1
|
Kotsifa E, Saffioti F, Mavroeidis VK. Cholangiocarcinoma: The era of liquid biopsy. World J Gastroenterol 2025; 31:104170. [PMID: 40124277 PMCID: PMC11924015 DOI: 10.3748/wjg.v31.i11.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive and heterogeneous malignancy arising from the epithelial cells of the biliary tract. The limitations of the current methods in the diagnosis of CCA highlight the urgent need for new, accurate tools for early cancer detection, better prognostication and patient monitoring. Liquid biopsy (LB) is a modern and non-invasive technique comprising a diverse group of methodologies aiming to detect tumour biomarkers from body fluids. These biomarkers include circulating tumour cells, cell-free DNA, circulating tumour DNA, RNA and extracellular vesicles. The aim of this review is to explore the current and potential future applications of LB in CCA management, with a focus on diagnosis, prognostication and monitoring. We examine both its significant potential and the inevitable limitations associated with this technology. We conclude that LB holds considerable promise, but further research is necessary to fully integrate it into precision oncology for CCA.
Collapse
Affiliation(s)
- Evgenia Kotsifa
- The Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, Athens 11527, Greece
| | - Francesca Saffioti
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
- University College London Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and University College London, London NW3 2QG, United Kingdom
- Division of Clinical and Molecular Hepatology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina 98124, Italy
| | - Vasileios K Mavroeidis
- Department of Transplant Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of HPB Surgery, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| |
Collapse
|
2
|
Mirza M, Goerke L, Anderson A, Wilsdon T. Assessing the Cost-Effectiveness of Next-Generation Sequencing as a Biomarker Testing Approach in Oncology and Policy Implications: A Literature Review. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2024; 27:1300-1309. [PMID: 38729563 DOI: 10.1016/j.jval.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE A key hurdle in broader next-generation sequencing (NGS) biomarker testing access in oncology is the ongoing debate on NGS's cost-effectiveness. We conducted a systematic review of existing evidence of the costs of NGS as a biomarker testing strategy in oncology and developed policy suggestions. METHODS We searched multiple databases for studies reporting cost comparisons and cost-effectiveness of NGS across oncology indications and geographies between 2017 and 2022, inclusive. Inclusion criteria were established based on indication and type of cost-effectiveness analysis provided. We validated analyses and policy recommendations with 5 payer/policy maker interviews in the United States, Europe, and United Kingdom. RESULTS Of the 634 identified studies, 29 met inclusion criteria, spanning 12 countries and 6 indications. Cost comparisons of NGS were evaluated using 3 methodologies: (1) comparison of direct testing costs, (2) comparison of holistic testing costs, and (3) comparison of long-term patient outcomes and costs. Targeted panel testing (2-52 genes) was considered cost-effective when 4+ genes were assessed, and larger panels (hundreds of genes) were generally not cost-effective. Holistic analysis demonstrated that NGS reduces turnaround time, healthcare staff requirements, number of hospital visits, and hospital costs. Finally, studies evaluating NGS testing including the cost of targeted therapies generally found the incremental cost-effectiveness ratio to be above common thresholds but highlighted valuable patient benefits. CONCLUSIONS Current literature supports NGS's cost-effectiveness as an oncology biomarker testing strategy under specific conditions. These findings underscore the need to develop policies to support holistic assessment of NGS to ensure appropriate reimbursement and access.
Collapse
Affiliation(s)
- Myriam Mirza
- Charles River Associates, Palais Leopold, Munich, Germany.
| | - Lutz Goerke
- Charles River Associates, Palais Leopold, Munich, Germany
| | | | - Tim Wilsdon
- Charles River Associates, London, England, UK
| |
Collapse
|
3
|
Abbass IM, Sheinson DM, Shah A, Gondos A, Ogale S. Cost-effectiveness of large-panel next-generation sequencing in guiding first-line treatment decisions for patients with nonsquamous advanced non-small cell lung cancer. J Manag Care Spec Pharm 2024; 30:649-659. [PMID: 38950160 PMCID: PMC11217867 DOI: 10.18553/jmcp.2024.30.7.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
BACKGROUND Clinical practice guidelines recommend broad-panel genomic profiling to identify actionable genomic alterations for patients with advanced non-small cell lung cancer (aNSCLC). OBJECTIVE To assess the cost-effectiveness of large-panel next-generation sequencing (LP-NGS) compared with current empirical single-gene test (SGT) patterns to inform first-line treatment decisions for patients with aNSCLC from a US commercial payer perspective, accounting for the effect of testing turnaround time and time to treatment initiation. METHODS We developed a discrete-event simulation model to estimate the impact of LP-NGS vs SGT for patients with nonsquamous aNSCLC. Discrete events and timing included testing patterns, receipt of the initial test result, treatment initiation (targeted vs nontargeted therapies), switching, retesting, rebiopsies, clinical trial participation, progression on therapy, and death. LP-NGS and SGT cohorts each comprised 100,000 adults with aNSCLC simulated over a 5-year postdiagnosis period, assumed to have the same distribution of genomic alterations. The model predicted the proportion of patients receiving appropriate first-line therapy according to clinical practice guidelines. Economic outcomes included expected life-years gained, quality-adjusted life-years, and the total costs of care over 5 years. Sensitivity and scenario analyses explored the robustness of the base-case model results. RESULTS In the base-case model, LP-NGS was likely to identify more alterations than SGT. Total 5-year costs per patient were $539,658 for LP-NGS and $544,550 for SGT (net difference, $4,892 lower costs per patient for LP-NGS), which is likely to be cost-effective 95.1% of the time. The most influential model parameters on the 5-year total costs of care were preprogression nondrug medical costs on nontargeted therapy, NGS turnaround time, and clinical trial participation. CONCLUSIONS This study suggests that LP-NGS to guide first-line treatment decisions is clinically more appropriate (more likely to identify alterations and subsequently allocate patients to clinically appropriate therapy) and provides a dominant cost-effectiveness treatment strategy over 5 years for patients with newly diagnosed aNSCLC in the United States.
Collapse
Affiliation(s)
| | | | - Anuj Shah
- Genentech Inc, South San Francisco, CA
- Gilead Sciences, Foster City, CA
| | - Adam Gondos
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
4
|
Ortendahl JD, Cuyun Carter G, Thakkar SG, Bognar K, Hall DW, Abdou Y. Value of next generation sequencing (NGS) testing in advanced cancer patients. J Med Econ 2024; 27:519-530. [PMID: 38466204 DOI: 10.1080/13696998.2024.2329009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE The availability of targeted therapies for oncology patients is increasing. Available genomic tests to identify treatment-eligible patients include single gene tests and gene panel tests, including the whole-exome, whole-transcriptome OncoExTra test. We assessed the costs and clinical benefits of test choice. METHODS A Microsoft Excel-based model was developed to evaluate test choice in patients with advanced/metastatic non-small cell lung cancer (NSCLC), breast, prostate, and colorectal cancer. Treatment pathways were based on NCCN guidelines and medical expert opinion. Inputs were derived from published literature. Annual economic results and lifetime clinical results with OncoExTra testing were projected per-tested-patient and compared with single gene testing and no testing. Separately, results were estimated for a US health plan without the OncoExTra test and with its use in 5% of patients. RESULTS Compared with no genomic testing, OncoExTra test use increased costs by $4,915 per patient; however, 82%-92% of individuals across tumour types were identified as eligible for targeted therapy or a clinical trial. Compared with single gene testing, OncoExTra test use decreased costs by $9,966 per-patient-tested while increasing use of approved or investigational targeted therapies by 20%. When considering a hypothetical health plan with 1 million members, 858 patients were eligible for genomic testing. Using the OncoExTra test in 5% of those eligible, per-member per-month costs decreased by $0.003, ranging from cost-savings of $0.026 in NSCLC patients to a $0.009 increase in prostate cancer patients. Cost-savings were driven by reduced treatment costs with increased clinical trial enrolment and reduced direct and indirect medical costs associated with targeted treatments. LIMITATIONS Limitations include the required simplifications in modelling complex conditions that may not fully reflect evolving real-world testing and treatment patterns. CONCLUSIONS Compared to single-gene testing, results indicate that using next generation sequencing test such as OncoExTra identified more actionable alterations, leading to improved outcomes and reduced costs.
Collapse
Affiliation(s)
- Jesse D Ortendahl
- Partnership for Health Analytic Research (PHAR), LLC, Beverly Hills, CA, USA
| | | | | | - Katalin Bognar
- Partnership for Health Analytic Research (PHAR), LLC, Beverly Hills, CA, USA
| | | | | |
Collapse
|
5
|
Le X, Nadler E, Costa DB, Heymach JV. EGFR Tyrosine Kinase Inhibitors for the Treatment of Metastatic Non-Small Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Podcast. Target Oncol 2023; 18:807-817. [PMID: 37792237 PMCID: PMC10663258 DOI: 10.1007/s11523-023-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/05/2023]
Abstract
Supplementary file1 (MP4 21169 KB).
Collapse
Affiliation(s)
- Xiuning Le
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Eric Nadler
- Baylor University Medical Center, Dallas, TX, USA
| | - Daniel B Costa
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Gibbs SN, Peneva D, Cuyun Carter G, Palomares MR, Thakkar S, Hall DW, Dalglish H, Campos C, Yermilov I. Comprehensive Review on the Clinical Impact of Next-Generation Sequencing Tests for the Management of Advanced Cancer. JCO Precis Oncol 2023; 7:e2200715. [PMID: 37285561 DOI: 10.1200/po.22.00715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE This review summarizes the published evidence on the clinical impact of using next-generation sequencing (NGS) tests to guide management of patients with cancer in the United States. METHODS We performed a comprehensive literature review to identify recent English language publications that presented progression-free survival (PFS) and overall survival (OS) of patients with advanced cancer receiving NGS testing. RESULTS Among 6,475 publications identified, 31 evaluated PFS and OS among subgroups of patients who received NGS-informed cancer management. PFS and OS were significantly longer among patients who were matched to targeted treatment in 11 and 16 publications across tumor types, respectively. CONCLUSION Our review indicates that NGS-informed treatment can have an impact on survival across tumor types.
Collapse
Affiliation(s)
- Sarah N Gibbs
- Partnership for Health Analytic Research (PHAR), LLC, Beverly Hills, CA
| | - Desi Peneva
- Partnership for Health Analytic Research (PHAR), LLC, Beverly Hills, CA
| | | | | | | | | | - Hannah Dalglish
- Partnership for Health Analytic Research (PHAR), LLC, Beverly Hills, CA
| | - Cynthia Campos
- Partnership for Health Analytic Research (PHAR), LLC, Beverly Hills, CA
| | - Irina Yermilov
- Partnership for Health Analytic Research (PHAR), LLC, Beverly Hills, CA
| |
Collapse
|
7
|
Zaim R, Redekop WK, Uyl-de Groot CA. Cost-effectiveness of first line nivolumab-ipilimumab combination therapy for advanced non-small cell lung cancer: A systematic review and methodological quality assessment. FRONTIERS IN HEALTH SERVICES 2023; 3:1034256. [PMID: 36926505 PMCID: PMC10012633 DOI: 10.3389/frhs.2023.1034256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
To assess the methodological quality of cost-effectiveness analyses (CEA) of nivolumab in combination with ipilimumab, we conducted a systematic literature review in the first-line treatment of patients with recurrent or metastatic non-small cell lung cancer (NSCLC), whose tumors express programmed death ligand-1, with no epidermal growth factor receptor or anaplastic lymphoma kinase genomic tumor aberrations. PubMed, Embase, and the Cost-Effectiveness Analysis Registry were searched, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The methodological quality of the included studies was assessed by the Philips checklist and the Consensus Health Economic Criteria (CHEC) checklist. 171 records were identified. Seven studies met the inclusion criteria. Cost-effectiveness analyses differed substantially due to the applied modeling methods, sources of costs, health state utilities, and key assumptions. Quality assessment of the included studies highlighted shortcomings in data identification, uncertainty assessment, and methods transparency. Our systematic review and methodology assessment revealed that the methods of estimation of long-term outcomes, quantification of health state utility values, estimation of drug costs, the accuracy of data sources, and their credibility have important implications on the cost-effectiveness outcomes. None of the included studies fulfilled all of the criteria reported in the Philips and the CHEC checklists. To compound the economic consequences presented in these limited number of CEAs, ipilimumab's drug action as a combination therapy poses significant uncertainty. We encourage further research to address the economic consequences of these combination agents in future CEAs and the clinical uncertainties of ipilimumab for NSCLC in future trials.
Collapse
|
8
|
Conrads-Frank A, Schnell-Inderst P, Neusser S, Hallsson LR, Stojkov I, Siebert S, Kühne F, Jahn B, Siebert U, Sroczynski G. Decision-analytic modeling for early health technology assessment of medical devices - a scoping review. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2022; 20:Doc11. [PMID: 36742459 PMCID: PMC9869403 DOI: 10.3205/000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Objective The goal of this review was to identify decision-analytic modeling studies in early health technology assessments (HTA) of high-risk medical devices, published over the last three years, and to provide a systematic overview of model purposes and characteristics. Additionally, the aim was to describe recent developments in modeling techniques. Methods For this scoping review, we performed a systematic literature search in PubMed and Embase including studies published in English or German. The search code consisted of terms describing early health technology assessment and terms for decision-analytic models. In abstract and full-text screening, studies were excluded that were not modeling studies for a high-risk medical device or an in-vitro diagnostic test. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram was used to report on the search and exclusion of studies. For all included studies, study purpose, framework and model characteristics were extracted and reported in systematic evidence tables and a narrative summary. Results Out of 206 identified studies, 19 studies were included in the review. Studies were either conducted for hypothetical devices or for existing devices after they were already available on the market. No study extrapolated technical data from early development stages to estimate potential value of devices in development. All studies except one included cost as an outcome. Two studies were budget impact analyses. Most studies aimed at adoption and reimbursement decisions. The majority of studies were on in-vitro diagnostic tests for personalized and targeted medicine. A timed automata model, to our knowledge a model type new to HTA, was tested by one study. It describes the agents in a clinical pathway in separate models and, by allowing for interaction between the models, can reflect complex individual clinical pathways and dynamic system interactions. Not all sources of uncertainty for in-vitro tests were explicitly modeled. Elicitation of expert knowledge and judgement was used for substitution of missing empirical data. Analysis of uncertainty was the most valuable strength of decision-analytic models in early HTA, but no model applied sensitivity analysis to optimize the test positivity cutoff with regard to the benefit-harm balance or cost-effectiveness. Value-of-information analysis was rarely performed. No information was found on the use of causal inference methods for estimation of effect parameters from observational data. Conclusion Our review provides an overview of the purposes and model characteristics of nineteen recent early evaluation studies on medical devices. The review shows the growing importance of personalized interventions and confirms previously published recommendations for careful modeling of uncertainties surrounding diagnostic devices and for increased use of value-of-information analysis. Timed automata may be a model type worth exploring further in HTA. In addition, we recommend to extend the application of sensitivity analysis to optimize positivity criteria for in-vitro tests with regard to benefit-harm or cost-effectiveness. We emphasize the importance of causal inference methods when estimating effect parameters from observational data.
Collapse
Affiliation(s)
- Annette Conrads-Frank
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| | - Petra Schnell-Inderst
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| | - Silke Neusser
- Alfried Krupp von Bohlen and Halbach Foundation Endowed Chair for Medicine Management, University of Duisburg-Essen, Essen, Germany
| | - Lára R. Hallsson
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| | - Igor Stojkov
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| | - Silke Siebert
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| | - Felicitas Kühne
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| | - Beate Jahn
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| | - Uwe Siebert
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
- Center for Health Decision Science, Departments of Epidemiology and Health Policy & Management, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Technology Assessment, ONCOTYROL – Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Gabi Sroczynski
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i. T., Austria
| |
Collapse
|
9
|
Aide N, Weyts K, Lasnon C. Prediction of the Presence of Targetable Molecular Alteration(s) with Clinico-Metabolic 18 F-FDG PET Radiomics in Non-Asian Lung Adenocarcinoma Patients. Diagnostics (Basel) 2022; 12:diagnostics12102448. [PMID: 36292136 PMCID: PMC9601118 DOI: 10.3390/diagnostics12102448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate if combining clinical characteristics with pre-therapeutic 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET) radiomics could predict the presence of molecular alteration(s) in key molecular targets in lung adenocarcinoma. This non-interventional monocentric study included patients with newly diagnosed lung adenocarcinoma referred for baseline PET who had tumour molecular analyses. The data were randomly split into training and test datasets. LASSO regression with 100-fold cross-validation was performed, including sex, age, smoking history, AJCC cancer stage and 31 PET variables. In total, 109 patients were analysed, and it was found that 63 (57.8%) patients had at least one molecular alteration. Using the training dataset (n = 87), the model included 10 variables, namely age, sex, smoking history, AJCC stage, excessKustosis_HISTO, sphericity_SHAPE, variance_GLCM, correlation_GLCM, LZE_GLZLM, and GLNU_GLZLM. The ROC analysis for molecular alteration prediction using this model found an AUC equal to 0.866 (p < 0.0001). A cut-off value set to 0.48 led to a sensitivity of 90.6% and a positive likelihood ratio (LR+) value equal to 2.4. After application of this cut-off value in the unseen test dataset of patients (n = 22), the test presented a sensitivity equal to 90.0% and an LR+ value of 1.35. A clinico-metabolic 18 F-FDG PET phenotype allows the detection of key molecular target alterations with high sensitivity and negative predictive value. Hence, it opens the way to the selection of patients for molecular analysis.
Collapse
Affiliation(s)
- Nicolas Aide
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, 14000 Caen, France
| | - Kathleen Weyts
- Nuclear Medicine Department, Comprehensive Cancer Centre F. Baclesse, UNICANCER, 14000 Caen, France
| | - Charline Lasnon
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, 14000 Caen, France
- Nuclear Medicine Department, Comprehensive Cancer Centre F. Baclesse, UNICANCER, 14000 Caen, France
- Correspondence: ; Tel.: +33-261-455-268; Fax: +33-231-455-101
| |
Collapse
|
10
|
Diagnostic Value and Cost-Effectiveness of Next Generation Sequencing-Based Testing for Treatment of Patients with Advanced/Metastatic Non-Squamous Non-Small Cell Lung Cancer in the United States. J Mol Diagn 2022; 24:901-914. [PMID: 35688357 DOI: 10.1016/j.jmoldx.2022.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The study evaluated the diagnostic value and cost-effectiveness of next generation sequencing (NGS)-based testing versus various combinations of single-gene tests (SGTs) for selection of first-line treatment for patients with advanced/metastatic non-squamous non-small cell lung cancer in the United States. A dynamic decision analysis model was developed comparing NGS versus SGT from a payer perspective. Inputs were obtained from published sources and included diagnostic performance, biomarker-positive disease rates, biomarker-directed recommendations for treatment, and survival outcomes. Costs were reported in 2020 US dollars. In the base case, NGS improved the detection of actionable biomarkers by 74.4%, increased the proportion of patients receiving biomarker-driven therapy by 11.9%, and decreased the proportion of patients with biomarker-positive disease receiving non-biomarker-driven first-line treatment by 40.5%. The incremental cost-effectiveness ratio per life-year gained of NGS testing versus SGT was $7224 (excluding post-diagnostic costs); the incremental cost-effectiveness ratio for NGS-directed therapy was $148,786 versus SGT-directed therapy. Sensitivity analyses confirmed the robustness of these findings; survival outcomes and targeted therapy costs had the greatest impact on results. Testing strategies with NGS are more comprehensive in the detection of actionable biomarkers and can improve the proportion of patients receiving biomarker-driven therapies. NGS testing may provide a cost-effective strategy for advanced/metastatic non-squamous non-small cell lung cancer; however, the value of NGS-directed therapy varies by the willingness-to-pay threshold of the decision-maker.
Collapse
|
11
|
Yang SC, Lin CC, Chen YL, Su WC. Economic Analysis of Tissue-First, Plasma-First, and Complementary NGS Approaches for Treatment-Naïve Metastatic Lung Adenocarcinoma. Front Oncol 2022; 12:873111. [PMID: 35669427 PMCID: PMC9163561 DOI: 10.3389/fonc.2022.873111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background To compare the testing costs and testing turnaround times of tissue-first, plasma-first, and complementary next-generation sequencing (NGS) approaches in patients with treatment-naïve metastatic lung adenocarcinoma. Materials and Methods We developed a decision tree model to compare three different approaches. Patients were entered into the model upon cancer diagnosis and those with both insufficient tissue specimens and negative liquid-based NGS were subjected to tissue re-biopsy. Actionable gene alterations with the U.S. Food and Drug Administration (FDA)-approved therapies included epidermal growth factor receptor (EGFR) mutation, anaplastic lymphoma kinase (ALK) gene rearrangement, ROS proto-oncogene 1 (ROS1) rearrangement, B-Raf proto-oncogene (BRAF) V600E mutation, rearranged during transfection (RET) gene rearrangement, mesenchymal-epithelial transition factor (MET) mutation, neurotrophic tyrosine receptor kinase (NTRK) gene rearrangement, K-Ras proto-oncogene (KRAS) G12C mutation, and human epidermal growth factor receptor 2 (HER2) mutation. Model outcomes were testing costs, testing turnaround times, and monetary losses taking both cost and time into consideration. We presented base-case results using probabilistic analysis. Stacked one-way and three-way sensitivity analyses were also performed. Results In terms of testing costs, tissue-first approach incurred US$2,354($1,963-$2,779) and was the most cost-efficient strategy. Complementary approach testing turnaround time (days) of 12.7 (10.8 to 14.9) was found as the least time-consuming strategy. Tissue-first, complementary, and plasma-first approaches resulted in monetary losses in USD of $4,745 ($4,010-$5,480), $6,778 ($5,923-$7,600), and $7,006 ($6,047-$7,964) respectively, and identified the same percentage of patients with appropriate FDA-approved therapies. Costs for liquid-based NGS, EGFR mutation rates, and quantity of tissue specimens were the major determinants in minimizing monetary loss. Plasma-first approach would be the preferable strategy if its testing price was reduced in USD to $818, $1,343, and $1,869 for populations with EGFR mutation rates of 30%, 45%, and 60% respectively. Conclusion The tissue-first approach is currently the best strategy in minimizing monetary loss. The complementary approach is an alternative for populations with a low EGFR mutation rate. The plasma-first approach becomes increasingly preferable as EGFR mutation rates gradually increase.
Collapse
Affiliation(s)
- Szu-Chun Yang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Lemmon CA, Zabor EC, Pennell NA. Modeling the Cost-Effectiveness of Adjuvant Osimertinib for Patients with Resected EGFR-mutant Non-Small Cell Lung Cancer. Oncologist 2022; 27:407-413. [PMID: 35285487 PMCID: PMC9074960 DOI: 10.1093/oncolo/oyac021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor osimertinib was recently approved for resected EGFR-mutant stages IB-IIIA non-small cell lung cancer due to improved disease-free survival (DFS) in this population compared with placebo. This study aimed to evaluate the cost-effectiveness (CE) of this strategy. MATERIALS AND METHODS We constructed a Markov model using post-resection health state transitions with digitized DFS data from the ADAURA trial to compare cost and quality-adjusted life years (QALYs) of 3 years of adjuvant osimertinib versus placebo over a 10-year time horizon. An overall survival (OS) benefit of 5% was assumed. Costs and utility values were derived from Medicare reimbursement data and literature. A CE threshold of 3 times the gross domestic product per capita was used. Sensitivity analyses were performed. RESULTS The incremental cost-effectiveness ratio for adjuvant osimertinib was $317 119 per QALY-gained versus placebo. Initial costs of osimertinib are higher in years 1-3. Costs due to progressive disease (PD) are higher in the placebo group through the first 6.5 years. Average pre-PD, post-PD, and total costs were $2388, $379 047, and $502 937, respectively, in the placebo group, and $505 775, $255 638, and $800 697, respectively, in the osimertinib group. Sensitivity analysis of OS gains reaches CE with an hazard ratio (HR) of 0.70-0.75 benefit of osimertinib over placebo. A 50% discount to osimertinib drug cost yielded an ICER of $115 419. CONCLUSIONS Three-years of adjuvant osimertinib is CE if one is willing to pay $317 119 more per QALY-gained. Considerable OS benefit over placebo or other economic interventions will be needed to reach CE.
Collapse
Affiliation(s)
- Christopher A Lemmon
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Emily C Zabor
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nathan A Pennell
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| |
Collapse
|
13
|
Ilié M, Hofman V, Bontoux C, Heeke S, Lespinet-Fabre V, Bordone O, Lassalle S, Lalvée S, Tanga V, Allegra M, Salah M, Bohly D, Benzaquen J, Marquette CH, Long-Mira E, Hofman P. Setting Up an Ultra-Fast Next-Generation Sequencing Approach as Reflex Testing at Diagnosis of Non-Squamous Non-Small Cell Lung Cancer; Experience of a Single Center (LPCE, Nice, France). Cancers (Basel) 2022; 14:2258. [PMID: 35565387 PMCID: PMC9104603 DOI: 10.3390/cancers14092258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
The number of genomic alterations required for targeted therapy of non-squamous non-small cell lung cancer (NS-NSCLC) patients has increased and become more complex these last few years. These molecular abnormalities lead to treatment that provides improvement in overall survival for certain patients. However, these treated tumors inexorably develop mechanisms of resistance, some of which can be targeted with new therapies. The characterization of the genomic alterations needs to be performed in a short turnaround time (TAT), as indicated by the international guidelines. The origin of the tissue biopsies used for the analyses is diverse, but their size is progressively decreasing due to the development of less invasive methods. In this respect, the pathologists are facing a number of different challenges requiring them to set up efficient molecular technologies while maintaining a strategy that allows rapid diagnosis. We report here our experience concerning the development of an optimal workflow for genomic alteration assessment as reflex testing in routine clinical practice at diagnosis for NS-NSCLC patients by using an ultra-fast-next generation sequencing approach (Ion Torrent Genexus Sequencer, Thermo Fisher Scientific). We show that the molecular targets currently available to personalized medicine in thoracic oncology can be identified using this system in an appropriate TAT, notably when only a small amount of nucleic acids is available. We discuss the new challenges and the perspectives of using such an ultra-fast NGS in daily practice.
Collapse
Affiliation(s)
- Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
| | - Olivier Bordone
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Salomé Lalvée
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
| | - Virginie Tanga
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Maryline Allegra
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Myriam Salah
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Doriane Bohly
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
| | - Jonathan Benzaquen
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
- Department of Pulmonary Medicine and Thoracic Oncology, Pasteur Hospital, 06000 Nice, France
| | - Charles-Hugo Marquette
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
- Department of Pulmonary Medicine and Thoracic Oncology, Pasteur Hospital, 06000 Nice, France
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (M.I.); (V.H.); (C.B.); (V.L.-F.); (O.B.); (S.L.); (S.L.); (E.L.-M.)
- Biobank-related Hospital (BB-0033-00025), Pasteur Hospital, 06000 Nice, France; (V.T.); (M.A.); (M.S.); (D.B.)
- FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France; (J.B.); (C.-H.M.)
- Inserm U1081, CNRS UMR 7413, IRCAN, 06100 Nice, France
| |
Collapse
|
14
|
Yang SC, Yeh YC, Chen YL, Chiu CH. Economic Analysis of Exclusionary EGFR Test Versus Up-Front NGS for Lung Adenocarcinoma in High EGFR Mutation Prevalence Areas. J Natl Compr Canc Netw 2022; 20:774-782.e4. [PMID: 35385830 DOI: 10.6004/jnccn.2021.7120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND This study sought to determine whether exclusionary EGFR mutation testing followed by next-generation sequencing (NGS) is a cost-efficient and timely strategy in areas with high prevalence rates of EGFR mutation. METHODS We developed a decision tree model to compare exclusionary EGFR testing followed by NGS and up-front NGS. Patients entered the model upon diagnosis of metastatic lung adenocarcinoma. Gene alterations with FDA-approved targeted therapies included EGFR, ALK, ROS1, BRAF, RET, MET, NTRK, and KRAS. Model outcomes were testing-related costs; time-to-test results; monetary loss, taking both costs and time into consideration; and percentage of patients who could be treated by FDA-approved therapies. Stacked 1-way and 3-way sensitivity analyses were performed. RESULTS Exclusionary EGFR testing incurred testing-related costs of US $1,387 per patient, a savings of US $1,091 compared with the costs of up-front NGS. The time-to-test results for exclusionary EGFR testing and up-front NGS were 13.0 and 13.6 days, respectively. Exclusionary EGFR testing resulted in a savings of US $1,116 in terms of net monetary loss, without a reduction of patients identified with FDA-approved therapies. The EGFR mutation rate and NGS cost had the greatest impact on minimizing monetary loss. Given that the tissue-based NGS turnaround time was shortened to 7 days, up-front NGS testing would become the best strategy if its price could be reduced to US $568 in Taiwan. CONCLUSIONS In areas with high prevalence rates of EGFR mutation, exclusionary EGFR testing followed by NGS, rather than up-front NGS, is currently a cost-efficient strategy for metastatic lung adenocarcinoma.
Collapse
Affiliation(s)
- Szu-Chun Yang
- 1Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Yi-Chen Yeh
- 2Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei.,3College of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Yi-Lin Chen
- 4Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan.,5Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan; and
| | - Chao-Hua Chiu
- 3College of Medicine, National Yang Ming Chiao Tung University, Taipei.,6Division of Thoracic Oncology, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Perdrizet K, Stockley TL, Law JH, Smith A, Zhang T, Fernandes R, Shabir M, Sabatini P, Youssef NA, Ishu C, Li JJ, Tsao MS, Pal P, Cabanero M, Schwock J, Ko HM, Boerner S, Ruff H, Shepherd FA, Bradbury PA, Liu G, Sacher AG, Leighl NB. Integrating comprehensive genomic sequencing of non-small cell lung cancer into a public healthcare system. Cancer Treat Res Commun 2022; 31:100534. [PMID: 35278845 DOI: 10.1016/j.ctarc.2022.100534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Standard molecular testing for patients with stage IV non-small cell lung cancer (NSCLC) in the Canadian publicly funded health system includes single gene testing for EGFR, ALK, and ROS-1. Comprehensive genomic profiling (CGP) may broaden treatment options for patients. This study examined the impact of CGP in a publicly funded health system. METHODS Consenting patients with stage IV NSCLC without known targetable alterations underwent CGP on diagnostic samples. Patients that had progressed on targeted therapy were also eligible. The CGP assay was a hybrid capture next generation sequencing (NGS) panel (Oncomine Comprehensive Assay Version 3, ThermoFisher). The number of actionable alterations, changes in treatment, clinical trial eligibility and costs as a result of CGP were evaluated and patient willingness-to-pay. RESULTS Of 182 screened patients,134 (74%) had successful CGP testing. Twenty percent had received prior targeted therapy. Incremental actionable alterations were identified in 31% of patients. The most common novel targets identified were mutations in ERBB2 (exon 20 insertions), MET (exon 14 skipping) and KRAS (G12C). At data cut off (31/12/2020), 16% of patients had a change in treatment as a result of CGP. Additional clinical trial options were identified for 75% of patients. The incremental direct laboratory cost for CGP beyond public reimbursement for single gene tests was $747 CAD/case. CONCLUSION CGP identifies additional actionable targets beyond single gene tests with a direct impact on patient treatment and increased clinical trial eligibility. These benefits highlight the value of CGP in patients with NSCLC in public health systems.
Collapse
Affiliation(s)
- Kirstin Perdrizet
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada; William Osler Health System, Brampton, Ontario, Canada.
| | - Tracy L Stockley
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Toronto, Canada
| | - Jennifer H Law
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Adam Smith
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Toronto, Canada
| | - Tong Zhang
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Toronto, Canada
| | - Roxanne Fernandes
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Muqdas Shabir
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Peter Sabatini
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Toronto, Canada
| | - Nadia Al Youssef
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Toronto, Canada
| | - Christine Ishu
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada; Advanced Molecular Diagnostics Laboratory, University Health Network, Toronto, Canada
| | - Janice Jn Li
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Prodipto Pal
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Michael Cabanero
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Joerg Schwock
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Hyang Mi Ko
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Scott Boerner
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Heather Ruff
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | | | - Geoffrey Liu
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Adrian G Sacher
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada
| | - Natasha B Leighl
- Princess Margaret Cancer Centre/University Health Network, Toronto, Canada.
| |
Collapse
|
16
|
Nadler E, Vasudevan A, Wang Y, Ogale S. Real-world patterns of biomarker testing and targeted therapy in de novo metastatic non-small cell lung cancer patients in the US oncology network. Cancer Treat Res Commun 2022; 31:100522. [PMID: 35189530 DOI: 10.1016/j.ctarc.2022.100522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study investigated biomarker testing and biomarker-guided treatment among patients with metastatic NSCLC in a real-world setting. METHODS This retrospective study examined adult patients diagnosed with de novo mNSCLC between 01-Jan-2016 and 30-Sep-2019, with follow-up through 31-Dec-2019 using The US Oncology Network structured electronic health records data, with chart review for a subset. RESULTS Of 2257 patients, 76.3% had results for ≥1 driver mutation (DM) or programmed death ligand-1 (PD-L1) during the study observation period. The proportion with results for all 4 DM before 1L initiation increased from 2017 to 2019. Over 40% had results for anaplastic lymphoma kinase (ALK), epidermal growth factor receptor (EGFR), and c-ros oncogene 1 (ROS1) and 22% for B-Raf proto-oncogene (BRAF) before 1L initiation by structured data. In the chart review subset (n = 197), >70% had results for ALK, EGFR, or ROS1 with 44% for BRAF. Of the 42 ALK+ patients, 5 had results before 1L treatment and 3 received 1L ALK inhibitors. Similar, for the other biomarkers, not all who tested positive for a DM received 1L targeted therapy. The proportion of biomarker-positive patients receiving 1L targeted therapy was higher in chart review versus structured data. However, in both analyses, a substantial proportion did not have results for all 4 DM plus PD-L1 tests for appropriate biomarker-directed 1L treatment selection. CONCLUSIONS Despite increasing biomarker testing rates, reduced turnaround times, and availability of promising biomarker-based therapies, inadequate testing in the community oncology setting means that not all eligible patients are receiving the most effective therapies up front.
Collapse
Affiliation(s)
- Eric Nadler
- The US Oncology Network, 10101 Woodloch Forest Dr, The Woodlands, TX 77380, United States.
| | | | - Yunfei Wang
- Ontada, 6555 State Highway 161, Irving, TX 75039, United States.
| | - Sarika Ogale
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
17
|
Horgan D, Curigliano G, Rieß O, Hofman P, Büttner R, Conte P, Cufer T, Gallagher WM, Georges N, Kerr K, Penault-Llorca F, Mastris K, Pinto C, Van Meerbeeck J, Munzone E, Thomas M, Ujupan S, Vainer GW, Velthaus JL, André F. Identifying the Steps Required to Effectively Implement Next-Generation Sequencing in Oncology at a National Level in Europe. J Pers Med 2022; 12:72. [PMID: 35055387 PMCID: PMC8780351 DOI: 10.3390/jpm12010072] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (NGS) may enable more focused and highly personalized cancer treatment, with the National Comprehensive Cancer Network and European Society for Medical Oncology guidelines now recommending NGS for daily clinical practice for several tumor types. However, NGS implementation, and therefore patient access, varies across Europe; a multi-stakeholder collaboration is needed to establish the conditions required to improve this discrepancy. In that regard, we set up European Alliance for Personalised Medicine (EAPM)-led expert panels during the first half of 2021, including key stakeholders from across 10 European countries covering medical, economic, patient, industry, and governmental expertise. We describe the outcomes of these panels in order to define and explore the necessary conditions for NGS implementation into routine clinical care to enable patient access, identify specific challenges in achieving them, and make short- and long-term recommendations. The main challenges identified relate to the demand for NGS tests (governance, clinical standardization, and awareness and education) and supply of tests (equitable reimbursement, infrastructure for conducting and validating tests, and testing access driven by evidence generation). Recommendations made to resolve each of these challenges should aid multi-stakeholder collaboration between national and European initiatives, to complement, support, and mutually reinforce efforts to improve patient care.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, Avenue de l’Armee/Legerlaan 10, 1040 Brussels, Belgium
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti, 435, 20141 Milan, Italy; (G.C.); (E.M.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72070 Tuebingen, Germany;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University of Côte d’Azur, FHU OncoAge, Biobank BB-0033-00025, Pasteur Hospital, 30 Avenue de la voie Romaine, CEDEX 01, 06001 Nice, France;
| | - Reinhard Büttner
- Institute for Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
| | - Pierfranco Conte
- The Veneto Institute of Oncology, IRCCS, Via Gattamelata, 64, 35128 Padua, Italy;
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Giustiniani, 2, 35124 Padua, Italy
| | - Tanja Cufer
- Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - William M. Gallagher
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Nadia Georges
- Exact Sciences, Quai du Seujet 10, 1201 Geneva, Switzerland;
| | - Keith Kerr
- School of Medicine and Dentistry, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK;
| | - Frédérique Penault-Llorca
- Centre Jean Perrin, 58, Rue Montalembert, CEDEX 01, 63011 Clermont-Ferrand, France;
- Department of Pathology, University of Clermont Auvergne, INSERM U1240, 49 bd François Mitterrand, CS 60032, 63001 Clermont-Ferrand, France
| | - Ken Mastris
- Europa Uomo, Leopoldstraat 34, 2000 Antwerp, Belgium;
| | - Carla Pinto
- AstraZeneca, Rua Humberto Madeira 7, 1800 Oeiras, Portugal;
| | - Jan Van Meerbeeck
- Antwerp University Hospital, University of Antwerp, Wijlrijkstraat 10, 2650 Edegem, Belgium;
| | - Elisabetta Munzone
- European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti, 435, 20141 Milan, Italy; (G.C.); (E.M.)
| | - Marlene Thomas
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Sonia Ujupan
- Eli Lilly and Company, Rue du Marquis 1, Markiesstraat, 1000 Brussels, Belgium;
| | - Gilad W. Vainer
- Department of Pathology, Hadassah Hebrew-University Medical Center, Hebrew University of Jerusalem, Kalman Ya’akov Man St, Jerusalem 91905, Israel;
| | - Janna-Lisa Velthaus
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany;
| | - Fabrice André
- Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France;
| |
Collapse
|
18
|
Zheng Y, Vioix H, Liu FX, Singh B, Sharma S, Sharda D. Diagnostic and economic value of biomarker testing for targetable mutations in non-small-cell lung cancer: a literature review. Future Oncol 2021; 18:505-518. [PMID: 34865516 DOI: 10.2217/fon-2021-1040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We aimed to assess the diagnostic and economic value of next-generation sequencing (NGS) versus single-gene testing, and of liquid biopsy (LBx) versus tissue biopsy (TBx) in non-small-cell lung cancer biomarker testing through literature review. Embase and MEDLINE were searched to identify relevant studies (n = 43) from 2015 to 2020 in adults with advanced non-small-cell lung cancer. For NGS versus single-gene testing, concordance was 70-99% and sensitivity was 86-100%. For LBx versus TBx, specificity was 43-100% and sensitivity was ≥60%. Turnaround times were longer for NGS versus single-gene testing (but not vs sequential testing) and faster for LBx versus TBx. NGS was cost-effective, and LBx reduced US per-patient costs. NGS versus single-gene testing and LBx versus TBx were concordant. NGS and LBx may be cost-effective for initial screening.
Collapse
Affiliation(s)
- Ying Zheng
- US Health Economics and Outcomes Research, EMD Serono, Inc., An affiliate of Merck KGaA, Rockland, MA 02370, USA
| | - Helene Vioix
- Global Evidence & Value Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Frank X Liu
- US Health Economics and Outcomes Research, EMD Serono, Inc., An affiliate of Merck KGaA, Rockland, MA 02370, USA
| | | | - Sakshi Sharma
- HEOR, Parexel, Access Consulting, Mohali, Punjab, India
| | - Deepti Sharda
- HEOR, Parexel, Access Consulting, Mohali, Punjab, India
| |
Collapse
|
19
|
Hao X, Shen A, Wu B. Cost-Effectiveness of Nivolumab Plus Ipilimumab as First-Line Therapy in Advanced Non-small-cell Lung Cancer. Front Pharmacol 2021; 12:573852. [PMID: 34290602 PMCID: PMC8287729 DOI: 10.3389/fphar.2021.573852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose: The effectiveness of nivolumab plus ipilimumab for advanced non-small cell lung cancer (NSCLC) has been demonstrated. Decisions have to be made about allocating healthcare resources. Economic evidence could support policy decisions to fund expensive interventions. The current analysis evaluated the cost-effectiveness of nivolumab plus ipilimumab in advanced NSCLC harboring no EGFR or ALK mutations. It is set in the context of the US and China, representing developed and resource-constrained settings, respectively. Patients and Methods: A Markov model consisting of three discrete health states was used to assess the cost-effectiveness of nivolumab plus ipilimumab vs. chemotherapy. The key clinical data were derived from the CheckMate-227 trial, and the cost and health preference data were derived from the literature. Costs, quality-adjusted life-years (QALYs), incremental cost-effectiveness ratios (ICERs) and incremental net health benefits (INHBs) were calculated for the two strategies. Subgroup, one-way and probabilistic sensitivity analyses were performed. Results: In the United States, nivolumab plus ipilimumab increased by 1.260 QALYs with an additional cost of $95,617 compared with the features of chemotherapy, which led to an ICER of $75,871 per QALY gained. INHB indicated that nivolumab plus ipilimumab treatment had a 99% probability of being cost-effective at the ICER threshold of $100,000/QALY in all subgroups. The results of sensitivity analyses revealed that the model outcomes were robust. In China, the ICER of nivolumab plus ipilimumab vs. chemotherapy was $59,773/QALY, and the INHB was -1.972 QALY at the threshold of $27,351/QALY. Conclusion: Nivolumab plus ipilimumab treatment is a cost-effective option compared with chemotherapy for patients with advanced NSCLC harboring no EGFR or ALK mutations in the United States. However, nivolumab plus ipilimumab is not a preferred option in China.
Collapse
Affiliation(s)
- Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Bin Wu
- Medical Decision and Economic Group, Department of Pharmacy, Ren Ji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
20
|
Dragojlovic N, Kopac N, Borle K, Tandun R, Salmasi S, Ellis U, Birch P, Adam S, Friedman JM, Elliott AM, Lynd LD. Utilization and uptake of clinical genetics services in high-income countries: A scoping review. Health Policy 2021; 125:877-887. [PMID: 33962789 DOI: 10.1016/j.healthpol.2021.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
Ongoing rapid growth in the need for genetic services has the potential to severely strain the capacity of the clinical genetics workforce to deliver this care. Unfortunately, assessments of the scale of this health policy challenge and potential solutions are hampered by the lack of a consolidated evidence base on the growth in genetic service utilization. To enable health policy research and strategic planning by health systems in this area, we conducted a scoping review of the literature on the utilization and uptake of clinical genetics services in high-income countries published between 2010 and 2018. One-hundred-and-ninety-five unique studies were included in the review. Most focused on cancer (85/195; 44%) and prenatal care (50/195; 26%), which are consistently the two areas with the greatest volume of genetic service utilization in both the United States and other high-income countries. Utilization and uptake rates varied considerably and were influenced by contextual factors including health system characteristics, provider knowledge, and patient preferences. Moreover, growth in genetic service utilization appears to be driven to a significant degree by technological advances and the integration of new tests into clinical care. Our review highlights both the policy challenge posed by the rapid growth in the utilization of genetic services and the variability in this trend across clinical indications and health systems.
Collapse
Affiliation(s)
- Nick Dragojlovic
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Nicola Kopac
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kennedy Borle
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Rachel Tandun
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shahrzad Salmasi
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ursula Ellis
- Woodward Library, University of British Columbia, 2198 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Patricia Birch
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, C201 - 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada; BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Shelin Adam
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, C201 - 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada; BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Jan M Friedman
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, C201 - 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada; BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Alison M Elliott
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, C201 - 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada; BC Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada; BC Women's Hospital Research Institute, H214 - 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Larry D Lynd
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada; Centre for Health Evaluation and Outcomes Sciences, Providence Health Research Institute, 588-1081 Burrard Street, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6.
| |
Collapse
|
21
|
Zito Marino F, Alì G, Facchinetti F, Righi L, Fontanini G, Rossi G, Franco R. Fusion proteins in lung cancer: addressing diagnostic problems for deciding therapy. Expert Rev Anticancer Ther 2021; 21:887-900. [PMID: 33715580 DOI: 10.1080/14737140.2021.1903875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Gene fusions are frequent chromosomal aberrations in solid tumors. In Lung cancer (LC) several druggable-fusions involving tyrosine kinase receptor genes have been described, including ALK, ROS1, RET and NTRK. In non-small cell lung cancer, testing for targetable fusions has become a part of routine clinical practice, greatly impacting therapeutic choice for patients with these aberrations. Although substantial technologies for gene fusion detection have been implemented over time including; cytogenetic, Fluorescence in situ hybridization (FISH), Immunohistochemistry (IHC), Retro-transcription Real-Time PCR (RT-qPCR), to Next Generation Sequencing (NGS), nCounter system (Nanostring technology), several critical issues remain. To date, only the companion diagnostic tests FISH and IHC for ALK-rearrangements and NGS for ROS1-rearrangments were approved. Other fusion approved tests are currently unavailable.Areas covered: In this review, we explore current diagnostic problems of gene fusion detection relative to the technologies available, in order to clarify future standardization of analyses which determine therapeutic choices.Expert opinion: The establishment of a gold standard, an effective diagnostic algorithm, and a standardized interpretation for the analysis of each druggable-fusions in lung cancer is essential for adequate therapeutic management.
Collapse
Affiliation(s)
- Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Greta Alì
- Department of Surgical Pathology, Medical, Molecular, and Critical Area, University of Pisa, Pisa, Italy
| | - Francesco Facchinetti
- Université Paris-Saclay, Institut Gustave Roussy, INSERM, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Villejuif, France.,Medical Oncology Unit, University Hospital of Parma, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, Pathology Division, San Luigi Hospital, University of Turin, Turin, Italy
| | - Gabriella Fontanini
- Department of Surgical Pathology, Medical, Molecular, and Critical Area, University of Pisa, Pisa, Italy
| | - Giulio Rossi
- Operative Unit of Pathologic Anatomy, Azienda Della Romagna, Teaching Hospital S. Maria Delle Croci, Ravenna, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
22
|
Hofman P, Rouleau E, Sabourin JC, Denis M, Deleuze JF, Barlesi F, Laurent-Puig P. Predictive molecular pathology in non-small cell lung cancer in France: The past, the present and the perspectives. Cancer Cytopathol 2021; 128:601-610. [PMID: 32885912 DOI: 10.1002/cncy.22318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
The advent of molecular targets for novel therapeutics in oncology, notably for non-small cell lung carcinoma (NSCLC), led the French National Cancer Institute (INCa) to establish a national network of 28 hospital Molecular Genetics Centers for Cancer (MGCC) in 2007. In each University in France, laboratories were established to develop molecular biology testing to evaluate a few genomic alterations, initially a selection of genes, by using specific targeted polymerase chain reaction (PCR) assays. In a second phase, the number of studied genes was increased. In 2015, the MGCC benefited from an additional dedicated budget from the INCa to develop next-generation sequencing (NGS) technology. In the meantime, a new financial regulation for innovative testing has been established for the acts out of nomenclature. Consequently, all private and public laboratories in France have access to funding for molecular biology testing in oncology. The gene-based PCR assays or NGS tests have benefitted from reimbursement of cost testing by the INCa. Today, the laboratories consider this reimbursement to be only partial, and its use to be complex. In 2018, a strategic plan for medical genomic analyses (France Médecine Génomique 2025) was implemented to introduce more systematic sequencing into the health care pathway and oncology practice. The large panel of molecular tests should be centralized to a limited number of molecular genetic centers. This review describes the evolution of the different stages of implementation of molecular pathology testing for NSCLC patients over the last few years in France.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, University Côte d'Azur, Nice, France.,Hospital-Related Biobank, Pasteur Hospital, University Côte d'Azur, Nice, France.,FHU OncoAge, Pasteur Hospital, University Côte d'Azur, Nice, France
| | - Etienne Rouleau
- Cancer Genetic Laboratory, Biology and Pathology Department, Gustave Roussy, Villejuif, France
| | | | - Marc Denis
- Department of Biochemistry and INSERM U1232, Nantes University Hospital, Nantes, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris Saclay, Evry, France.,Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France.,Centre de Référence, d'Innovation et d'Expertise (CREFIX), Paris, France
| | - Fabrice Barlesi
- Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Pierre Laurent-Puig
- UMR-1138, INSERM, Département de Biologie, Hôpital Européen Georges-Pompidou, Paris, France.,Université Paris Descartes, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
23
|
EGFR mutation testing and TKI treatment patterns among veterans with stage III and IV non-small cell lung cancer. Cancer Treat Res Commun 2021; 27:100327. [PMID: 33549984 DOI: 10.1016/j.ctarc.2021.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) mutation testing is recommended in metastatic non-small cell lung cancer (NSCLC). The objective of this study was to assess changes in EGFR mutation testing patterns and tyrosine kinase inhibitor (TKI) use in US veterans with stage III-IV NSCLC between 2013 and 2017. PATIENTS AND METHODS Retrospective study using linked data from Department of Veterans Affairs (VA) Cancer Registry System, Corporate Data Warehouse, commercial laboratories, and clinical notes. Generalized linear mixed models accounting for clustering by VA facility were used to determine factors associated with EGFR mutation testing. RESULTS From 2013 to 2017, EGFR mutation testing increased from 29.5% to 38.4% among veterans with stage III-IV NSCLC and from 47.0% to 57.4% among veterans with stage IV non-squamous disease. Factors associated with increased odds of testing included being married, Medicare enrollment, and adenocarcinoma histology. Factors associated with decreased odds of testing included Medicaid eligibility, stage III disease, increasing age, being a current or former smoker, increasing Charlson-Deyo comorbidity score, and receiving cancer care in the South. Appropriate use of a TKI rose from 2013 to 2017 (17.2% to 74.1%). CONCLUSION EGFR mutation testing rates increased to almost 60% in the stage IV non-squamous NSCLC population in 2017, with residual opportunity for further increase. Several sociodemographic characteristics, comorbidities, and geographic regions were associated with EGFR mutation testing suggestive of inequitable testing decisions. Appropriate use of TKI improved drastically from 2013 to 2017 demonstrating rapidly changing practice patterns through the adoption phase of new treatment options.
Collapse
|
24
|
Herbst RS, Aisner DL, Sonett JR, Turk AT, Weintraub JL, Lindeman NI. Practical Considerations Relating to Routine Clinical Biomarker Testing for Non-small Cell Lung Cancer: Focus on Testing for RET Fusions. Front Med (Lausanne) 2021; 7:562480. [PMID: 33553195 PMCID: PMC7859651 DOI: 10.3389/fmed.2020.562480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022] Open
Abstract
For patients with advanced non–small cell lung cancer, genomic profiling of tumors to identify potentially targetable alterations and thereby inform treatment selection is now part of standard care. While molecular analyses are primarily focused on actionable biomarkers associated with regulatory agency-approved therapies, there are a number of emerging biomarkers linked to investigational agents in advanced stages of clinical development will become approved agents. A particularly timely example is the reported data and US Food and Drug Administration approval of highly specific small molecule inhibitors of the proto-oncogene tyrosine-protein kinase receptor RET indicate that testing for tumor RET gene fusions in patients with NSCLC has become clinically important. As the number of biomarkers to be tested in NSCLC grows, it becomes increasingly important to optimize and prioritize the use of biopsy tissue, in order to both continue to allow accurate histopathological diagnosis and also to support concurrent genomic profiling to identify perhaps relatively uncommon genetic events. In order to provide practical expert consensus guidance to optimize processes facilitating genomic testing in NSCLC and to overcome barriers to access and implementation, a multidisciplinary advisory board was held in New York, on January 30, 2019. The panel comprised physicians involved in sample procurement (interventional radiologists and a thoracic surgeon), surgical pathologists specializing in the lung, molecular pathologists, and thoracic oncologists. Particular consideration was given to the key barriers faced by these experts in establishing institutional genomic screening programs for NSCLC. Potential solutions have been devised in the form of consensus opinions that might be used to help resolve such issues.
Collapse
Affiliation(s)
- Roy S Herbst
- Section of Medical Oncology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joshua R Sonett
- Division of Thoracic Surgery, Lung Transplant Program, Columbia University Medical Center, New York, NY, United States
| | - Andrew T Turk
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Joshua L Weintraub
- Division of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
25
|
Wu B, Lu S. The effect of PD-L1 categories-directed pembrolizumab plus chemotherapy for newly diagnosed metastatic non-small-cell lung cancer: a cost-effectiveness analysis. Transl Lung Cancer Res 2020; 9:1770-1784. [PMID: 33209600 PMCID: PMC7653112 DOI: 10.21037/tlcr-19-605] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The effectiveness of adding pembrolizumab to chemotherapy improve outcomes in newly diagnosed metastatic non-small-cell lung cancer (NSCLC). We aimed to evaluate the economic outcomes of first-line treatment by adding pembrolizumab to chemotherapy with and without the use of PD-L1 testing for patient selection. Methods A decision-analytic model was adopted to project the disease course of newly diagnosed metastatic nonsquamous and squamous NSCLC without EGFR or ALK mutations. The efficacy and toxicity data were gathered from the KEYNOTE-189 and KEYNOTE-407 trials. Transition probabilities were estimated from the reported survival probabilities in each group. Cost and health preference data were derived from published economic evaluations. The incremental cost-effectiveness ratio (ICER) was measured, and subgroup, one-way and probabilistic sensitivity analyses (PSA) were performed for exploring the model uncertainties. Results In the US context, pembrolizumab plus chemotherapy is projected to increase quality-adjusted-life year (QALY) by 1.168 and 0.988 in comparison with chemotherapy and the ICERs were $122,248 and $121,375/QALY in the whole nonsquamous and squamous patients with unconfirmed PD-L1 tumor proportion scores (TPS), respectively. After the selection of patients by PD-L1 TPS by PD-L1 testing, the ICERs of adding pembrolizumab treatment for patients with confirmed PD-L1 TPS >1% and ≥50% were $143,282 and $127,661/QALY in nonsquamous disease, and $131,495 and $121,554/QALY in squamous disease, respectively. The ICERs of adding pembrolizumab treatment for Chinese patients were higher than $40,000/QALY regardless of the histology and TPS subgroups, which highly exceed the willingness-to-pay threshold of $29,196/QALY (three times of per capita gross domestic product of China in 2018) in China. Conclusions Pembrolizumab plus chemotherapy as first-line treatment for untreated metastatic NSCLC without EGFR or ALK mutations is a cost-effective option regardless of PD-L1 expression status in the US context, and not cost-effective in the Chinese context. However, PD-L1 categories-directed pembrolizumab could not increase the cost-effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Bin Wu
- Medical Decision and Economic Group, Department of Pharmacy, Ren Ji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Christopoulos P, Kirchner M, Roeper J, Saalfeld F, Janning M, Bozorgmehr F, Magios N, Kazdal D, Volckmar AL, Brückner LM, Bochtler T, Kriegsmann M, Endris V, Penzel R, Kriegsmann K, Eichhorn M, Herth FJF, Heussel CP, El Shafie RA, Schneider MA, Muley T, Meister M, Faehling M, Fischer JR, Heukamp L, Schirmacher P, Bischoff H, Wermke M, Loges S, Griesinger F, Stenzinger A, Thomas M. Risk stratification of EGFR + lung cancer diagnosed with panel-based next-generation sequencing. Lung Cancer 2020; 148:105-112. [PMID: 32871455 DOI: 10.1016/j.lungcan.2020.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Panel-based next-generation sequencing (NGS) is increasingly used for the diagnosis of EGFR-mutated non-small-cell lung cancer (NSCLC) and could improve risk assessment in combination with clinical parameters. MATERIALS AND METHODS To this end, we retrospectively analyzed the outcome of 400 tyrosine kinase inhibitor (TKI)-treated EGFR+ NSCLC patients with validation of results in an independent cohort (n = 130). RESULTS EGFR alterations other than exon 19 deletions (non-del19), TP53 co-mutations, and brain metastases at baseline showed independent associations of similar strengths with progression-free (PFS hazard ratios [HR] 2.1-2.3) and overall survival (OS HR 1.7-2.2), in combination defining patient subgroups with distinct outcome (EGFR+NSCLC risk Score, "ENS", p < 0.001). Co-mutations beyond TP53 were rarely detected by our multigene panel (<5%) and not associated with clinical endpoints. Smoking did not affect outcome independently, but was associated with non-del19 EGFR mutations (p < 0.05) and comorbidities (p < 0.001). Laboratory parameters, like the blood lymphocyte-to-neutrophil ratio and serum LDH, correlated with the metastatic pattern (p < 0.01), but had no independent prognostic value. Reduced ECOG performance status (PS) was associated with comorbidities (p < 0.05) and shorter OS (p < 0.05), but preserved TKI efficacy. Non-adenocarcinoma histology was also associated with shorter OS (p < 0.05), but rare (2-3 %). The ECOG PS and non-adenocarcinoma histology could not be validated in our independent cohort, and did not increase the range of prognostication alongside the ENS. CONCLUSIONS EGFR variant, TP53 status and brain metastases predict TKI efficacy and survival in EGFR+ NSCLC irrespective of other currently available parameters ("ENS"). Together, they constitute a practical and reproducible approach for risk stratification of newly diagnosed metastatic EGFR+ NSCLC.
Collapse
Affiliation(s)
- P Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - M Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - J Roeper
- Department of Hematology and Oncology, Pius-Hospital, University Dept. of Internal Medicine - Oncology, Oldenburg, Germany
| | - F Saalfeld
- Department of Thoracic Oncology, Carl-Gustav-Carus Dresden University Hospital, Dresden, Germany
| | - M Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - F Bozorgmehr
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - N Magios
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - D Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - A L Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - L M Brückner
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - T Bochtler
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - M Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - V Endris
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - R Penzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - K Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Eichhorn
- Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - F J F Herth
- Department of Pulmonology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - C P Heussel
- Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - R A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - M A Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - T Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - M Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - M Faehling
- Department of Pneumology, Esslingen Hospital, Esslingen, Germany
| | - J R Fischer
- Department of Thoracic Oncology, Lungenklinik Loewenstein, Loewenstein, Germany
| | - L Heukamp
- Institut Für Hämatopathologie Hamburg, Hamburg, Germany
| | - P Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - H Bischoff
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - M Wermke
- Department of Thoracic Oncology, Carl-Gustav-Carus Dresden University Hospital, Dresden, Germany
| | - S Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - F Griesinger
- Department of Hematology and Oncology, Pius-Hospital, University Dept. of Internal Medicine - Oncology, Oldenburg, Germany
| | - A Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| | - M Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
27
|
Tan DS, Tan DS, Tan IBH, Yan B, Choo SP, Chng WJ, Hwang WYK. Recommendations to improve the clinical adoption of NGS-based cancer diagnostics in Singapore. Asia Pac J Clin Oncol 2020; 16:222-231. [PMID: 32301274 PMCID: PMC7496576 DOI: 10.1111/ajco.13339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Next-generation sequencing (NGS)-based diagnostics have demonstrated clinical utility in predicting improved survival benefits with targeted treatment in certain cancer types, and positive cost-benefit in several healthcare systems. However, clinical adoption in Singapore remains low despite commercial availability of these diagnostics. This expert opinion review examines the key challenges to the clinical adoption of NGS-based diagnostics in Singapore, provides recommendations on impactful initiatives to improve adoption, and also offers practical guidance on specific cancer types in which NGS-based diagnostics are appropriate for use in Singapore. Limited patient affordability is one major challenge to clinical adoption of NGS-based diagnostics, which could be improved by enabling patient access to more funds for specific cancer types with clear benefits. Expert opinion based on current evidence and clinical experience supports the upfront use of hotspot panels in advanced non-small cell lung cancer (NSCLC), metastatic colorectal cancer, advanced and recurrent ovarian cancer, and acute myeloid leukemia. Comprehensive genomic profiling could be considered for upfront use in select patients with NSCLC and ovarian cancer, or in refractory patients with the four cancer types. Wider adoption of NGS-based diagnostics will improve the delivery of cancer care in Singapore and Asia-Pacific, and thus lead to better patient outcomes.
Collapse
Affiliation(s)
- David Shao‐Peng Tan
- Department of Haematology‐OncologyNational University Cancer Institute SingaporeNational University Health SystemSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Daniel Shao‐Weng Tan
- Department of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Iain Bee Huat Tan
- Department of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Benedict Yan
- Molecular Diagnosis CentreDepartment of Laboratory MedicineNational University Health SystemSingaporeSingapore
| | - Su Pin Choo
- Curie OncologyMount Elizabeth Novena Specialist CentreSingaporeSingapore
- Singapore Society of OncologySingaporeSingapore
| | - Wee Joo Chng
- Department of Haematology‐OncologyNational University Cancer Institute SingaporeNational University Health SystemSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - William Ying Khee Hwang
- Department of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Department of Haematology, Singapore General HospitalSingaporeSingapore
- Cancer and Stem Cell Biology, Duke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
28
|
Coquerelle S, Darlington M, Michel M, Durand M, Borget I, Baffert S, Marino P, Perrier L, Durand-Zaleski I. Impact of Next Generation Sequencing on Clinical Practice in Oncology in France: Better Genetic Profiles for Patients Improve Access to Experimental Treatments. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2020; 23:898-906. [PMID: 32762992 DOI: 10.1016/j.jval.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES We evaluated how next generation sequencing (NGS) can modify care pathways in an observational impact study in France. METHODS All patients with lung cancer, colorectal cancer, or melanoma who had NGS analyses of somatic genomic alterations done in 1 of 7 biomolecular platforms certified by the French National Cancer Institute (INCa) between 2013 and 2016 were eligible. We compared patients' pathways before and after their NGS results. Endpoints consisted of the turnaround time in obtaining results, the number of patients with at least 1 genomic alteration identified, the number of actionable alterations, the impact of the genomic multidisciplinary tumor board on care pathways, the number of changes in the treatment plan, and the survival outcome up to 1 year after NGS analyses. RESULTS 1213 patients with a request for NGS analysis were included. NGS was performed for 1155 patients, identified at least 1 genomic alteration for 867 (75%), and provided an actionable alteration for 614 (53%). Turnaround time between analyses and results was on average 8 days (Min: 0; Max: 95) for all cancer types. Before NGS analysis, 33 of 614 patients (5%) were prescribed a targeted therapy compared with 54 of 614 patients (8%) after NGS analysis. Proposition of inclusion in clinical trials with experimental treatments increased from 5% (n = 31 of 614) before to 28% (n = 178 of 614) after NGS analysis. Patients who benefited from a genotype matched treatment after NGS analysis tended to have a better survival outcome at 1 year than patients with nonmatched treatment: 258 days (±107) compared with 234 days (±106), (P = .41). CONCLUSIONS NGS analyses resulted in a change in patients' care pathways for 20% of patients (n = 232 of 1155).
Collapse
Affiliation(s)
- Séverine Coquerelle
- Unité de Recherche Clinique en Économie de la Santé d'Ile de France, Assistance Publique Hôpitaux de Paris, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Centre of Research in Epidemiology and Statistics, Institut National de la Santé et de la Recherche Médicale-Joint Research Units, Paris, France.
| | - Meryl Darlington
- Unité de Recherche Clinique en Économie de la Santé d'Ile de France, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Morgane Michel
- Unité de Recherche Clinique en Économie de la Santé d'Ile de France, Assistance Publique Hôpitaux de Paris, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut National de la Santé et de la Recherche Médicale, Epidémiologie Clinique et Evaluation Economique, Paris, France
| | - Manon Durand
- Unité de Recherche Clinique en Économie de la Santé d'Ile de France, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Isabelle Borget
- Etudes et Recherche en Economie de la Santé, Gustave Roussy Institute, Villejuif, France
| | | | - Patricia Marino
- Institut Paoli Calmettes, Sciences Economiques et Sociales de la Santé et Traitement de l'information Médicale, Marseille, France
| | - Lionel Perrier
- Université de Lyon, Centre Léon Bérard, Groupe d'Analyse de Théorie Economique, Lyon Saint-Etienne-Joint Research Units, Lyon, France
| | - Isabelle Durand-Zaleski
- Unité de Recherche Clinique en Économie de la Santé d'Ile de France, Assistance Publique Hôpitaux de Paris, Paris, France; Centre of Research in Epidemiology and Statistics, Institut National de la Santé et de la Recherche Médicale-Joint Research Units, Paris, France; Public Health Department, Hôpital Henri-Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| |
Collapse
|
29
|
Targeted Assessment of the EGFR Status as Reflex Testing in Treatment-Naive Non-Squamous Cell Lung Carcinoma Patients: A Single Laboratory Experience (LPCE, Nice, France). Cancers (Basel) 2020; 12:cancers12040955. [PMID: 32294880 PMCID: PMC7225982 DOI: 10.3390/cancers12040955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Assessment of actionable EGFR mutations is mandatory for treatment-naïve advanced or metastatic non-squamous lung carcinoma (NSLC), but the results need to be obtained in less than 10 working days. For rapid EGFR testing, an EGFR-specific polymerase chain reaction (PCR) assay is an alternative and simple approach compared to next generation sequencing (NGS). Here, we describe how a rapid EGFR-specific PCR assay can be implemented in a single laboratory center (LPCE, Nice, France) as reflex testing in treatment-naïve NSLC. Methods: A total of 901 biopsies from NSLC with more than 10% of tumor cells were prospectively and consecutively evaluated for EGFR mutation status between November 2017 and December 2019 using the Idylla system (Biocartis NV, Mechelen, Belgium). NGS was performed for nonsmokers with NSLC wild type for EGFR, ALK, ROS1, and BRAF and with less than 50% PD-L1 positive cells using the Hotspot panel (Thermo Fisher Scientific, Waltham, MA, USA). Results: Results were obtained from 889/901 (97%) biopsies with detection of EGFR mutations in 114/889 (13%) cases using the Idylla system. Among the 562 EGFR wild type tumors identified with Idylla, NGS detected one actionable and one nonactionable EGFR mutation. Conclusions: Rapid and targeted assessment of EGFR mutations in treatment-naïve NSLC can be implemented in routine clinical practice. However, it is mandatory to integrate this approach into a molecular algorithm that allows evaluation of potentially actionable genomic alterations other than EGFR mutations.
Collapse
|
30
|
Genomic profiling in oncology clinical practice. Clin Transl Oncol 2020; 22:1430-1439. [PMID: 31981077 DOI: 10.1007/s12094-020-02296-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
The development of high-throughput technologies such as next-generation sequencing for DNA sequencing together with the decrease in their cost has led to the progressive introduction of genomic profiling in our daily practice in oncology. Nowadays, genomic profiling is part of genetic counseling, cancer diagnosis, molecular characterization, and as a biomarker of prognosis and response to treatment. Furthermore, germline or somatic genomic characterization of the tumor may provide new treatment opportunities for patients with cancer. In this review, we will summarize the clinical applications and limitations of genomic profiling in oncology clinical practice, focusing on next-generation sequencing.
Collapse
|
31
|
Remon J, Lopes G, Camps C. How sustainable are new treatment strategies for NSCLC? THE LANCET RESPIRATORY MEDICINE 2019; 7:733-735. [DOI: 10.1016/s2213-2600(19)30184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/28/2023]
|
32
|
McKenzie AJ, H Dilks H, Jones SF, Burris H. Should next-generation sequencing tests be performed on all cancer patients? Expert Rev Mol Diagn 2019; 19:89-93. [PMID: 30618301 DOI: 10.1080/14737159.2019.1564043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Holli H Dilks
- a Sarah Cannon Research Institute , Nashville , Tennessee , USA
| | - Suzanne F Jones
- a Sarah Cannon Research Institute , Nashville , Tennessee , USA
| | - Howard Burris
- a Sarah Cannon Research Institute , Nashville , Tennessee , USA
| |
Collapse
|