Polytechnic University, 71 Conca Street60126AnconaItaly
| | - Giovanni Lanza
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Roberta Gafà
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Nicoletta Bianchi
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Paolo Pinton
- Department of Medical SciencesUniversity of Ferraravia fossato di mortara, 64/B44121FerraraItaly
| | - Gianluca Aguiari
- Department of Neuroscience and RehabilitationUniversity of Ferraravia fossato di mortara, 7444121FerraraItaly
| |
Collapse
|
39
|
Salameh L, Bhamidimarri PM, Saheb Sharif-Askari N, Dairi Y, Hammoudeh SM, Mahdami A, Alsharhan M, Tirmazy SH, Rawat SS, Busch H, Hamid Q, Al Heialy S, Hamoudi R, Mahboub B. In Silico Bioinformatics Followed by Molecular Validation Using Archival FFPE Tissue Biopsies Identifies a Panel of Transcripts Associated with Severe Asthma and Lung Cancer. Cancers (Basel) 2022; 14:1663. [PMID: 35406434 PMCID: PMC8996975 DOI: 10.3390/cancers14071663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Severe asthma and lung cancer are both heterogeneous pathological diseases affecting the lung tissue. Whilst there are a few studies that suggest an association between asthma and lung cancer, to the best of our knowledge, this is the first study to identify common genes involved in both severe asthma and lung cancer. Publicly available transcriptomic data for 23 epithelial brushings from severe asthmatics and 55 samples of formalin-fixed paraffin-embedded (FFPE) lung cancer tissue at relatively early stages were analyzed by absolute gene set enrichment analysis (GSEA) in comparison to 37 healthy bronchial tissue samples. The key pathways enriched in asthmatic patients included adhesion, extracellular matrix, and epithelial cell proliferation, which contribute to tissue remodeling. In the lung cancer dataset, the main pathways identified were receptor tyrosine kinase signaling, wound healing, and growth factor response, representing the early cancer pathways. Analysis of the enriched genes derived from the pathway analysis identified seven genes expressed in both the asthma and lung cancer sets: BCL3, POSTN, PPARD, STAT1, MYC, CD44, and FOSB. The differential expression of these genes was validated in vitro in the cell lines retrieved from different lung cancer and severe asthma patients using real-time PCR. The effect of the expression of the seven genes identified in the study on the overall survival of lung cancer patients (n = 1925) was assessed using a Kaplan-Meier plot. In vivo validation performed in the archival biopsies obtained from patients diagnosed with both the disease conditions provided interesting insights into the pathogenesis of severe asthma and lung cancer, as indicated by the differential expression pattern of the seven transcripts in the mixed group as compared to the asthmatics and lung cancer samples alone.
Collapse
Affiliation(s)
- Laila Salameh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Poorna Manasa Bhamidimarri
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Youssef Dairi
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Sarah Musa Hammoudeh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Amena Mahdami
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Mouza Alsharhan
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Syed Hammad Tirmazy
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Surendra Singh Rawat
- Collage of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.S.R.); (S.A.H.)
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck 23562, Germany;
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Faculty of Medicine, Montreal, QC H3A 0G4, Canada
| | - Saba Al Heialy
- Collage of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.S.R.); (S.A.H.)
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Faculty of Medicine, Montreal, QC H3A 0G4, Canada
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Bassam Mahboub
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| |
Collapse
|
40
|
Jia B, Gong T, Sun B, Zhang Z, Zhong D, Wang C. Identification of a DNA damage repair gene-related signature for lung squamous cell carcinoma prognosis. Thorac Cancer 2022; 13:1143-1152. [PMID: 35293140 PMCID: PMC9013644 DOI: 10.1111/1759-7714.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND DNA damage repair (DDR) plays a role in the tumorigenesis and progression of lung squamous cell carcinoma (LUSC), but the predictive value of DDR in LUSC has not been fully elucidated. METHODS The LUSC datasets were retrieved from the Cancer Genome Atlas databases. Univariate Cox regression and least absolute shrinkage and selection operator regression were integrated to identify critical genes and construct a DDR gene signature. We performed Kaplan-Meier (KM) curve to compare the overall survival (OS) between the two groups based on DDR signature and used the CIBERSORT tool to compare the immune cell composition. Further gene set enrichment analysis (GSEA) was performed on the differential expressed genes. RESULT We established the DDR-related gene signature on LUSC. KM curve showed the low-risk group had a better prognosis than the high-risk group in the training set (p = 0.022673) and the complete set (p = 0.003201). The area under receiver operating characteristic curve for OS was 0.98, 0.96, and 0.97 in the training dataset, testing dataset, and the complete dataset, respectively. The composition of immune cells was different between the high- and low-risk group. The GSEA result suggests that genes of the patients in low-risk group were mainly enriched in the DNA adducts; drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450. CONCLUSION This study identified DDR-associated potential biomarkers related to overall survival of LUSC and establishes the DDR-associated gene signature.
Collapse
Affiliation(s)
- Bin Jia
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ting Gong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingsheng Sun
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
41
|
Yao J, Zhen Y, Fan J, Gong Y, Ye Y, Guo S, Liu H, Li X, Li G, Yang P, Wang X, Liu D, Huang T, Cao H, Suo P, Li Y, Yu J, Song L. Comprehensive characterization of CRC with germline mutations reveals a distinct somatic mutational landscape and elevated cancer risk in the Chinese population. Cancer Biol Med 2022; 19:707-732. [PMID: 35014770 PMCID: PMC9196063 DOI: 10.20892/j.issn.2095-3941.2021.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Hereditary colorectal cancer (CRC) accounts for approximately 5%-10% of all CRC cases. The full profile of CRC-related germline mutations and the corresponding somatic mutational profile have not been fully determined in the Chinese population. METHODS We performed the first population study investigating the germline mutation status in more than 1,000 (n = 1,923) Chinese patients with CRC and examined their relationship with the somatic mutational landscape. Germline alterations were examined with a 58-gene next-generation sequencing panel, and somatic alterations were examined with a 605-gene panel. RESULTS A total of 92 pathogenic (P) mutations were identified in 85 patients, and 81 likely pathogenic (LP) germline mutations were identified in 62 patients, accounting for 7.6% (147/1,923) of all patients. MSH2 and APC was the most mutated gene in the Lynch syndrome and non-Lynch syndrome groups, respectively. Patients with P/LP mutations had a significantly higher ratio of microsatellite instability, highly deficient mismatch repair, family history of CRC, and lower age. The somatic mutational landscape revealed a significantly higher mutational frequency in the P group and a trend toward higher copy number variations in the non-P group. The Lynch syndrome group had a significantly higher mutational frequency and tumor mutational burden than the non-Lynch syndrome group. Clustering analysis revealed that the Notch signaling pathway was uniquely clustered in the Lynch syndrome group, and the MAPK and cAMP signaling pathways were uniquely clustered in the non-Lynch syndrome group. Population risk analysis indicated that the overall odds ratio was 11.13 (95% CI: 8.289-15.44) for the P group and 20.68 (95% CI: 12.89-33.18) for the LP group. CONCLUSIONS Distinct features were revealed in Chinese patients with CRC with germline mutations. The Notch signaling pathway was uniquely clustered in the Lynch syndrome group, and the MAPK and cAMP signaling pathways were uniquely clustered in the non-Lynch syndrome group. Patients with P/LP germline mutations exhibited higher CRC risk.
Collapse
Affiliation(s)
- Jianfei Yao
- Department of Radiotherapy, the Eighth Medical Center of the Chinese PLA General Hospital, Beijing 100091, China
- HaploX Biotechnology, Shenzhen 518057, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jing Fan
- International Business School, Beijing Foreign Studies University, Beijing 100089, China
| | - Yuan Gong
- Department of Gastroenterology, the Second Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yumeng Ye
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shaohua Guo
- Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyi Liu
- Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoyun Li
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guosheng Li
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Pan Yang
- HaploX Biotechnology, Shenzhen 518057, China
| | | | - Danni Liu
- HaploX Biotechnology, Shenzhen 518057, China
| | | | - Huiya Cao
- HaploX Biotechnology, Shenzhen 518057, China
| | - Peisu Suo
- HaploX Biotechnology, Shenzhen 518057, China
| | - Yuemin Li
- Department of Radiotherapy, the Eighth Medical Center of the Chinese PLA General Hospital, Beijing 100091, China
| | - Jingbo Yu
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital, Dalian Medical University, Dalian 116033, China
| | - Lele Song
- Department of Radiotherapy, the Eighth Medical Center of the Chinese PLA General Hospital, Beijing 100091, China
- HaploX Biotechnology, Shenzhen 518057, China
- Comprehensive Liver Cancer Department, the Fifth Medical Center of the Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
42
|
Benusiglio PR, Fallet V, Sanchis-Borja M, Coulet F, Cadranel J. Lung cancer is also a hereditary disease. Eur Respir Rev 2021; 30:210045. [PMID: 34670806 PMCID: PMC9488670 DOI: 10.1183/16000617.0045-2021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pathogenic genetic variants (formerly called mutations) present in the germline of some individuals are associated with a clinically relevant increased risk of developing lung cancer. These germline pathogenic variants are hereditary and are transmitted in an autosomal dominant fashion. There are two major lung cancer susceptibility syndromes, and both seem to be specifically associated with the adenocarcinoma subtype. Li-Fraumeni syndrome is caused by variants in the TP53 tumour-suppressor gene. Carriers are mainly at risk of early-onset breast cancer, sarcoma, glioma, leukaemia, adrenal cortical carcinoma and lung cancer. EGFR variants, T790M in particular, cause the EGFR susceptibility syndrome. Risk seems limited to lung cancer. Emerging data suggest that variants in ATM, the breast and pancreatic cancer susceptibility gene, also increase lung adenocarcinoma risk. As for inherited lung disease, cancer risk is increased in SFTPA1 and SFTPA2 variant carriers independently of the underlying fibrosis. In this review, we provide criteria warranting the referral of a lung cancer patient to the cancer genetics clinic. Pathogenic variants are first identified in patients with cancer, and then in a subset of their relatives. Lung cancer screening should be offered to asymptomatic carriers, with thoracic magnetic resonance imaging at its core.
Collapse
Affiliation(s)
- Patrick R Benusiglio
- UF d'Oncogénétique clinique, Département de Génétique et Institut Universitaire de Cancérologie, DMU BioGeM, GH Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 et SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Paris, France
| | - Vincent Fallet
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- GRC04 Theranoscan, Sorbonne Université, Paris, France
| | - Mateo Sanchis-Borja
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
| | - Florence Coulet
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 et SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Paris, France
- UF d'Onco-angiogénétique et génomique des tumeurs solides, Département de Génétique, DMU BioGeM, GH Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- GRC04 Theranoscan, Sorbonne Université, Paris, France
| |
Collapse
|
43
|
Germline testing of patients with non-small cell lung cancers demonstrating incidentally uncovered BRCA2 apparent pathogenic germline variants. Clin Lung Cancer 2021. [DOI: 10.1016/j.cllc.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Lin X, Peng M, Chen Q, Yuan M, Chen R, Deng H, Deng J, Liu O, Weng Y, Chen M, Zhou C. Identification of the Unique Clinical and Genetic Features of Chinese Lung Cancer Patients With EGFR Germline Mutations in a Large-Scale Retrospective Study. Front Oncol 2021; 11:774156. [PMID: 34869019 PMCID: PMC8637204 DOI: 10.3389/fonc.2021.774156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Epidemiological surveys have suggested that lung cancer has inherited susceptibility and shows familial aggregation. However, the distribution and prevalence of epidermal growth factor receptor (EGFR) germline variants and their roles in lung cancer genetic predisposition in Chinese population remain to be elucidated. METHODS In this study, EGFR germline and somatic variants were retrospectively reviewed from the next-generation sequencing results of 31,906 patients with lung cancer. Clinical information was also collected for patients with confirmed EGFR germline mutations. RESULTS A total of 22 germline EGFR variants were identified in 64 patients with lung cancer, accounting for 0.2% of the total cases studied. Five patients were diagnosed as multiple primary carcinomas. Family history was documented in 31.3% (20/64) of patients, 55% of which were diagnosed as lung cancer. G863D was the most frequent EGFR germline mutation, followed by P848L, D1014N, and K757R. Somatic EGFR-sensitive mutations were identified in 51.6% of patients with germline EGFR mutations. The proportion of L858R mutation, exon 19 deletion, and rare sensitive mutation was 50%, 17.6%, and 32.4%, respectively. D1014N and T790M mutations were common in young patients. The family members of patients with P848L, R776H, V769M, and V774M mutations were more commonly diagnosed with cancers. A total of 19 patients were confirmed to have received EGFR tyrosine kinase inhibitors (TKIs), but the response to EGFR-TKIs differed among patients with different EGFR mutations. CONCLUSION Chinese patients with lung cancer harbored unique and dispersive EGFR germline mutations and showed unique clinical and genetic characteristics, with varied response patterns to EGFR-TKI treatment.
Collapse
Affiliation(s)
- Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Muyun Peng
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Quanfang Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingming Yuan
- Medical Department, Geneplus-Beijing, Beijing, China
| | - Rongrong Chen
- Medical Department, Geneplus-Beijing, Beijing, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaxi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ouqi Liu
- Department of Respiratory and Critical Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yuqing Weng
- Department of Respiratory and Critical Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Mingjiu Chen
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Tu G, Peng W, Cai Q, Zhao Z, Peng X, He B, Zhang P, Shi S, Wang X. A Novel Model Based on Genomic Instability-Associated Long Non-Coding RNAs for Predicting Prognosis and Response to Immunotherapy in Patients With Lung Adenocarcinoma. Front Genet 2021; 12:720013. [PMID: 34777461 PMCID: PMC8585772 DOI: 10.3389/fgene.2021.720013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Emerging scientific evidence has shown that long non-coding RNAs (lncRNAs) exert critical roles in genomic instability (GI), which is considered a hallmark of cancer. To date, the prognostic value of GI-associated lncRNAs (GI-lncRNAs) remains largely unexplored in lung adenocarcinoma (LUAC). The aims of this study were to identify GI-lncRNAs associated with the survival of LUAC patients, and to develop a novel GI-lncRNA-based prognostic model (GI-lncRNA model) for LUAC. Methods: Clinicopathological data of LUAC patients, and their expression profiles of lncRNAs and somatic mutations were obtained from The Cancer Genome Atlas database. Pearson correlation analysis was conducted to identify the co-expressed mRNAs of GI-lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to determine the main biological function and molecular pathways of the differentially expressed GI-lncRNAs. Univariate and multivariate Cox proportional hazard regression analyses were performed to identify GI-lncRNAs significantly related to overall survival (OS) for construction of the GI-lncRNA model. Kaplan–Meier survival analysis and receiver operating characteristic curve analysis were performed to evaluate the predictive accuracy. The performance of the newly developed GI-lncRNA model was compared with the recently published lncRNA-based prognostic index models. Results: A total of 19 GI-lncRNAs were found to be significantly associated with OS, of which 9 were identified by multivariate analysis to construct the GI-lncRNA model. Notably, the GI-lncRNA model showed a prognostic value independent of key clinical characteristics. Further performance evaluation indicated that the area under the curve (AUC) of the GI-lncRNA model was 0.771, which was greater than that of the TP53 mutation status and three existing lncRNA-based models in predicting the prognosis of patients with LUAC. In addition, the GI-lncRNA model was highly correlated with programed death ligand 1 (PD-L1) expression and tumor mutational burden in immunotherapy for LUAC. Conclusion: The GI-lncRNA model was established and its performance was found to be superior to existing lncRNA-based models. As such, the GI-lncRNA model holds promise as a more accurate prognostic tool for the prediction of prognosis and response to immunotherapy in patients with LUAC.
Collapse
Affiliation(s)
- Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Li J, Zhou J, Zhang J, Xiao Z, Wang W, Chen H, Lin L, Yang Q. DNA repair genes are associated with tumor tissue differentiation and immune environment in lung adenocarcinoma: a bioinformatics analysis based on big data. J Thorac Dis 2021; 13:4464-4475. [PMID: 34422373 PMCID: PMC8339776 DOI: 10.21037/jtd-21-949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer. DNA repair genes (DRGs) is important in lung cancer. The relationship between the immune environment and the expression levels of DRGs in LUAD remains unclear. The purpose of this study is to assess the relationship between DRGs and the immune environment and clinical characteristics of LUAD. Methods Data of 169 LUAD cases were obtained from cbioportal. The RNA-seq data came from the The Cancer Genome Atlas (TCGA) database. We collected DRGs from the Reactom database (KW0037, Reactom.org). The 302 genes expressed in each sample were analyzed by hierarchical clustering and grouped using the Gene Cluster 3.0 program. The Java Treeview program was used to generate heat maps of cluster indications and tumor staging patterns. GraphPad Prism 8 was used to draw survival curves and compare overall survival (OS). For single genes, an OS difference analysis between low and high expression populations was performed in GraphPad Prism 8. Results Matrix clustering showed no difference in the prognosis of the two clusters. The comparison of subgroups showed that Subcluster 1 (SC1) had the best prognosis, and Subcluster 2 (SC2) had the worst. There was a significant difference in tumor grades between Cluster 1 and Cluster 2 (P=0.01). There were significant differences in smoking status, histological grade and adenocarcinoma subtype among subgroups. In Subcluster 3 (SC3), the proportion of poorly differentiated cases was highest. Immunological index analysis showed that there were significant differences between Cluster 1 and Cluster 2 in interferon, macrophages, monocytes, neutrophils, natural killer (NK) cells, and T cells. Tumor purity, interferon, macrophages, monocytes, neutrophils, NK cells, T cells, translation, and proliferation all showed significant differences between subgroups. In SC2, the proliferation index increased (0.082 vs. 0.070); the protein translation index decreased (0.134 vs. 0.137); and the interferon level increased (0.099 vs. 0.097). In SC3, the proliferation index decreased (0.076 vs. 0.071); the protein translation index decreased (0.140 vs. 0.136); and the level of neutrophils increased (0.083 vs. 0.086). Conclusions The differences of DRGs in LUAD are related to tissue differentiation and immune indicators but not to prognosis.
Collapse
Affiliation(s)
- Jiayin Li
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxu Zhou
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwei Xiao
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenping Wang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanrui Chen
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuye Yang
- Department of Medical Technologic, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Rammal S, Kourie HR, Jalkh N, Mehawej C, Chouery E, Moujaess E, Dabar G. Molecular pathogenesis of hereditary lung cancer: a literature review. Pharmacogenomics 2021; 22:791-803. [PMID: 34410147 DOI: 10.2217/pgs-2020-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among all cancer types, pulmonary cancer has the highest mortality rate. Tobacco consumption remains the major risk factor for the development of lung cancer. However, many studies revealed a correlation between inherited genetic variants and predisposition to lung cancer, especially in nonsmokers. To date, genetic testing for the detection of germline mutations is not yet recommended in patients with lung cancer and testing is focused on somatic alterations given their implication in the treatment choice. Understanding the impact of genetic predisposition on the occurrence of lung cancer is essential to enable the introduction of accurate guidelines and recommendations that might reduce mortality. In this review paper, we describe familial lung cancer, and expose germline mutations that are linked to this type of cancer. We also report pathogenic genetic variants linked to syndromes associated with lung cancer.
Collapse
Affiliation(s)
- Souraya Rammal
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Cybel Mehawej
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Eliane Chouery
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Elissar Moujaess
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Georges Dabar
- Pulmonary & Critical Care Division, Hotel Dieu de France, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
48
|
Reckamp KL, Behrendt CE, Slavin TP, Gray SW, Castillo DK, Koczywas M, Cristea MC, Babski KM, Stearns D, Marcum CA, Rodriguez YP, Hass AJ, Vecchio MM, Mora P, Cervantes AE, Sand SR, Mejia RM, Tsou TC, Salgia R, Weitzel JN. Germline mutations and age at onset of lung adenocarcinoma. Cancer 2021; 127:2801-2806. [PMID: 33858029 PMCID: PMC8794435 DOI: 10.1002/cncr.33573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND To identify additional at-risk groups for lung cancer screening, which targets persons with a long history of smoking and thereby misses younger or nonsmoking cases, the authors evaluated germline pathogenic variants (PVs) in patients with lung adenocarcinoma for an association with an accelerated onset. METHODS The authors assembled a retrospective cohort (1999-2018) of oncogenetic clinic patients with lung adenocarcinoma. Eligibility required a family history of cancer, data on smoking, and a germline biospecimen to screen via a multigene panel. Germline PVs (TP53/EGFR, BRCA2, other Fanconi anemia [FA] pathway genes, and non-FA DNA repair genes) were interrogated for associations with the age at diagnosis via an accelerated failure time model. RESULTS Subjects (n = 187; age, 28-89 years; female, 72.7%; Hispanic, 11.8%) included smokers (minimum of 5 pack-years; n = 65) and nonsmokers (lighter ever smokers [n = 18] and never smokers [n = 104]). Overall, 26.7% of the subjects carried 1 to 2 germline PVs: TP53 (n = 5), EGFR (n = 2), BRCA2 (n = 6), another FA gene (n = 11), or another DNA repair gene (n = 28). After adjustment for smoking, sex, and ethnicity, the diagnosis of lung adenocarcinoma was accelerated 12.2 years (95% confidence interval [CI], 2.5-20.6 years) by BRCA2 PVs, 9.0 years (95% CI, 0.5-16.5 years) by TP53/EGFR PVs, and 6.1 years (95% CI, -1.0 to 12.6 years) by PVs in other FA genes. PVs in other DNA repair genes showed no association. Germline associations did not vary by smoking. CONCLUSIONS Among lung adenocarcinoma cases, germline PVs (TP53, EGFR, BRCA2, and possibly other FA genes) may be associated with an earlier onset. With further study, the criteria for lung cancer screening may need to include carriers of high-risk PVs, and findings could influence precision therapy and reduce lung cancer mortality by earlier stage diagnosis.
Collapse
Affiliation(s)
- Karen L Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, California
| | | | - Thomas P Slavin
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Stacy W Gray
- City of Hope Comprehensive Cancer Center, Duarte, California
| | | | | | | | | | | | | | | | | | | | - Pamela Mora
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | - Sharon R Sand
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Rosa M Mejia
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Terrence C Tsou
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ravi Salgia
- City of Hope Comprehensive Cancer Center, Duarte, California
| | | |
Collapse
|
49
|
Carey ET, Ferreira V, Shum E, Zhou F, Sabari JK. The Common Thread: A Case of Synchronous Lung Cancers and a Germline CHEK2 Mutation. Clin Lung Cancer 2021; 23:e1-e4. [PMID: 34246541 DOI: 10.1016/j.cllc.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023]
Abstract
Patients with one form of cancer are at increased risk for another, and this is true for lung cancer, where synchronous primary lung cancers are an increasing multifaceted challenge.1,2 Here, we present the case of a middle age woman who was found to have bilateral lung masses. Biopsy and subsequent testing revealed unique synchronous lung adenocarcinomas, each with unique genetic signatures. Despite having two unique tumors, she was found to have CHEK2 mutations in both tumors and in germline testing. Because of this extensive testing that showed unique tumors, she was ultimately diagnosed with stage IIIb and IA2 lung cancers, and this changed her treatment options. Consideration of unique primary tumors leads to thorough diagnostics, which changed this patient's diagnosis, prognosis, and treatment. We hope this case raises awareness for multiple primary tumors, as well as CHEK2 as an important oncogene.
Collapse
Affiliation(s)
- Edward T Carey
- NYU Grossman School of Medicine, Department of Internal Medicine, New York, NY.
| | - Virginia Ferreira
- NYU Langone Health, Perlmutter Cancer Center, department of Pathology, New York, NY
| | - Elaine Shum
- NYU Langone Health, Perlmutter Cancer Center, department of Pathology, New York, NY
| | - Fang Zhou
- NYU Langone Health, Perlmutter Cancer Center, department of Pathology, New York, NY
| | - Joshua K Sabari
- NYU Langone Health, Perlmutter Cancer Center, department of Pathology, New York, NY
| |
Collapse
|
50
|
Dörr JR, Thorwarth A, Mizia-Malarz A, Radke J, Tietze A, Hernáiz-Driever P, Horn D, Gratopp A, Eggert A, Deubzer HE. Germline Mutations Including the Rare Pathogenic Variant c.3206delC in the ATM Gene Cause Ataxia Teleangiectasia-Associated Primary Central Nervous System Lymphoma. CHILDREN-BASEL 2021; 8:children8060469. [PMID: 34199532 PMCID: PMC8229184 DOI: 10.3390/children8060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
We here report the case of a 2-year-old patient with a primary central nervous system lymphoma of B-cell origin. Due to their past medical history of repeated respiratory tract infections and the marked chemotherapy-associated toxicity and infectious comorbidity, we suspected that the patient also suffered from an inherited immune deficiency disorder. Despite the lack of classical pathognomonic symptoms for ataxia teleangiectasia and missing evidence for a cancer predisposition syndrome in the family, genetic testing identified biallelic germline mutations, including the rare pathogenic variant c.3206delC (p.Pro1069Leufs*2), in the ataxia telangiectasia-mutated (ATM) gene. The case highlights the importance of searching for immune deficiency disorders associated with primary central nervous system lymphoma before treatment initiation and the urgent need to develop novel treatment strategies for cancer patients with underlying immunodeficiency syndromes.
Collapse
Affiliation(s)
- Jan R. Dörr
- Department of Pediatric Hematology and Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.R.D.); (A.T.); (P.H.-D.); (A.E.)
- Berliner Institut für Gesundheitsforschung (BIH), 10178 Berlin, Germany;
| | - Anne Thorwarth
- Department of Pediatric Hematology and Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.R.D.); (A.T.); (P.H.-D.); (A.E.)
| | - Agnieszka Mizia-Malarz
- Department of Pediatric Oncology, Hematology and Chemotherapy, Upper Silesia Children’s Care Health Center, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Josefine Radke
- Berliner Institut für Gesundheitsforschung (BIH), 10178 Berlin, Germany;
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung; DKTK), Partner Site Berlin, 10115 Berlin, Germany
- German Cancer Research Center Heidelberg (Deutsches Krebsforschungszentrum; DKFZ), 69120 Heidelberg, Germany
| | - Anna Tietze
- Department of Neuroradiology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Pablo Hernáiz-Driever
- Department of Pediatric Hematology and Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.R.D.); (A.T.); (P.H.-D.); (A.E.)
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Alexander Gratopp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence: (A.G.); (H.E.D.)
| | - Angelika Eggert
- Department of Pediatric Hematology and Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.R.D.); (A.T.); (P.H.-D.); (A.E.)
- Berliner Institut für Gesundheitsforschung (BIH), 10178 Berlin, Germany;
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung; DKTK), Partner Site Berlin, 10115 Berlin, Germany
- German Cancer Research Center Heidelberg (Deutsches Krebsforschungszentrum; DKFZ), 69120 Heidelberg, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Hematology and Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.R.D.); (A.T.); (P.H.-D.); (A.E.)
- Berliner Institut für Gesundheitsforschung (BIH), 10178 Berlin, Germany;
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung; DKTK), Partner Site Berlin, 10115 Berlin, Germany
- German Cancer Research Center Heidelberg (Deutsches Krebsforschungszentrum; DKFZ), 69120 Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité–Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
- Correspondence: (A.G.); (H.E.D.)
| |
Collapse
|