1
|
Zeng C, Hua S, Zhou J, Zeng T, Chen J, Su L, Jiang A, Zhou M, Tang Z. Oral Microalgae-Based Biosystem to Enhance Irreversible Electroporation Immunotherapy in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409381. [PMID: 39874200 PMCID: PMC12005737 DOI: 10.1002/advs.202409381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Indexed: 01/30/2025]
Abstract
Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C. vulgaris) and polydopamine (PDA) adhesive properties to encapsulate a PD-1 inhibitor (PI). The PDA coating protects the drug from degradation by stomach acid and enhances its intestinal absorption. This carrier demonstrates excellent in vivo drug release control and biodistribution, significantly increasing the oral bioavailability of PI. Combining IRE with this natural carrier significantly improves the therapeutic efficacy, which increases the local drug concentration and activates the immune system. This system demonstrates significantly improved therapeutic efficacy against local tumors compared with PI or IRE alone and significantly reduces PI-associated side effects. A convenient oral delivery system is developed using this readily available natural micro-carrier that not only improves the therapeutic effect of IRE but also mitigates its adverse effects, indicating significant potential for clinical applications. This discovery offers a new strategy for hepatocellular carcinoma treatment with the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| | - Shiyuan Hua
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHaining314400China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
- Zhejiang University‐Ordos City Etuoke Banner Joint Research CenterZhejiang UniversityHaining314400China
- The National Key Laboratory of Biobased Transportation Fuel TechnologyZhejiang UniversityHangzhou310027China
| | - Jiayu Zhou
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHaining314400China
- School of MedicineShihezi UniversityShiheziXinjiang832002China
| | - Tangye Zeng
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| | - Jianke Chen
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Lijian Su
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Angfeng Jiang
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| | - Min Zhou
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHaining314400China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
- Zhejiang University‐Ordos City Etuoke Banner Joint Research CenterZhejiang UniversityHaining314400China
- The National Key Laboratory of Biobased Transportation Fuel TechnologyZhejiang UniversityHangzhou310027China
| | - Zhe Tang
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Department of SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| |
Collapse
|
2
|
Seal R, Bararia A, Chattopadhyay BK, Sikdar N. Irreversible electroporation for metastatic pancreatic carcinoma with liver metastasis: What does the evidence say. World J Clin Cases 2025; 13:98452. [PMID: 39866648 PMCID: PMC11577528 DOI: 10.12998/wjcc.v13.i3.98452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/12/2024] Open
Abstract
Irreversible electroporation is a promising non-thermal ablation method that has been shown to increase overall survival in locally advanced pancreatic cancer in some studies. However, higher quality studies with proper controls and randomization are required to establish its superiority when added with neoadjuvant chemotherapy over the current management of choice, which is chemotherapy alone. Further studies are required before establishment of any survival benefit in metastatic pancreatic carcinoma, and such evidence is lacking at present.
Collapse
Affiliation(s)
- Ranit Seal
- Department of General Surgery, IPGME & R and SSKM Hospital, Kolkata 700020, West Bengal, India
| | - Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Estaurine and Coastal Studies Foundation, Howrah 711101, India
| |
Collapse
|
3
|
Liu X, Wang H, Zhao Z, Zhong Q, Wang X, Liu X, Chen J, Han C, Shi Z, Liang Q. Advances in irreversible electroporation for prostate cancer. Discov Oncol 2024; 15:713. [PMID: 39589586 PMCID: PMC11599553 DOI: 10.1007/s12672-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Irreversible electroporation is a nonthermal ablation technique that uses a high-voltage electric current to create nanosized pores in the cell membrane of a malignant tumor, thus resulting in cell death. In recent years, an increasing number of clinical studies have shown that irreversible electroporation is a safe and effective treatment for prostate cancer. We describe the progress of irreversible electroporation in prostate cancer in recent years in terms of its mechanism of action, clinical studies, advantages and disadvantages and summarize the gaps in existing studies and directions for future research.
Collapse
Affiliation(s)
- Xinyu Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Hao Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zilin Zhao
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qikai Zhong
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xinlei Wang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xing Liu
- Southeast University, Nanjing, Jiangsu, China
| | - Junzhi Chen
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Conghui Han
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhenduo Shi
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| | - Qing Liang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
5
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
6
|
He N, Jiang J. Contribution of immune cells in synergistic anti-tumor effect of ablation and immunotherapy. Transl Oncol 2024; 40:101859. [PMID: 38070356 PMCID: PMC10755586 DOI: 10.1016/j.tranon.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024] Open
Abstract
Thermal ablation results in the damage of tumor tissue, which leads to localized necrosis and incites a significant inflammatory response, accompanied by the infiltration of numerous immune cells. Nevertheless, depending solely on the singular approach of thermal ablation frequently is difficult in eliciting a robust anti-tumor response. Research suggests that integrating immune modulators into conventional ablation techniques has the potential to enhance the elicited immune response, finally initiating synergistic effect without significantly elevated risk profiles. This article comprehensively analyses the immunological effects resulting from post-ablation alone and its synergy with immunotherapies, and accentuates the heterogeneous alterations noted in immune cells across distinct malignancies. Collectively, the article delves into the theoretical framework and advancements in clinical trials concerning the combined thermal ablation and immunotherapy for treating malignant tumors.
Collapse
Affiliation(s)
- Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Yangzhou University, Yangzhou, China; Department of Oncology, First People's Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Yangzhou University, Yangzhou, China; Department of Oncology, First People's Hospital of Changzhou, Changzhou, China.
| |
Collapse
|
7
|
Narayanan G, Koethe Y, Gentile N. Irreversible Electroporation of the Hepatobiliary System: Current Utilization and Future Avenues. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:251. [PMID: 38399539 PMCID: PMC10890312 DOI: 10.3390/medicina60020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Liver cancer remains a leading cause of cancer-related deaths worldwide despite numerous advances in treatment. While surgical resection remains the gold standard for curative treatment, it is only possible for a minority of patients. Thermal ablation is an effective option for the treatment of smaller tumors; however, its use is limited to tumors that are not located in proximity to sensitive structures due to the heat sink effect and the potential of thermal damage. Irreversible electroporation (IRE) is a non-thermal ablative modality that can deliver targeted treatment and the effective destruction of tumors that are in close proximity to or even surrounding vascular or biliary ducts with minimal damage to these structures. IRE produces short pulses of high-frequency energy which opens pores in the lipid bilayer of cells leading to apoptosis and cell death. IRE has been utilized clinically for over a decade in the treatment of liver cancers with multiple studies documenting an acceptable safety profile and high efficacy rates.
Collapse
Affiliation(s)
- Govindarajan Narayanan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
- Miami Cardiac and Vascular, Baptist Health South Florida, 8900 North Kendall Drive, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | - Nicole Gentile
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
| |
Collapse
|
8
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
9
|
De Grandis MC, Ascenti V, Lanza C, Di Paolo G, Galassi B, Ierardi AM, Carrafiello G, Facciorusso A, Ghidini M. Locoregional Therapies and Remodeling of Tumor Microenvironment in Pancreatic Cancer. Int J Mol Sci 2023; 24:12681. [PMID: 37628865 PMCID: PMC10454061 DOI: 10.3390/ijms241612681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Despite the advances made in treatment, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains dismal, even in the locoregional and locally advanced stages, with high relapse rates after surgery. PDAC exhibits a chemoresistant and immunosuppressive phenotype, and the tumor microenvironment (TME) surrounding cancer cells actively participates in creating a stromal barrier to chemotherapy and an immunosuppressive environment. Recently, there has been an increasing use of interventional radiology techniques for the treatment of PDAC, although they do not represent a standard of care and are not included in clinical guidelines. Local approaches such as radiation therapy, hyperthermia, microwave or radiofrequency ablation, irreversible electroporation and high-intensity focused ultrasound exert their action on the tumor tissue, altering the composition and structure of TME and potentially enhancing the action of chemotherapy. Moreover, their action can increase antigen release and presentation with T-cell activation and reduction tumor-induced immune suppression. This review summarizes the current evidence on locoregional therapies in PDAC and their effect on remodeling TME to make it more susceptible to the action of antitumor agents.
Collapse
Affiliation(s)
| | - Velio Ascenti
- Postgraduate School of Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy; (V.A.); (C.L.)
| | - Carolina Lanza
- Postgraduate School of Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy; (V.A.); (C.L.)
| | - Giacomo Di Paolo
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.D.G.); (G.D.P.)
| | - Barbara Galassi
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (M.G.)
| | - Anna Maria Ierardi
- Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.M.I.); (G.C.)
| | - Gianpaolo Carrafiello
- Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.M.I.); (G.C.)
- Department of Oncology and Haemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (M.G.)
| |
Collapse
|
10
|
Khan F, Jones K, Lyon P. Immune checkpoint inhibition: a future guided by radiology. Br J Radiol 2023; 96:20220565. [PMID: 36752570 PMCID: PMC10321249 DOI: 10.1259/bjr.20220565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
The limitation of the function of antitumour immune cells is a common hallmark of cancers that enables their survival. As such, the potential of immune checkpoint inhibition (ICI) acts as a paradigm shift in the treatment of a range of cancers but has not yet been fully capitalised. Combining minimally and non-invasive locoregional therapies offered by radiologists with ICI is now an active field of research with the aim of furthering therapeutic capabilities in medical oncology. In parallel to this impending advancement, the "imaging toolbox" available to radiologists is also growing, enabling more refined tumour characterisation as well as greater accuracy in evaluating responses to therapy. Options range from metabolite labelling to cellular localisation to immune checkpoint screening. It is foreseeable that these novel imaging techniques will be integrated into personalised treatment algorithms. This growth in the field must include updating the current standardised imaging criteria to ensure they are fit for purpose. Such criteria is crucial to both appropriately guide clinical decision-making regarding next steps of treatment, but also provide reliable prognosis. Quantitative approaches to these novel imaging techniques are also already being investigated to further optimise personalised therapeutic decision-making. The therapeutic potential of specific ICIs and locoregional therapies could be determined before administration thus limiting unnecessary side-effects whilst maintaining efficacy. Several radiological aspects of oncological care are advancing simultaneously. Therefore, it is essential that each development is assessed for clinical use and optimised to ensure the best treatment decisions are being offered to the patient. In this review, we discuss state of the art advances in novel functional imaging techniques in the field of immuno-oncology both pre-clinically and clinically.
Collapse
Affiliation(s)
- Faraaz Khan
- Foundation Doctor, Buckinghamshire Hospitals NHS Trust, Amersham, Buckinghamshire, United Kingdom
| | - Keaton Jones
- Academic Clinical Lecturer Nuffield Department of Surgical Sciences University of Oxford, Wellington Square, Oxford, United Kingdom
| | - Paul Lyon
- Consultant Radiologist, Department of Radiology, Oxford University Hospitals, Headington, Oxford, United Kingdom
| |
Collapse
|
11
|
Medlej ZAA, Medlej W, Slaba S, Torrecillas P, Cueto A, Urbaneja A, Garrido AJ, Lugnani F. Cryoablation and Immunotherapy: An Enthralling Synergy for Cancer Treatment. Curr Oncol 2023; 30:4844-4860. [PMID: 37232823 DOI: 10.3390/curroncol30050365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
As less invasive options for surgical tumor removal, minimally invasive ablative techniques have gained popularity. Several solid tumors are being treated with cryoablation, a non-heat-based ablation technique. Cryoablation data in comparison over time demonstrates better tumor response and faster recovery. Combining cryosurgery with other cancer therapies has been explored to improve the cancer-killing process. Cryoablation with the combination of immunotherapy, results in a robust and efficient attack on the cancer cells. This article focuses on investigating the ability of cryosurgery to create a strong antitumor response when combined with immunologic agents resulting in a synergetic effect. To achieve this objective, we combined cryosurgery with immunotherapy using Nivolumab and lpilimumab. Five clinical cases of lymph node, lung cancer, bone, and lung metastasis were followed and analyzed. In this series of patients, percutaneous cryoablation and addressing immunity agents were technically feasible. In the follow-ups, there appeared to be no radiological evidence of new tumor development.
Collapse
Affiliation(s)
- Zain Al Abidine Medlej
- Agro-Food and Environmental Biosciences and Technologies Department, University of Teramo, 64100 Teramo, Italy
| | - Wassim Medlej
- Cryolebabon and Medical Devices Sarl, Beirut 1107 2020, Lebanon
| | - Sami Slaba
- Hotel Dieu de France Hospital, Saint-Joseph University, Beirut 1104 2020, Lebanon
| | | | - Antonio Cueto
- Radiology Department, Clinica Santa Elena, 29620 Madrid, Spain
| | | | | | - Franco Lugnani
- Radiology Department, Clinica Santa Elena, 29620 Madrid, Spain
| |
Collapse
|
12
|
Jiang M, Fiering S, Shao Q. Combining energy-based focal ablation and immune checkpoint inhibitors: preclinical research and clinical trials. Front Oncol 2023; 13:1153066. [PMID: 37251920 PMCID: PMC10211342 DOI: 10.3389/fonc.2023.1153066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Energy-based focal therapy (FT) uses targeted, minimally invasive procedures to destroy tumors while preserving normal tissue and function. There is strong emerging interest in understanding how systemic immunity against the tumor can occur with cancer immunotherapy, most notably immune checkpoint inhibitors (ICI). The motivation for combining FT and ICI in cancer management relies on the synergy between the two different therapies: FT complements ICI by reducing tumor burden, increasing objective response rate, and reducing side effects of ICI; ICI supplements FT by reducing local recurrence, controlling distal metastases, and providing long-term protection. This combinatorial strategy has shown promising results in preclinical study (since 2004) and the clinical trials (since 2011). Understanding the synergy calls for understanding the physics and biology behind the two different therapies with distinctive mechanisms of action. In this review, we introduce different types of energy-based FT by covering the biophysics of tissue-energy interaction and present the immunomodulatory properties of FT. We discuss the basis of cancer immunotherapy with the emphasis on ICI. We examine the approaches researchers have been using and the results from both preclinical models and clinical trials from our exhaustive literature research. Finally, the challenges of the combinatory strategy and opportunities of future research is discussed extensively.
Collapse
Affiliation(s)
- Minhan Jiang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth Health, Lebanon, NH, United States
| | - Qi Shao
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Xie L, Meng Z. Immunomodulatory effect of locoregional therapy in the tumor microenvironment. Mol Ther 2023; 31:951-969. [PMID: 36694462 PMCID: PMC10124087 DOI: 10.1016/j.ymthe.2023.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer immunotherapy appears to be a promising treatment option; however, only a subset of patients with cancer responds favorably to treatment. Locoregional therapy initiates a local antitumor immune response by disrupting immunosuppressive components, releasing immunostimulatory damage-associated molecular patterns, recruiting immune effectors, and remodeling the tumor microenvironment. Many studies have shown that locoregional therapy can produce specific antitumor immunity alone; nevertheless, the effect is relatively weak and transient. Furthermore, increasing research efforts have explored the potential synergy between locoregional therapy and immunotherapy to enhance the long-term systemic antitumor immune effect and improve survival. Therefore, further research is needed into the immunomodulatory effects of locoregional therapy and immunotherapy to augment antitumor effects. This review article summarizes the key components of the tumor microenvironment, discusses the immunomodulatory role of locoregional therapy in the tumor microenvironment, and emphasizes the therapeutic potential of locoregional therapy in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lin Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.
| |
Collapse
|
14
|
Kim NJ, Yoon JH, Tuomi AC, Lee J, Kim D. In-situ tumor vaccination by percutaneous ablative therapy and its synergy with immunotherapeutics: An update on combination therapy. Front Immunol 2023; 14:1118845. [PMID: 36969248 PMCID: PMC10030508 DOI: 10.3389/fimmu.2023.1118845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Percutaneous tumor ablation is now a widely accepted minimally invasive local treatment option offered by interventional radiology and applied to various organs and tumor histology types. It utilizes extreme temperatures to achieve irreversible cellular injury, where ablated tumor interacts with surrounding tissue and host via tissue remodeling and inflammation, clinically manifesting as post-ablation syndrome. During this process, in-situ tumor vaccination occurs, in which tumor neoantigens are released from ablated tissue and can prime one’s immune system which would favorably affect both local and remote site disease control. Although successful in priming the immune system, this rarely turns into clinical benefits for local and systemic tumor control due to intrinsic negative immune modulation of the tumor microenvironment. A combination of ablation and immunotherapy has been employed to overcome these and has shown promising preliminary results of synergistic effect without significantly increased risk profiles. The aim of this article is to review the evidence on post-ablation immune response and its synergy with systemic immunotherapies.
Collapse
Affiliation(s)
- Nicole J. Kim
- Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jessica H. Yoon
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Adam C. Tuomi
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - John Lee
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Daehee Kim
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI, United States
- *Correspondence: Daehee Kim,
| |
Collapse
|
15
|
Gajewska-Naryniecka A, Szwedowicz U, Łapińska Z, Rudno-Rudzińska J, Kielan W, Kulbacka J. Irreversible Electroporation in Pancreatic Cancer-An Evolving Experimental and Clinical Method. Int J Mol Sci 2023; 24:4381. [PMID: 36901812 PMCID: PMC10002122 DOI: 10.3390/ijms24054381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer has no symptoms until the disease has advanced and is aggressive cancer with early metastasis. Up to now, the only curative treatment is surgical resection, which is possible in the early stages of the disease. Irreversible electroporation treatment offers new hope for patients with unresectable tumors. Irreversible electroporation (IRE) is a type of ablation therapy that has been explored as a potential treatment for pancreatic cancer. Ablation therapies involve the use of energy to destroy or damage cancer cells. IRE involves using high-voltage, low-energy electrical pulses to create resealing in the cell membrane, causing the cell to die. This review summarizes experiential and clinical findings in terms of the IRE applications. As was described, IRE can be a non-pharmacological approach (electroporation) or combined with anticancer drugs or standard treatment methods. The efficacy of irreversible electroporation (IRE) in eliminating pancreatic cancer cells has been demonstrated through both in vitro and in vivo studies, and it has been shown to induce an immune response. Nevertheless, further investigation is required to assess its effectiveness in human subjects and to comprehensively understand IRE's potential as a treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julia Rudno-Rudzińska
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
16
|
Ou W, Stewart S, White A, Kwizera EA, Xu J, Fang Y, Shamul JG, Xie C, Nurudeen S, Tirada NP, Lu X, Tkaczuk KHR, He X. In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy. Nat Commun 2023; 14:392. [PMID: 36693842 PMCID: PMC9873931 DOI: 10.1038/s41467-023-36045-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer immunotherapy that deploys the host's immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically "cold" into "hot". In particular, after the ICIE treatment, the ratio of the CD8+ cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes "frostbite" of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8+ cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.
Collapse
Affiliation(s)
- Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Elyahb A Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yuanzhang Fang
- Department of Medical and Molecular Genetics and Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Changqing Xie
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suliat Nurudeen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Nikki P Tirada
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics and Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katherine H R Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
17
|
Tasu JP, Tougeron D, Rols MP. Irreversible electroporation and electrochemotherapy in oncology: State of the art. Diagn Interv Imaging 2022; 103:499-509. [PMID: 36266192 DOI: 10.1016/j.diii.2022.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
Abstract
Thermal tumor ablation techniques including radiofrequency, microwave, LASER, high-intensity focused ultrasound and cryoablation are routinely used to treated liver, kidney, bone, or lung tumors. However, all these techniques are thermal and can therefore be affected by heat sink effect, which can lead to incomplete ablation, and thermal injuries of non-targeted tissues are possible. Under certain conditions, high voltage pulsed electric field can induce formation of pores in the cell membrane. This phenomenon, called electropermeabilization, is also known as "electroporation". Under certain conditions, electroporation can be irreversible, leading to cell death. Irreversible electroporation has demonstrated efficacy for the treatment of liver and prostate cancers, whereas data are scarce regarding pancreatic and renal cancers. During reversible electroporation, transient cell permeability can be used to introduce cytotoxic drugs into tumor cells (commonly bleomycin or cisplatin). Reversible electroporation used in conjunction with cytotoxic drugs shows promise in terms of oncological response, particularly for solid cutaneous and subcutaneous tumors such as melanoma. Irreversible and reversible electroporation are both not thermal ablation techniques and therefore open a new promising horizon for tumor ablation.
Collapse
Affiliation(s)
- Jean-Pierre Tasu
- Department of Diagnosis and interventional radiology, University Hospital of Poitiers, 86021 Poitiers, France; LaTim, UBO and INSERM 1101, University of Brest, 29000 Brest, France.
| | - David Tougeron
- Department of Hepatogastroenterology, University Hospital of Poitiers, 86000 Poitiers, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
18
|
Thomas AS, Kwon W, Horowitz DP, Bates SE, Fojo AT, Manji GA, Schreibman S, Schrope BA, Chabot JA, Kluger MD. Long-term follow-up experience with adjuvant therapy after irreversible electroporation of locally advanced pancreatic cancer. J Surg Oncol 2022; 126:1442-1450. [PMID: 36048146 DOI: 10.1002/jso.27085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Irreversible electroporation (IRE) expands the surgical options for patients with unresectable pancreatic cancer. This study evaluated for differences in survival stratified by type of IRE and receipt of adjuvant chemotherapy. METHODS Patients with locally advanced pancreatic cancer treated by IRE (2012-2020) were retrospectively included. Overall survival (OS) and recurrence-free survival (RFS) were compared by type of IRE (in situ for local tumor control or IRE of potentially positive margins with resection) and by receipt of adjuvant chemotherapy. RESULTS Thirty-nine patients had IRE in situ, 61 had IRE for margin extension, and 19 received adjuvant chemotherapy. Most (97.00%) underwent induction chemotherapy. OS was 28.71 months (interquartile range [IQR] 19.17, 51.19) from diagnosis, with no difference by IRE type (hazard ratio [HR] 1.05 for margin extension [p = 0.85]) or adjuvant chemotherapy (HR 1.14 [p = 0.639]). RFS was 8.51 months (IQR 4.95, 20.17) with no difference by IRE type (HR 0.90 for margin extension [p = 0.694]) or adjuvant chemotherapy (HR 0.90 [p = 0.711]). CONCLUSION These findings suggest that adjuvant therapy may have limited benefit for patients treated with induction chemotherapy followed by local control with IRE for unresectable pancreatic cancer. Further study of the duration and timing of systemic therapy is warranted to maximize benefit and limit toxicity.
Collapse
Affiliation(s)
- Alexander S Thomas
- Department of Surgery, Division of Gastrointestinal and Endocrine Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Wooil Kwon
- Department of Surgery, Division of Gastrointestinal and Endocrine Surgery, Columbia University Irving Medical Center, New York, New York, USA.,Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - David P Horowitz
- Department of Radiation Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical New York, New York, New York, USA
| | - Susan E Bates
- Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Antonio T Fojo
- Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Gulam A Manji
- Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephen Schreibman
- Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Beth A Schrope
- Department of Surgery, Division of Gastrointestinal and Endocrine Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - John A Chabot
- Department of Surgery, Division of Gastrointestinal and Endocrine Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael D Kluger
- Department of Surgery, Division of Gastrointestinal and Endocrine Surgery, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
19
|
Wang Y, Jiang T, Xie L, Wang H, Zhao J, Xu L, Fang C. Effect of pulsed field ablation on solid tumor cells and microenvironment. Front Oncol 2022; 12:899722. [PMID: 36081554 PMCID: PMC9447365 DOI: 10.3389/fonc.2022.899722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pulsed field ablation can increase membrane permeability and is an emerging non-thermal ablation. While ablating tumor tissues, electrical pulses not only act on the membrane structure of cells to cause irreversible electroporation, but also convert tumors into an immune active state, increase the permeability of microvessels, inhibit the proliferation of pathological blood vessels, and soften the extracellular matrix thereby inhibiting infiltrative tumor growth. Electrical pulses can alter the tumor microenvironment, making the inhibitory effect on the tumor not limited to short-term killing, but mobilizing the collective immune system to inhibit tumor growth and invasion together.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian’an Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- *Correspondence: Tian’an Jiang,
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
21
|
Sugumar K, Hurtado A, Naik I, Hue JJ, Rothermel LD, Ammori JB, Hardacre JM, Winter JM, Ocuin LM. Multimodal therapy with or without irreversible electroporation for unresectable locally advanced pancreatic adenocarcinoma: a systematic review and meta-analysis. HPB (Oxford) 2022; 24:586-595. [PMID: 35000842 DOI: 10.1016/j.hpb.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Irreversible electroporation (IRE) is used as a locoregional treatment modality for patients with locally advanced pancreatic cancer (LAPC), but is non-curative and is associated with postoperative morbidity and mortality. We performed a systematic review and meta-analysis comparing survival outcomes of multimodal therapy with or without IRE. METHODS Separate searches were performed for multimodal therapy + IRE and multimodal therapy alone given the lack of comparative literature using PubMed, SCOPUS, and Cochrane Library in 3/2021. We determined overall survival (OS) and progression-free survival (PFS) from diagnosis and time of IRE. Treatment-related morbidity and mortality was determined. RESULTS Of 585 published articles, 48 met inclusion criteria for IRE (n = 27) and without IRE (n = 21) with data for 1420 (IRE) and 1348 (without IRE) patients. The 6/12/24 months OS with IRE was 99%/84%/28%. The 6/12/24 months OS without IRE was 99%/80%/12%. At 12 months from IRE, OS was 55% and PFS was 12%. The mean major complication and 90-day mortality rates for IRE were 17.95% and 2.65%. CONCLUSION Multimodal therapy alone is associated with similar OS to multimodal therapy + IRE in patients with LAPC. Most patients progress and nearly half die within 1 year of the IRE procedure. Given the lack of quality prospective data, IRE should remain experimental and be used with caution in LAPC.
Collapse
Affiliation(s)
- Kavin Sugumar
- University Hospitals Seidman Cancer Center and the Department of Surgery, Cleveland, OH, USA
| | - Alex Hurtado
- Case Western Reserve University School of Medicine and the Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilora Naik
- Case Western Reserve University School of Medicine and the Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Jonathan J Hue
- University Hospitals Seidman Cancer Center and the Department of Surgery, Cleveland, OH, USA
| | - Luke D Rothermel
- University Hospitals Seidman Cancer Center and the Department of Surgery, Cleveland, OH, USA
| | - John B Ammori
- University Hospitals Seidman Cancer Center and the Department of Surgery, Cleveland, OH, USA
| | - Jeffrey M Hardacre
- University Hospitals Seidman Cancer Center and the Department of Surgery, Cleveland, OH, USA
| | - Jordan M Winter
- University Hospitals Seidman Cancer Center and the Department of Surgery, Cleveland, OH, USA
| | - Lee M Ocuin
- University Hospitals Seidman Cancer Center and the Department of Surgery, Cleveland, OH, USA.
| |
Collapse
|
22
|
Lambin T, Lafon C, Drainville RA, Pioche M, Prat F. Locoregional therapies and their effects on the tumoral microenvironment of pancreatic ductal adenocarcinoma. World J Gastroenterol 2022; 28:1288-1303. [PMID: 35645539 PMCID: PMC9099187 DOI: 10.3748/wjg.v28.i13.1288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of death from cancer by 2030. Despite intensive research in the field of therapeutics, the 5-year overall survival is approximately 8%, with only 20% of patients eligible for surgery at the time of diagnosis. The tumoral microenvironment (TME) of the PDAC is one of the main causes for resistance to antitumoral treatments due to the presence of tumor vasculature, stroma, and a modified immune response. The TME of PDAC is characterized by high stiffness due to fibrosis, with hypo microvascular perfusion, along with an immunosuppressive environment that constitutes a barrier to effective antitumoral treatment. While systemic therapies often produce severe side effects that can alter patients' quality of life, locoregional therapies have gained attention since their action is localized to the pancreas and can thus alleviate some of the barriers to effective antitumoral treatment due to their physical effects. Local hyperthermia using radiofrequency ablation and radiation therapy - most commonly using a local high single dose - are the two main modalities holding promise for clinical efficacy. Recently, irreversible electroporation and focused ultrasound-derived cavitation have gained increasing attention. To date, most of the data are limited to preclinical studies, but ongoing clinical trials may help better define the role of these locoregional therapies in the management of PDAC patients.
Collapse
Affiliation(s)
- Thomas Lambin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon 69003, France
- Department of Gastroenterology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon 69008, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon 69003, France
| | | | - Mathieu Pioche
- Department of Gastroenterology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon 69008, France
| | - Frédéric Prat
- Service d’Endoscopie Digestive, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy 92110, France
- INSERM U1016, Institut Cochin, Université de Paris, Paris 75014, France
| |
Collapse
|
23
|
Sugumar K, Hue JJ, Hardacre JM, Ammori JB, Rothermel LD, Dorth J, Saltzman J, Mohamed A, Selfridge JE, Bajor D, Winter JM, Ocuin LM. Combined multiagent chemotherapy and radiotherapy is associated with prolonged overall survival in patients with non-operatively managed stage II-III pancreatic adenocarcinoma. HPB (Oxford) 2022; 24:433-442. [PMID: 34465529 DOI: 10.1016/j.hpb.2021.08.938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most patients with pancreatic adenocarcinoma (PDAC) do not undergo surgical resection. The role of radiotherapy (RT) in non-operatively managed localized pancreatic adenocarcinoma is unclear. METHODS The National Cancer Database (2010-2016) was queried for patients with clinical stage II-III PDAC treated with multiagent systemic chemotherapy (CT) +/- RT but not surgery. Factors associated with the receipt of RT and overall survival were compared after adjusting for patient demographics and clinical characteristics. RESULTS A total of 14,921 patients were included, of whom 9279 received CT and 5382 received CT + RT. Patients treated with CT + RT were more likely to be younger (65vs66yrs), treated at non-academic facilities (48.8%vs46.7%), have private insurance (40.3%vs36.5%), and have clinical T4 tumors (53.6%vs48.7%). Most patients who were treated with RT received external beam radiotherapy (89.3%), and the median dose was 5,000 cGy. Median time to start of RT was 129 days. CT + RT was associated with longer overall survival (15.9vs11.8mos,p < 0.001), and remained associated with survival on multivariable analysis (HR 0.74, 95%CI 0.70-0.78). On a 4-month conditional survival analysis, combined CT + RT remained associated with improved survival compared to CT alone (16.0vs13.1mos,p < 0.001). CONCLUSIONS In patients with non-operatively managed localized pancreatic adenocarcinoma, combined radiotherapy and multiagent systemic chemotherapy is associated with improved overall survival compared to chemotherapy alone.
Collapse
Affiliation(s)
- Kavin Sugumar
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jeffrey M Hardacre
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - John B Ammori
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jennifer Dorth
- Department of Radiology, Division of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Joel Saltzman
- Department of Medicine, Division of Hematology/Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Amr Mohamed
- Department of Medicine, Division of Hematology/Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jennifer E Selfridge
- Department of Medicine, Division of Hematology/Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - David Bajor
- Department of Medicine, Division of Hematology/Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Lee M Ocuin
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
24
|
Murphy KR, Aycock KN, Hay AN, Rossmeisl JH, Davalos RV, Dervisis NG. High-frequency irreversible electroporation brain tumor ablation: exploring the dynamics of cell death and recovery. Bioelectrochemistry 2022; 144:108001. [PMID: 34844040 PMCID: PMC8792323 DOI: 10.1016/j.bioelechem.2021.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022]
Abstract
Improved therapeutics for malignant brain tumors are urgently needed. High-frequency irreversible electroporation (H-FIRE) is a minimally invasive, nonthermal tissue ablation technique, which utilizes high-frequency, bipolar electric pulses to precisely kill tumor cells. The mechanisms of H-FIRE-induced tumor cell death and potential for cellular recovery are incompletely characterized. We hypothesized that tumor cells treated with specific H-FIRE electric field doses can survive and retain proliferative capacity. F98 glioma and LL/2 Lewis lung carcinoma cell suspensions were treated with H-FIRE to model primary and metastatic brain cancer, respectively. Cell membrane permeability, apoptosis, metabolic viability, and proliferative capacity were temporally measured using exclusion dyes, condensed chromatin staining, WST-8 fluorescence, and clonogenic assays, respectively. Both tumor cell lines exhibited dose-dependent permeabilization, with 1,500 V/cm permitting and 3,000 V/cm inhibiting membrane recovery 24 h post-treatment. Cells treated with 1,500 V/cm demonstrated significant and progressive recovery of apoptosis and metabolic activity, in contrast to cells treated with higher H-FIRE doses. Cancer cells treated with recovery-permitting doses of H-FIRE maintained while those treated with recovery-inhibiting doses lost proliferative capacity. Taken together, our data suggest that H-FIRE induces reversible and irreversible cellular damage in a dose-dependent manner, and the presence of dose-dependent recovery mechanisms permits tumor cell proliferation.
Collapse
Affiliation(s)
- Kelsey R Murphy
- Department of Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| | - Alayna N Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, United States.
| | - Nikolaos G Dervisis
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States.
| |
Collapse
|
25
|
Imran KM, Nagai-Singer MA, Brock RM, Alinezhadbalalami N, Davalos RV, Allen IC. Exploration of Novel Pathways Underlying Irreversible Electroporation Induced Anti-Tumor Immunity in Pancreatic Cancer. Front Oncol 2022; 12:853779. [PMID: 35372046 PMCID: PMC8972192 DOI: 10.3389/fonc.2022.853779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Advancements in medical sciences and technologies have significantly improved the survival of many cancers; however, pancreatic cancer remains a deadly diagnosis. This malignancy is often diagnosed late in the disease when metastases have already occurred. Additionally, the location of the pancreas near vital organs limits surgical candidacy, the tumor's immunosuppressive environment limits immunotherapy success, and it is highly resistant to radiation and chemotherapy. Hence, clinicians and patients alike need a treatment paradigm that reduces primary tumor burden, activates systemic anti-tumor immunity, and reverses the local immunosuppressive microenvironment to eventually clear distant metastases. Irreversible electroporation (IRE), a novel non-thermal tumor ablation technique, applies high-voltage ultra-short pulses to permeabilize targeted cell membranes and induce cell death. Progression with IRE technology and an array of research studies have shown that beyond tumor debulking, IRE can induce anti-tumor immune responses possibly through tumor neo-antigen release. However, the success of IRE treatment (i.e. full ablation and tumor recurrence) is variable. We believe that IRE treatment induces IFNγ expression, which then modulates immune checkpoint molecules and thus leads to tumor recurrence. This indicates a co-therapeutic use of IRE and immune checkpoint inhibitors as a promising treatment for pancreatic cancer patients. Here, we review the well-defined and speculated pathways involved in the immunostimulatory effects of IRE treatment for pancreatic cancer, as well as the regulatory pathways that may negate these anti-tumor responses. By defining these underlying mechanisms, future studies may identify improvements to systemic immune system engagement following local tumor ablation with IRE and beyond.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Nastaran Alinezhadbalalami
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
26
|
Kimura Y, Ghosn M, Cheema W, Adusumilli PS, Solomon SB, Srimathveeralli G. Expanding the role of interventional oncology for advancing precision immunotherapy of solid tumors. Mol Ther Oncolytics 2022; 24:194-204. [PMID: 35036524 PMCID: PMC8752905 DOI: 10.1016/j.omto.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptors (CAR) T cells has proven effective for hematologic malignancies, but success in solid tumors has been impeded by poor intratumoral infiltration, exhaustion of effector cells from antigen burden, and an immunosuppressive tumor microenvironment. Results from recent clinical trials and preclinical studies lend promising evidence of locoregional approaches for CAR T cell delivery, priming the tumor microenvironment, and performing adjuvant therapies that sustain T cell activity. Interventional oncology is a subspeciality of interventional radiology where imaging guidance is used to perform percutaneous and catheter-directed procedures for localized, non-surgical therapy or interrogation of solid tumors. Interventional oncology provides unique synergies with immunotherapy, which has been well-studied to improve treatment efficacy while reducing toxicities associated with systemic treatment. Besides aiding in CAR T cell delivery, priming, or the stimulation of the tumor microenvironment to promote effector survival and function, interventional oncology can also aid in the monitoring of treatment response through selective, multiplex tumor sampling and catheter-based venous sampling. This review presents an overview of interventional oncology, its various procedures, and its potential for advancing CAR T cell immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Yasushi Kimura
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Mario Ghosn
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Waseem Cheema
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen B. Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Govindarajan Srimathveeralli
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA, USA
- Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| |
Collapse
|
27
|
Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, Liu Z, Lv Y. Irreversible Electroporation: An Emerging Immunomodulatory Therapy on Solid Tumors. Front Immunol 2022; 12:811726. [PMID: 35069599 PMCID: PMC8777104 DOI: 10.3389/fimmu.2021.811726] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Irreversible electroporation (IRE), a novel non-thermal ablation technique, is utilized to ablate unresectable solid tumors and demonstrates favorable safety and efficacy in the clinic. IRE applies electric pulses to alter the cell transmembrane voltage and causes nanometer-sized membrane defects or pores in the cells, which leads to loss of cell homeostasis and ultimately results in cell death. The major drawbacks of IRE are incomplete ablation and susceptibility to recurrence, which limit its clinical application. Recent studies have shown that IRE promotes the massive release of intracellular concealed tumor antigens that become an "in-situ tumor vaccine," inducing a potential antitumor immune response to kill residual tumor cells after ablation and inhibiting local recurrence and distant metastasis. Therefore, IRE can be regarded as a potential immunomodulatory therapy, and combined with immunotherapy, it can exhibit synergistic treatment effects on malignant tumors, which provides broad application prospects for tumor treatment. This work reviewed the current status of the clinical efficacy of IRE in tumor treatment, summarized the characteristics of local and systemic immune responses induced by IRE in tumor-bearing organisms, and analyzed the specific mechanisms of the IRE-induced immune response. Moreover, we reviewed the current research progress of IRE combined with immunotherapy in the treatment of solid tumors. Based on the findings, we present deficiencies of current preclinical studies of animal models and analyze possible reasons and solutions. We also propose possible demands for clinical research. This review aimed to provide theoretical and practical guidance for the combination of IRE with immunotherapy in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
28
|
Tian G, Guan J, Chu Y, Zhao Q, Jiang T. Immunomodulatory Effect of Irreversible Electroporation Alone and Its Cooperating With Immunotherapy in Pancreatic Cancer. Front Oncol 2021; 11:712042. [PMID: 34568040 PMCID: PMC8462269 DOI: 10.3389/fonc.2021.712042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
Emerging studies have showed irreversible electroporation (IRE) focused on pancreatic cancer (PC). However, the effects of IRE treatment on the immune response of PC remain unknown. Moreover, there are few studies on the therapeutic effect of IRE combining with immunotherapy on PC. Thus, we review recent advances in our understanding of IRE alone and its working with immunotherapy towards the immune response of PC, discussing potential opportunities for exploring future treatment strategies.
Collapse
Affiliation(s)
- Guo Tian
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biomedicine, Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jiajia Guan
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhua Chu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biomedicine, Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Tian'an Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biomedicine, Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
29
|
Geboers B, Timmer FEF, Ruarus AH, Pouw JEE, Schouten EAC, Bakker J, Puijk RS, Nieuwenhuizen S, Dijkstra M, van den Tol MP, de Vries JJJ, Oprea-Lager DE, Menke-van der Houven van Oordt CW, van der Vliet HJ, Wilmink JW, Scheffer HJ, de Gruijl TD, Meijerink MR. Irreversible Electroporation and Nivolumab Combined with Intratumoral Administration of a Toll-Like Receptor Ligand, as a Means of In Vivo Vaccination for Metastatic Pancreatic Ductal Adenocarcinoma (PANFIRE-III). A Phase-I Study Protocol. Cancers (Basel) 2021; 13:cancers13153902. [PMID: 34359801 PMCID: PMC8345515 DOI: 10.3390/cancers13153902] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metastatic pancreatic ductal adenocarcinoma has a dismal prognosis, and to date no curative treatment options exist. The image guided tumor ablation technique irreversible electroporation (IRE) employs high-voltage electrical pulses through the application of several needle electrodes in and around the tumor in order to induce cell death. IRE ablation of the primary tumor has the ability to reduce pancreatic tumor induced immune suppression while allowing the expansion of tumor specific effector T cells, hereby possibly shifting the pancreatic tumor microenvironment into a more immune permissive state. The addition of immune enhancing therapies to IRE might work synergistically and could potentially induce a clinically significant treatment effect. This study protocol describes the rationale and design of the PANFIRE-III trial that aims to assess the safety of the combination of IRE with IMO-2125 (toll-like receptor 9 ligand) and/or nivolumab in patients with metastatic pancreatic ductal adenocarcinoma. Abstract Irreversible electroporation (IRE) is a novel image-guided tumor ablation technique with the ability to generate a window for the establishment of systemic antitumor immunity. IRE transiently alters the tumor’s immunosuppressive microenvironment while simultaneously generating antigen release, thereby instigating an adaptive immune response. Combining IRE with immunotherapeutic drugs, i.e., electroimmunotherapy, has synergistic potential and might induce a durable antitumor response. The primary objective of this study is to assess the safety of the combination of IRE with IMO-2125 (a toll-like receptor 9 ligand) and/or nivolumab in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). In this randomized controlled phase I clinical trial, 18 patients with mPDAC pretreated with chemotherapy will be enrolled in one of three study arms: A (control): nivolumab monotherapy; B: percutaneous IRE of the primary tumor followed by nivolumab; or C: intratumoral injection of IMO-2125 followed by percutaneous IRE of the primary tumor and nivolumab. Assessments include contrast enhanced computed tomography (ceCT), 18F-FDG and 18F-BMS-986192 (PD-L1) positron emission tomography (PET)-CT, biopsies of the primary tumor and metastases, peripheral blood samples, and quality of life and pain questionnaires. There is no curative treatment option for patients with mPDAC, and palliative chemotherapy regimens only moderately improve survival. Consequently, there is an urgent need for innovative and radically different treatment approaches. Should electroimmunotherapy establish an effective and durable anti-tumor response, it may ultimately improve PDAC’s dismal prognosis.
Collapse
Affiliation(s)
- Bart Geboers
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
- Correspondence:
| | - Florentine E. F. Timmer
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Alette H. Ruarus
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Johanna E. E. Pouw
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Evelien A. C. Schouten
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Joyce Bakker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Robbert S. Puijk
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - M. Petrousjka van den Tol
- Department of Surgery, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Jan J. J. de Vries
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - C. Willemien Menke-van der Houven van Oordt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Hans J. van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
- Lava Therapeutics, Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Hester J. Scheffer
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Martijn R. Meijerink
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | | |
Collapse
|
30
|
Burbach BJ, O'Flanagan SD, Shao Q, Young KM, Slaughter JR, Rollins MR, Street TJL, Granger VE, Beura LK, Azarin SM, Ramadhyani S, Forsyth BR, Bischof JC, Shimizu Y. Irreversible electroporation augments checkpoint immunotherapy in prostate cancer and promotes tumor antigen-specific tissue-resident memory CD8+ T cells. Nat Commun 2021; 12:3862. [PMID: 34162858 PMCID: PMC8222297 DOI: 10.1038/s41467-021-24132-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
Memory CD8+ T cells populate non-lymphoid tissues (NLTs) following pathogen infection, but little is known about the establishment of endogenous tumor-specific tissue-resident memory T cells (TRM) during cancer immunotherapy. Using a transplantable mouse model of prostate carcinoma, here we report that tumor challenge leads to expansion of naïve neoantigen-specific CD8+ T cells and formation of a small population of non-recirculating TRM in several NLTs. Primary tumor destruction by irreversible electroporation (IRE), followed by anti-CTLA-4 immune checkpoint inhibitor (ICI), promotes robust expansion of tumor-specific CD8+ T cells in blood, tumor, and NLTs. Parabiosis studies confirm that TRM establishment following dual therapy is associated with tumor remission in a subset of cases and protection from subsequent tumor challenge. Addition of anti-PD-1 following dual IRE + anti-CTLA-4 treatment blocks tumor growth in non-responsive cases. This work indicates that focal tumor destruction using IRE combined with ICI is a potent in situ tumor vaccination strategy that generates protective tumor-specific TRM.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA.
| | - Stephen D O'Flanagan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, USA
| | - Qi Shao
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Katharine M Young
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Joseph R Slaughter
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Meagan R Rollins
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Boston Scientific Corporation, Maple Grove, MN, USA
| | - Tami Jo L Street
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Victoria E Granger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Lalit K Beura
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, USA
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Samira M Azarin
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA
| | | | | | - John C Bischof
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
31
|
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - A review. Bioelectrochemistry 2021; 141:107871. [PMID: 34147013 DOI: 10.1016/j.bioelechem.2021.107871] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Exposure of cells to high voltage electric pulses increases transiently membrane permeability through membrane electroporation. Electroporation can be reversible and is used in gene transfer and enhanced drug delivery but can also lead to cell death. Electroporation resulting in cell death (termed as irreversible electroporation) has been successfully used as a new non-thermal ablation method of soft tissue such as tumours or arrhythmogenic heart tissue. Even though the mechanisms of cell death can influence the outcome of electroporation-based treatments due to use of different electric pulse parameters and conditions, these are not elucidated yet. We review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death after electroporation and membrane repair mechanisms involved. The knowledge of membrane repair and cell death mechanisms after cell exposure to electric pulses, targets of electric field in cells need to be identified to optimize existing and develop of new electroporation-based techniques used in medicine, biotechnology, and food technology.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
33
|
Ablation in Pancreatic Cancer: Past, Present and Future. Cancers (Basel) 2021; 13:cancers13112511. [PMID: 34063784 PMCID: PMC8196600 DOI: 10.3390/cancers13112511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
The insidious onset and aggressive nature of pancreatic cancer contributes to the poor treatment response and high mortality of this devastating disease. While surgery, chemotherapy and radiation have contributed to improvements in overall survival, roughly 90% of those afflicted by this disease will die within 5 years of diagnosis. The developed ablative locoregional treatment modalities have demonstrated promise in terms of overall survival and quality of life. In this review, we discuss some of the recent studies demonstrating the safety and efficacy of ablative treatments in patients with locally advanced pancreatic cancer.
Collapse
|
34
|
Timmer FE, Geboers B, Nieuwenhuizen S, Schouten EA, Dijkstra M, de Vries JJ, van den Tol MP, de Gruijl TD, Scheffer HJ, Meijerink MR. Locally Advanced Pancreatic Cancer: Percutaneous Management Using Ablation, Brachytherapy, Intra-arterial Chemotherapy, and Intra-tumoral Immunotherapy. Curr Oncol Rep 2021; 23:68. [PMID: 33864144 PMCID: PMC8052234 DOI: 10.1007/s11912-021-01057-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplasms, bearing a terrible prognosis. Stage III tumors, also known as locally advanced pancreatic cancer (LAPC), are unresectable, and current palliative chemotherapy regimens have only modestly improved survival in these patients. At this stage of disease, interventional techniques may be of value and further prolong life. The aim of this review was to explore current literature on locoregional percutaneous management for LAPC. RECENT FINDINGS Locoregional percutaneous interventional techniques such as ablation, brachytherapy, and intra-arterial chemotherapy possess cytoreductive abilities and have the potential to increase survival. In addition, recent research demonstrates the immunomodulatory capacities of these treatments. This immune response may be leveraged by combining the interventional techniques with intra-tumoral immunotherapy, possibly creating a durable anti-tumor effect. This multimodality treatment approach is currently being examined in several ongoing clinical trials. The use of certain interventional techniques appears to improve survival in LAPC patients and may work synergistically when combined with immunotherapy. However, definitive conclusions can only be made when large prospective (randomized controlled) trials confirm these results.
Collapse
Affiliation(s)
- Florentine E.F. Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Evelien A.C. Schouten
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jan J.J. de Vries
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - M. Petrousjka van den Tol
- Department of Surgical Oncology, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC (location VUmc)-Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hester J. Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Martijn R. Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC (location VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
35
|
Kwon W, Thomas A, Kluger MD. Irreversible electroporation of locally advanced pancreatic cancer. Semin Oncol 2021; 48:84-94. [PMID: 33648735 DOI: 10.1053/j.seminoncol.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Locally advanced pancreatic cancer (LAPC) constitutes approximately one-third of all pancreatic cancer, with standard of care inconsistently defined and achieving modest outcomes at best. While resection after downstaging offers the chance for cure, only a fraction of patients with LAPC become candidates for resection. Chemotherapy remains the mainstay of treatment for the remainder. In these patients, ablative therapy may be given for local control of the tumor. Irreversible electroporation (IRE) is an attractive ablative technique. IRE changes the permeability of tumor cell membranes to induce apoptosis. Unlike other ablative therapies, IRE causes little thermal injury to the target area, making it ideal for LAPC involving major vessels. Compared to systemic chemotherapy alone, IRE seems to offer some survival benefit. Although early studies reported notable morbidity and mortality rates, IRE presents opportunities for those who cannot undergo resection and who otherwise have limited options. Another role of IRE is to extend the margins of resected tumors when there is a concern for R1 resection. Perhaps most exciting, IRE is thought to have effects beyond local ablation. IRE has immunomodulatory effects, which may induce in vivo vaccination and may potentially synergize with immunotherapy. Through electrochemotherapy, IRE may enhance drug delivery to residual tumor cells. Ultimately the role of IRE in the treatment of LAPC still needs to be validated through well designed randomized trials. Investigations of its future possibilities are in the early stages. IRE offers the potential to provide more options to LAPC patients.
Collapse
Affiliation(s)
- Wooil Kwon
- Division of GI/Endocrine Surgery, Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Alexander Thomas
- Division of GI/Endocrine Surgery, Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael D Kluger
- Division of GI/Endocrine Surgery, Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
36
|
Yang J, Eresen A, Shangguan J, Ma Q, Yaghmai V, Zhang Z. Irreversible electroporation ablation overcomes tumor-associated immunosuppression to improve the efficacy of DC vaccination in a mice model of pancreatic cancer. Oncoimmunology 2021; 10:1875638. [PMID: 33643692 PMCID: PMC7872063 DOI: 10.1080/2162402x.2021.1875638] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with highly immunosuppressive tumor microenvironment (TME) that can limit the efficacy of dendritic cell (DC) vaccine immunotherapy. Irreversible electroporation (IRE) is a local ablation approach. Herein, we test the hypothesis that IRE ablation can overcome TME immunosuppression to improve the efficacy of DC vaccination using KrasLSL-G12D-p53LSL-R172H-Pdx-1-Cre (KPC) orthotopic mouse model of PDAC. The median survival for mice treated with the combined IRE and DC vaccination was 77 days compared with sham control (35 days), DC vaccination (49 days), and IRE (44 days) groups (P = .006). Thirty-six percent of the mice treated with combination IRE and DC vaccination were still survival at the end of the study period (90 days) without visible tumor. The changes of tumor apparent diffusion coefficient (ΔADC) were higher in mice treated with combination IRE and DC vaccination than that of other groups (all P < .001); tumor ΔADC value positively correlated with tumor fibrosis fraction (R = 0.707, P < .001). IRE induced immunogenic cell death and alleviation of immunosuppressive components in PDAC TME when combined with DC vaccination, including increased tumor infiltration of CD8+ T cells and Granzyme B+ cells (P = .001, and P = .007, respectively). Our data show that IRE ablation can overcome TME immunosuppression to improve the efficacy of DC vaccination in PDAC. Combination IRE ablation and DC vaccination may enhance therapeutic efficacy for PDAC.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Quanhong Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| |
Collapse
|
37
|
Dai Z, Wang Z, Lei K, Liao J, Peng Z, Lin M, Liang P, Yu J, Peng S, Chen S, Kuang M. Irreversible electroporation induces CD8 + T cell immune response against post-ablation hepatocellular carcinoma growth. Cancer Lett 2021; 503:1-10. [PMID: 33444692 DOI: 10.1016/j.canlet.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 01/01/2021] [Indexed: 12/18/2022]
Abstract
Ablative treatment evokes antitumor immunity, but knowledge on the emerging irreversible electroporation (IRE)-induced immunity in hepatocellular carcinoma (HCC) is limited. To investigate the immune effects induced by IRE and its role in preventing post-ablation HCC progression, a C57BL/6J mouse model bearing subcutaneous H22 hepatoma was employed. IRE treatment significantly suppresses HCC growth, and treated mice are tumor-free after secondary tumor injection and show increased splenic interferon-gamma (IFN-γ)+CD8+ T cells. Additionally, more CD8+ T and dendritic cells, but not CD4+ T, B or NK cells, infiltrate into peri-ablation zones after IRE at day 7. Depletion of CD8+ T cells induces local tumor regrowth and distant metastasis after IRE. Vaccination using IRE-processed H22 lysates prevents tumorigenesis in mice, suggesting a protective immune response. IRE also alleviates immunosuppression by reducing local and splenic Treg and PD-1+ T cells. Regarding mechanism, IRE induces cell necrosis and significant release of danger-associated molecular patterns including ATP, high mobility group box 1 and calreticulin that are pivotal to CD8+ T cell immunity. Together, IRE is a promising approach to evoke CD8+ T cell immunity, which help prevent post-ablation HCC progression.
Collapse
Affiliation(s)
- Zihao Dai
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongren Wang
- Department of Urology Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Lei
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junbin Liao
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Manxia Lin
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Liang
- Division of Interventional Ultrasound, The Chinese PLA General Hospital, Beijing, China
| | - Jie Yu
- Division of Interventional Ultrasound, The Chinese PLA General Hospital, Beijing, China
| | - Sui Peng
- Clinical Trial Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuling Chen
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
38
|
Yu B, Zhang W, Kwak K, Choi H, Kim DH. Electric Pulse Responsive Magnetic Nanoclusters Loaded with Indoleamine 2,3-Dioxygenase Inhibitor for Synergistic Immuno-Ablation Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54415-54425. [PMID: 33237729 DOI: 10.1021/acsami.0c15679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An overlay of local ablation and immunotherapies could be one of the promising approaches to treat solid tumors, but finding the synergistic combination is still challenging with immune tolerance. Herein, electric pulse responsive iron-oxide-nanocube clusters (IONCs) loaded with indoleamine 2,3-dioxygenase inhibitors (IDOi) are prepared for the enhancement of irreversible electroporation (IRE) cell killing and modulation of the tumor immunosuppressive microenvironment (TIM). IDOi-loaded-IONCs (IDOi-IONCs) show highly responsive movement upon the application of IRE electric pulses inducing local magnetic fields. In vitro and in vivo IRE cell-killing efficiency are significantly enhanced by the IDOi-IONCs. The IRE with IDOi-IONCs also triggers IDOi release from IONCs for TIM modulation. The enhanced cell death and local IDOi release of the IRE with IDOi-IONCs demonstrate a synergistic anticancer effect in vivo with overturning the TIM. The increased infiltration of CD8+ T cells and the elevated ratio of CD8+ T cells to regulatory T cells are confirmed after the IRE with IDOi-IONCs. Further, synergistic interaction between IRE and IDOi-modulated TIM resulted in enhanced elimination of primary and secondary tumors. This proof-of-concept work illustrates a robust modality to guide immune-modulating nanoparticle-mediated immuno-ablation cancer therapies that can be easily tailored to improve its therapeutic outcome.
Collapse
Affiliation(s)
- Bo Yu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Wentao Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
| | - Kijung Kwak
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| |
Collapse
|
39
|
Kiełbik A, Szlasa W, Saczko J, Kulbacka J. Electroporation-Based Treatments in Urology. Cancers (Basel) 2020; 12:E2208. [PMID: 32784598 PMCID: PMC7465806 DOI: 10.3390/cancers12082208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The observation that an application of a pulsed electric field (PEF) resulted in an increased permeability of the cell membrane has led to the discovery of the phenomenon called electroporation (EP). Depending on the parameters of the electric current and cell features, electroporation can be either reversible or irreversible. The irreversible electroporation (IRE) found its use in urology as a non-thermal ablative method of prostate and renal cancer. As its mechanism is based on the permeabilization of cell membrane phospholipids, IRE (as well as other treatments based on EP) provides selectivity sparing extracellular proteins and matrix. Reversible EP enables the transfer of genes, drugs, and small exogenous proteins. In clinical practice, reversible EP can locally increase the uptake of cytotoxic drugs such as cisplatin and bleomycin. This approach is known as electrochemotherapy (ECT). Few in vivo and in vitro trials of ECT have been performed on urological cancers. EP provides the possibility of transmission of genes across the cell membrane. As the protocols of gene electrotransfer (GET) over the last few years have improved, EP has become a well-known technique for non-viral cell transfection. GET involves DNA transfection directly to the cancer or the host skin and muscle tissue. Among urological cancers, the GET of several plasmids encoding prostate cancer antigens has been investigated in clinical trials. This review brings into discussion the underlying mechanism of EP and an overview of the latest progress and development perspectives of EP-based treatments in urology.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
40
|
Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro. Radiol Oncol 2020; 54:317-328. [PMID: 32726295 PMCID: PMC7409611 DOI: 10.2478/raon-2020-0047] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Tumor cells can die via immunogenic cell death pathway, in which damage-associated molecular pattern molecules (DAMPs) are released from the cells. These molecules activate cells involved in the immune response. Both innate and adaptive immune response can be activated, causing a destruction of the remaining infected cells. Activation of immune response is also an important component of tumor treatment with electrochemotherapy (ECT) and irreversible electroporation (IRE). We thus explored, if and when specific DAMPs are released as a consequence of electroporation in vitro. Materials and methods In this in vitro study, 100 μs long electric pulses were applied to a suspension of Chinese hamster ovary cells. The release of DAMPs - specifically: adenosine triphosphate (ATP), calreticulin, nucleic acids and uric acid was investigated at different time points after exposing the cells to electric pulses of different amplitudes. The release of DAMPs was statistically correlated with cell permeabilization and cell survival, e.g. reversible and irreversible electroporation. Results In general, the release of DAMPs increases with increasing pulse amplitude. Concentration of DAMPs depend on the time interval between exposure of the cells to pulses and the analysis. Concentrations of most DAMPs correlate strongly with cell death. However, we detected no uric acid in the investigated samples. Conclusions Release of DAMPs can serve as a marker for prediction of cell death. Since the stability of certain DAMPs is time dependent, this should be considered when designing protocols for detecting DAMPs after electric pulse treatment.
Collapse
|
41
|
Radosa CG, Hoffmann RT. [Thermoablation : Friend and foe of immunotherapy]. Radiologe 2020; 60:704-710. [PMID: 32661583 DOI: 10.1007/s00117-020-00719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence from multiple studies have shown the potential of thermal ablative therapies to induce regression of metastases and tumors which are distant from the treated metastases-within the same organ or even in other organs-the so-called abscopal effect. Unfortunately, this effect is most often weak and not always reproducible. Recent developments in systemic therapies showed that immunomodulating drugs are of major interest in patient-tailored tumor therapy due to the fact that they are able to enhance the treatment effect of conventional chemotherapy. Furthermore, several studies and reports showed that these immunomodulating therapies are also able to enhance the response of the immune system to the tumor-if combined with local ablative therapies-and trigger a systemic antitumor response. Unfortunately, there is also evidence that effects caused by thermal ablation can hamper the immune system and, therefore, increase tumor growth and tumor spread. OBJECTIVES In this article, the effects of thermal ablation in general are described, different (thermo-)ablative techniques are presented and a perspective of combination therapies is given.
Collapse
Affiliation(s)
- Christoph G Radosa
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Carl-Gustav-Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Carl-Gustav-Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland.
| |
Collapse
|
42
|
Dumolard L, Ghelfi J, Roth G, Decaens T, Macek Jilkova Z. Percutaneous Ablation-Induced Immunomodulation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:E4398. [PMID: 32575734 PMCID: PMC7352237 DOI: 10.3390/ijms21124398] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide and its incidence is rising. Percutaneous locoregional therapies, such as radiofrequency ablation and microwave ablation, are widely used as curative treatment options for patients with small HCC, but their effectiveness remains restricted because of the associated high rate of recurrence, occurring in about 70% of patients at five years. These thermal ablation techniques have the particularity to induce immunomodulation by destroying tumours, although this is not sufficient to raise an effective antitumour immune response. Ablative therapies combined with immunotherapies could act synergistically to enhance antitumour immunity. This review aims to understand the different immune changes triggered by radiofrequency ablation and microwave ablation as well as the interest in using immunotherapies in combination with thermal ablation techniques as a tool for complementary immunomodulation.
Collapse
Affiliation(s)
- Lucile Dumolard
- Université Grenoble Alpes, 38000 Grenoble, France; (L.D.); (G.R.); (T.D.)
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
| | - Julien Ghelfi
- Service de Radiologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France;
| | - Gael Roth
- Université Grenoble Alpes, 38000 Grenoble, France; (L.D.); (G.R.); (T.D.)
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Thomas Decaens
- Université Grenoble Alpes, 38000 Grenoble, France; (L.D.); (G.R.); (T.D.)
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Zuzana Macek Jilkova
- Université Grenoble Alpes, 38000 Grenoble, France; (L.D.); (G.R.); (T.D.)
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| |
Collapse
|
43
|
He C, Huang X, Zhang Y, Lin X, Li S. T-cell activation and immune memory enhancement induced by irreversible electroporation in pancreatic cancer. Clin Transl Med 2020; 10:e39. [PMID: 32508058 PMCID: PMC7403705 DOI: 10.1002/ctm2.39] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background Irreversible electroporation is shown to induce immune changes in pancreatic cancer while the histology evidences are still lacking. The aim of this study is to show the immune changes in histology and explore whether irreversible electroporation (IRE) can induce immunogenic cell death (ICD) of tumor cells and activate specific immune responses. Methods Subcutaneous and orthotopic pancreatic cancer models were established and used to evaluate the effect of immune modulation of IRE. The infiltration of T cells was assessed in several tissue samples before and after IRE. Abscopal effect was then assessed by comparing the tumor growth of subcutaneous tumors after in situ ablation with IRE or exposure to tumor culture supernatant (TSN) of IRE‐treated Pan02. The expression of damage‐associated molecular patterns (DAMPs) of tumor cells after IRE was detected in vitro. Results IRE could significantly suppress the tumor growth and increase the infiltration of CD8+ T cells. After ablation with IRE or stimulation with TSN of Pan02 treated by IRE, the growth of untreated tumor was suppressed and the effector CD8+ T cells and memory T cells increased significantly in mice. Additionally, the inhibition effect of tumor growth increased along with the increasing strength levels of electroporation. IRE induced ICD of tumor cells by increasing the synthesis and secretion of DAMPs. Conclusions IRE induced local immunomodulation by increasing specific T cells infiltration. Through enhancing specific immune memory, IRE not only led a complete tumor regression in suit, but also induced abscopal effect, suppressing the growth of the latent lesions.
Collapse
Affiliation(s)
- Chaobin He
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xin Huang
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaojun Lin
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
44
|
Timmer FEF, Geboers B, Ruarus AH, Schouten EAC, Nieuwenhuizen S, Puijk RS, de Vries JJJ, Meijerink MR, Scheffer HJ. Irreversible Electroporation for Locally Advanced Pancreatic Cancer. Tech Vasc Interv Radiol 2020; 23:100675. [PMID: 32591191 DOI: 10.1016/j.tvir.2020.100675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several minimally invasive image guided tumor ablation techniques have been added to the treatment spectrum for locally advanced pancreatic cancer (LAPC). Irreversible electroporation (IRE) might have a significant additive value in the management of this difficult-to-treat disease. As opposed to thermal ablative techniques, IRE induces cell death by the delivery of high-voltage electrical pulses. The electrical energy disrupts the cellular membrane integrity, causes loss of cellular homeostasis and ultimately results in cell death. The extracellular matrix of connective tissue in surrounding delicate structures such as bile ducts, bowel wall, and larger blood vessels is spared. The preservation of these structures makes IRE attractive for the treatment of pancreatic cancers that are unresectable due to their anatomical location (ie, LAPC and local recurrence after surgical resection). In addition to its cytoreductive abilities, evidence is emerging on IRE's capability to induce systemic immunomodulation through active in vivo vaccination against pancreatic cancer cells. These effects in combination with immunotherapy may offer a new treatment paradigm for tumors with low immunogenic potential like pancreatic ductal adenocarcinoma (PDAC). This review discusses several practical and technical issues of IRE for LAPC: clinical evaluation, indications, patient preparations, procedural steps, imaging characteristics, clinical results, and "tricks of the trade" used to improve the safety and efficacy of the treatment. Future directions such as the combination of IRE with immunotherapy will be shortly addressed.
Collapse
Affiliation(s)
- Florentine E F Timmer
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands.
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Evelien A C Schouten
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Robbert S Puijk
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Jan J J de Vries
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine at the Amsterdam University Medical Center, Vrije Universiteit-Cancer Center Amsterdam in Amsterdam, The Netherlands
| |
Collapse
|
45
|
Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S, Puijk RS, van den Tol PM, Davalos RV, Rubinsky B, de Gruijl TD, Miklavčič D, Meijerink MR. High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy. Radiology 2020; 295:254-272. [PMID: 32208094 DOI: 10.1148/radiol.2020192190] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review summarizes the use of high-voltage electrical pulses (HVEPs) in clinical oncology to treat solid tumors with irreversible electroporation (IRE) and electrochemotherapy (ECT). HVEPs increase the membrane permeability of cells, a phenomenon known as electroporation. Unlike alternative ablative therapies, electroporation does not affect the structural integrity of surrounding tissue, thereby enabling tumors in the vicinity of vital structures to be treated. IRE uses HVEPs to cause cell death by inducing membrane disruption, and it is primarily used as a radical ablative therapy in the treatment of soft-tissue tumors in the liver, kidney, prostate, and pancreas. ECT uses HVEPs to transiently increase membrane permeability, enhancing cellular cytotoxic drug uptake in tumors. IRE and ECT show immunogenic effects that could be augmented when combined with immunomodulatory drugs, a combination therapy the authors term electroimmunotherapy. Additional electroporation-based technologies that may reach clinical importance, such as gene electrotransfer, electrofusion, and electroimmunotherapy, are concisely reviewed. HVEPs represent a substantial advancement in cancer research, and continued improvement and implementation of these presented technologies will require close collaboration between engineers, interventional radiologists, medical oncologists, and immuno-oncologists.
Collapse
Affiliation(s)
- Bart Geboers
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Hester J Scheffer
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Philip M Graybill
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Alette H Ruarus
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Sanne Nieuwenhuizen
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Robbert S Puijk
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Petrousjka M van den Tol
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Rafael V Davalos
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Boris Rubinsky
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Tanja D de Gruijl
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Damijan Miklavčič
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Martijn R Meijerink
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| |
Collapse
|
46
|
Kim D, Erinjeri JP. Postablation Immune Microenvironment: Synergy between Interventional Oncology and Immuno-oncology. Semin Intervent Radiol 2019; 36:334-342. [PMID: 31680725 DOI: 10.1055/s-0039-1696704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current tumor thermal ablation techniques rely on extreme temperatures to induce irreversible cellular injury and coagulative tissue necrosis. Ablation-induced cellular injury or death releases cancer neoantigens and activates the cancer-immunity cycle, potentially generating tumor-specific immune effectors. However, multiple negative regulatory modulators exist at each step of the cycle, mitigating meaningful and therapeutic anticancer effect provided by the immune system. Recent studies have focused on the introduction and testing of adjuvant immunotherapy combined with ablation to synergistically shift the equilibrium out of inhibitory immune modulation. This article reviews the immune microenvironment in relation to image-guided ablation techniques and discusses current and upcoming novel strategies to take advantage of antitumor immunity.
Collapse
Affiliation(s)
- DaeHee Kim
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph P Erinjeri
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
47
|
Oncolysis without viruses — inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol 2019; 17:49-64. [PMID: 31595049 DOI: 10.1038/s41571-019-0272-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
|
48
|
Immunomodulatory Effect after Irreversible Electroporation in Patients with Locally Advanced Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:9346017. [PMID: 31214261 PMCID: PMC6535893 DOI: 10.1155/2019/9346017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
Purpose Irreversible electroporation (IRE) has been demonstrated to be a safe and effective method for locally advanced pancreatic cancer (LAPC). The aim of this study was to evaluate the immunomodulatory effect after IRE and to evaluate the prognostic value of variations of the immune parameters in LAPC patients after IRE. Methods Peripheral blood samples of 34 patients were obtained preoperatively and on the third day (D3) and seventh day (D7) after IRE, respectively. The phenotypes of lymphocytes were analyzed by flow cytometry, and dynamic changes of serum levels of cytokines, complement, and immunoglobulin were assayed by enzyme-linked immunosorbent assay. Receiver operating characteristic (ROC) curve and concordance index (C-index) were used to compare the survival predictive ability. Results There was a transitory decrease followed by a steady increase for CD4+ T cell, CD8+ T cell, NK cell, IL-2, C3, C4, and IgG while a reverse trend was detected for Treg cell, IL-6, and IL10 after IRE. The alteration of CD8+ T cell between D3 and D7 was identified as a prognostic factor for both overall survival (OS) and progression-free survival (PFS). The values of ROC curve (AUC) and C-indexes of the alteration of CD8+ T cell for OS and PFS were 0.816 and 0.773 and 0.816 and 0.639, respectively, which were larger than those of other immune or inflammation-based indexes. Conclusions This study presented the first evidence of IRE-based immunomodulatory in patients with LAPC. The alteration of CD8+ T cell between D3 and D7 showed relatively good performance and could be used as an effective tool for prognostic evaluation for LAPC patients after IRE.
Collapse
|