1
|
Kobayashi S, Kawakami R, Takeda C, Maezono K, Thammahakin P, Eguchi H, Hang'ombe BM, Orba Y, Sawa H, Yoshii K, Kariwa H. Ubiquitin accumulation induced by the finger and palm sub-domains of NS5 modulates the replication of West Nile virus. Virology 2023; 588:109902. [PMID: 37856911 DOI: 10.1016/j.virol.2023.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
West Nile virus (WNV) causes encephalitis in human and animals. WNV is phylogenetically classified into at least five distinct genetic lineages with different pathogenicity. The pathogenesis of West Nile encephalitis is affected by ubiquitin accumulation in infected cells, but the mechanism is unknown. In this study, the association between ubiquitin accumulation and WNV pathogenicity was investigated. Ubiquitin accumulation was detected in cells infected with NY99 strain belonging to lineage-1, but not FCG and Zmq16 strains belonging to lineage-2. Substitution of the Finger and Palm sub-domains of NS5 from lineage-1 to -2 decreased ubiquitin accumulation and viral replication. Furthermore, the survival rate was increased, and viral replication and ubiquitin accumulation in the brain were attenuated, in mice inoculated with the substituted WNV compared with lineage-1 WNV. Therefore, the intracellular ubiquitin accumulation induced by the Finger and Palm sub-domains of NS5 is linked to the differences in pathogenicity among WNV lineages.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Hokkaido, Japan.
| | - Ryoko Kawakami
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Chisaki Takeda
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Keisuke Maezono
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Passawat Thammahakin
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Haruto Eguchi
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Bernard M Hang'ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia; Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Yasuko Orba
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Hokkaido, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, N20, W10, Kita-ku, Sapporo, 001-0020, Japan; One Health Research Center, Hokkaido University, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Hokkaido, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, N20, W10, Kita-ku, Sapporo, 001-0020, Japan; One Health Research Center, Hokkaido University, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan; Global Virus Network, Baltimore, MD, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan; National Research Center for the Control and Prevention of Infectious diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
2
|
Zhang L, Sun M, Zhang Q, Wang J, Cao Y, Cui S, Su J. Long-term passage of duck Tembusu virus in BHK-21 cells generates a completely attenuated and immunogenic population with increased genetic diversity. Vaccine 2019; 38:933-941. [PMID: 31708180 DOI: 10.1016/j.vaccine.2019.10.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022]
Abstract
Duck Tembusu virus (TMUV) is an emerging pathogenic flavivirus that causes severe egg-drop and fatal encephalitis in domestic ducks and geese. Although a live-attenuated virus vaccine is effective for disease control, the stability of the attenuation has not been clearly evaluated due to a poor understanding of the attenuation mechanism. Here, a virulent duck TMUV isolate was successively passaged in BHK-21 cells, leading to an approximately 100-fold increase of virus production in cell culture and a complete attenuation of virulence for ducks. The passaged virus induced high titers of TMUV-specific antibody and provided efficient protection against a virulent TMUV challenge after a single-dose vaccination. One hundred and two, and eighteen single-nucleotide polymorphisms (SNPs) at a frequency of >1% were respectively identified in the attenuated virus population and the original isolate by deep sequencing. The increased SNPs numbers suggested that the accumulated variants of virus population may have conferred the phenotypic changes. We cloned and characterized a dominant variant exhibiting similar fitness to the mixed population, and 23 amino acid substitutions were identified across the viral open reading frame. Using reverse genetics, two chimeric viruses were generated by introducing the mutated E or NS5 gene into the backbone of virulent TMUV. We found that mutations in the E gene conferred a fitness advantage in BHK-21 cells and decreased the virus pathogenicity, whereas NS5 mutations reduced the virus infectivity in ducklings without altering the in vitro fitness. In conclusion, increased mutations in a virulent TMUV strain did substantially reduce the virus virulence, and mutations in multiple genes co-contribute to TMUV attenuation.
Collapse
Affiliation(s)
- Lijiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mengxu Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qingshui Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanxin Cao
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shangjin Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Observation Station for Veterinary Biological Technique, Ministry of Agricultural, Beijing 100193, China.
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Lu CY, Hour MJ, Wang CY, Huang SH, Mu WX, Chang YC, Lin CW. Single-Round Infectious Particle Antiviral Screening Assays for the Japanese Encephalitis Virus. Viruses 2017; 9:v9040076. [PMID: 28394283 PMCID: PMC5408682 DOI: 10.3390/v9040076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Japanese Encephalitis virus (JEV) is a mosquito-borne flavivirus with a positive-sense single-stranded RNA genome that contains a big open reading frame (ORF) flanked by 5′- and 3′- untranslated regions (UTRs). Nearly 30,000 JE cases with 10,000 deaths are still annually reported in East Asia. Although the JEV genotype III vaccine has been licensed, it elicits a lower protection against other genotypes. Moreover, no effective treatment for a JE case is developed. This study constructed a pBR322-based and cytomegaloviruses (CMV) promoter-driven JEV replicon for the production of JEV single-round infectious particles (SRIPs) in a packaging cell line expressing viral structural proteins. Genetic instability of JEV genome cDNA in the pBR322 plasmid was associated with the prokaryotic promoter at 5′ end of the JEV genome that triggers the expression of the structural proteins in E. coli. JEV structural proteins were toxic E. coli, thus the encoding region for structural proteins was replaced by a reporter gene (enhanced green fluorescent protein, EGFP) that was in-frame fused with the first eight amino acids of the C protein at N-terminus and the foot-and-mouth disease virus (FMDV) 2A peptide at C-terminus in a pBR322-based JEV-EGFP replicon. JEV-EGFP SRIPs generated from JEV-EGFP replicon-transfected packaging cells displayed the infectivity with cytopathic effect induction, self-replication of viral genomes, and the expression of EGFP and viral proteins. Moreover, the combination of JEV-EGFP SRIP plus flow cytometry was used to determine the half maximal inhibitory concentration (IC50) values of antiviral agents according to fluorescent intensity and positivity of SRIP-infected packaging cells post treatment. MJ-47, a quinazolinone derivative, significantly inhibited JEV-induced cytopathic effect, reducing the replication and expression of JEV-EGFP replicon in vitro. The IC50 value of 6.28 µM for MJ-47 against JEV was determined by the assay of JEV-EGFP SRIP infection in packaging cells plus flow cytometry that was more sensitive, effective, and efficient compared to the traditional plaque assay. Therefore, the system of JEV-EGFP SRIPs plus flow cytometry was a rapid and reliable platform for screening antiviral agents and evaluating antiviral potency.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Wen-Xiang Mu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Chun Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
4
|
Kobayashi S, Yoshii K, Hirano M, Muto M, Kariwa H. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells. J Virol Methods 2016; 240:14-20. [PMID: 27865748 DOI: 10.1016/j.jviromet.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022]
Abstract
Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan.
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Memi Muto
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
5
|
Szentpáli-Gavallér K, Lim SM, Dencső L, Bányai K, Koraka P, Osterhaus ADME, Martina BEE, Bakonyi T, Bálint Á. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model. Viruses 2016; 8:v8020049. [PMID: 26907325 PMCID: PMC4776204 DOI: 10.3390/v8020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.
Collapse
Affiliation(s)
| | - Stephanie M Lim
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - László Dencső
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Budapest, Hungary.
| | - Penelope Koraka
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | | | - Byron E E Martina
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, H-1143, Budapest, Hungary.
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, A-1210, Vienna, Austria.
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| |
Collapse
|
6
|
Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Appl Biochem Biotechnol 2016; 178:1567-85. [PMID: 26728654 PMCID: PMC7091396 DOI: 10.1007/s12010-015-1968-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Abstract
Cell-based reporter systems have facilitated studies of viral replication and pathogenesis, virus detection, and drug susceptibility testing. There are three types of cell-based reporter systems that express certain reporter protein for positive-sense single strand RNA virus infections. The first type is classical reporter system, which relies on recombinant virus, reporter virus particle, or subgenomic replicon. During infection with the recombinant virus or reporter virus particle, the reporter protein is expressed and can be detected in real time in a dose-dependent manner. Using subgenomic replicon, which are genetically engineered viral RNA molecules that are capable of replication but incapable of producing virions, the translation and replication of the replicon could be tracked by the accumulation of reporter protein. The second type of reporter system involves genetically engineered cells bearing virus-specific protease cleavage sequences, which can sense the incoming viral protease. The third type is based on viral replicase, which can report the specific virus infection via detection of the incoming viral replicase. This review specifically focuses on the major technical breakthroughs in the design of cell-based reporter systems and the application of these systems to the further understanding and control of viruses over the past few decades.
Collapse
|
7
|
Generation of a reliable full-length cDNA of infectiousTembusu virus using a PCR-based protocol. Virus Res 2015; 213:255-259. [PMID: 26739428 DOI: 10.1016/j.virusres.2015.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
Full-length cDNA of Tembusu virus (TMUV) cloned in a plasmid has been found instable in bacterial hosts. Using a PCR-based protocol, we generated a stable full-length cDNA of TMUV. Different cDNA fragments of TMUV were amplified by reverse transcription (RT)-PCR, and cloned into plasmids. Fragmented cDNAs were amplified and assembled by fusion PCR to produce a full-length cDNA using the recombinant plasmids as templates. Subsequently, a full-length RNA was transcribed from the full-length cDNA in vitro and transfected into BHK-21 cells; infectious viral particles were rescued successfully. Following several passages in BKH-21 cells, the rescued virus was compared with the parental virus by genetic marker checks, growth curve determinations and animal experiments. These assays clearly demonstrated the genetic and biological stabilities of the rescued virus. The present work will be useful for future investigations on the molecular mechanisms involved in replication and pathogenesis of TMUV.
Collapse
|
8
|
Barzon L, Pacenti M, Ulbert S, Palù G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti Infect Ther 2015; 13:327-42. [PMID: 25641365 DOI: 10.1586/14787210.2015.1007044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus responsible for an increasing number of human outbreaks of neuroinvasive disease in Europe and in North America. Notwithstanding the improvements in the knowledge of virus epidemiology and clinical course of infection and the development of new laboratory tests, the diagnosis of WNV infection remains challenging and many cases still remain unrecognized. WNV genome diversity, transient viremia with low viral load and cross-reactivity with other flaviviruses of the antibodies induced by WNV infection are important hurdles that require the diagnosis to be performed by experienced laboratories. Herein, we present and discuss the novel findings on the molecular epidemiology and clinical features of WNV infection in humans with special focus on Europe, the performance of diagnostic tests and the novel methods that have been developed for the diagnosis of WNV infection. A view on how the field might evolve in the future is also presented.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | | | | | | |
Collapse
|
9
|
Fernández IV, Okamoto N, Ito A, Fukuda M, Someya A, Nishino Y, Sasaki N, Maeda A. Development of a novel protocol for generating flavivirus reporter particles. J Virol Methods 2014; 208:96-101. [PMID: 25116200 DOI: 10.1016/j.jviromet.2014.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
Infection with West Nile virus (WNV), a mosquito-borne flavivirus, is a growing public and animal health concern worldwide. Prevention, diagnosis and treatment strategies for the infection are urgently required. Recently, viral reverse genetic systems have been developed and applied to clinical WNV virology. We developed a protocol for generating reporter virus particles (RVPs) of WNV with the aim of overcoming two major problems associated with conventional protocols, the difficulty in generating RVPs due to the specific skills required for handling RNAs, and the potential for environmental contamination by antibiotic-resistant genes encoded within the genome RNA of the RVPs. By using the proposed protocol, cells were established in which the RVP genome RNA is replicated constitutively and does not encode any antibiotic-resistant genes, and used as the cell supply for RVP genome RNA. Generation of the WNV RVPs requires only the simple transfection of the expression vectors for the viral structural proteins into the cells. Therefore, no RNA handling is required in this protocol. The WNV RVP yield obtained using this protocol was similar that obtained using the conventional protocol. According to these results, the newly developed protocol appears to be a good alternative for the generation of WNV RVPs, particularly for clinical applications.
Collapse
Affiliation(s)
- Igor Velado Fernández
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Natsumi Okamoto
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Aki Ito
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Miki Fukuda
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan; Laboratory of Bacteriology, Department of Animal Medical Sciences, Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Azusa Someya
- Laboratory of Bacteriology, Department of Animal Medical Sciences, Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Yosii Nishino
- Laboratory of Virology, Department of Animal Medical Sciences, Faculty of Life Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan
| | - Nobuya Sasaki
- Laboratory of Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Experimental Animal Science, Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine and Animal Science, 35-1 Higashi 23 Bancho, Towada, Aomori 034-8626, Japan
| | - Akihiko Maeda
- Laboratory of Environmental Hygiene, Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City 603-8555, Japan.
| |
Collapse
|
10
|
Construction of self-replicating subgenomic West Nile virus replicons for screening antiviral compounds. Methods Mol Biol 2013; 1030:283-99. [PMID: 23821276 DOI: 10.1007/978-1-62703-484-5_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mosquito-borne flavivirus RNA genomes encode one long open reading frame flanking 5'- and 3'-untranslated regions (5'- and 3'-UTRs) which contain cis-acting RNA elements playing important roles for viral RNA translation and replication. The viral RNA encodes a single polyprotein, which is processed into three structural proteins and seven nonstructural (NS) proteins. The regions coding for the seven NS proteins are sufficient for replication of the RNA. The sequences encoding the structural genes can be deleted except for two short regions. The first one encompasses 32 amino acid (aa) residues from the N-terminal coding sequence of capsid (C) and the second, 27 aa region from the C-terminus of envelope (E) protein. The deleted region can be substituted with a gene coding for a readily quantifiable reporter to give rise to a subgenomic reporter replicon. Replicons containing a variety of reporter genes and marker genes for construction of stable mammalian cell lines are valuable reagents for studying the effects of mutations in translation and/or replication in isolation from processes like the entry and assembly of the virus particles. Here we describe the construction of two West Nile virus (WNV) replicons by overlap extension PCR and standard recombinant DNA techniques. One has a Renilla luciferase (Rluc) reporter gene followed by an internal ribosome entry site (element) for cap-independent translation of the open reading frame encompassing the carboxy-terminal sequence of E to NS5. The second replicon has in tandem the Rluc gene, foot and mouth disease virus 2A, and neomycin phosphotransferase gene that allows establishment of a stable mammalian cell line expressing the Rluc reporter in the presence of the neomycin analog, G418. The stable replicon-expressing Vero cell line has been used for cell-based screening and determination of EC50 values for antiviral compounds that inhibited WNV replication.
Collapse
|
11
|
Review of diagnostic plaque reduction neutralization tests for flavivirus infection. Vet J 2013; 195:33-40. [DOI: 10.1016/j.tvjl.2012.08.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/20/2012] [Accepted: 08/28/2012] [Indexed: 11/20/2022]
|
12
|
Bessaud M, Delpeyroux F. Development of a simple and rapid protocol for the production of customized intertypic recombinant polioviruses. J Virol Methods 2012; 186:104-8. [PMID: 22939977 DOI: 10.1016/j.jviromet.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/31/2012] [Accepted: 08/13/2012] [Indexed: 01/20/2023]
Abstract
The three attenuated strains Sabin are used as oral vaccine to immunize against poliomyelitis in many countries. Low vaccine coverage can allow these strains to circulate among non-immunized people, accumulating genetic modifications through nucleotide substitutions and recombination with non-polio enteroviruses. These modifications can induce a loss of attenuation, so promoting the emergence of pathogenic vaccine-derived polioviruses responsible for poliomyelitis outbreaks. In vitro-engineered chimeric viruses containing both Sabin and non-polio sequences constitute a powerful tool for understanding the constraints that drive and limit the recombination events between the Sabin strains and other enteroviruses and to understand the consequences on the viral phenotypic properties of substitutions of large genomic regions due to recombination events. A method was optimized that allowed the rapid production of customized Sabin-derived viruses. By using sequences from Sabin 2 and 3 polioviruses and from non-polio field enteroviruses, several recombinant genomes were engineered by using fusion PCR. The corresponding viruses were recovered after cell transfection. This method was found able to generate rapidly a wide range of unnatural viruses with multiple breakpoints that can be chosen precisely. Furthermore, this method is also suitable to engineer nucleotide deletions, insertions and/or substitutions within a given genome, so increasing the number of unnatural viruses that can be studied.
Collapse
Affiliation(s)
- Maël Bessaud
- Institut Pasteur, Unité postulante de biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.
| | | |
Collapse
|
13
|
A DNA-based West Nile virus replicon elicits humoral and cellular immune responses in mice. J Virol Methods 2011; 178:87-93. [DOI: 10.1016/j.jviromet.2011.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 08/13/2011] [Accepted: 08/17/2011] [Indexed: 01/08/2023]
|
14
|
Moritoh K, Maeda A, Nishino T, Sasaki N, Agui T. Development and application of West Nile virus subgenomic replicon RNA expressing secreted alkaline phosphatase. J Vet Med Sci 2010; 73:683-6. [PMID: 21187681 DOI: 10.1292/jvms.10-0495] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a West Nile virus (WNV) subgenomic replicon harboring the secreted alkaline phosphatase (SEAP) reporter gene instead of viral structural genes (designated repWNV/SEAP). The repWNV/SEAP allowed easy evaluation of viral replication efficiency by direct measurement of SEAP secretion in the cell culture medium in physical containment level 2 facilities. Furthermore, we validated the availability of this system using a known anti-flavivirus gene, mouse oligoadenylate synthetase 1b (Oas1b). The Oas1b-transfected cells were more resistant to repWNV/SEAP replication than the original cells. Thus, this system not only affords a useful tool for identification/evaluation of anti-flavivirus genes/drugs in terms of safety, ease of use and reliability, but should be able to reduce or replace the bioassay using laboratory animals.
Collapse
Affiliation(s)
- Kanako Moritoh
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita, Nishi, Kita-ku Sapporo, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
15
|
Maeda A, Murata R, Akiyama M, Takashima I, Kariwa H, Watanabe T, Kurane I, Maeda J. A PCR-based protocol for the generation of a recombinant West Nile virus. Virus Res 2009; 144:35-43. [PMID: 19467726 DOI: 10.1016/j.virusres.2009.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 11/24/2022]
Abstract
Viral reverse genetics, particularly infectious cloning, is a valuable tool with applications to many areas of viral research including the generation of vaccine candidates. However, this technology is sometimes insufficient for the construction cDNA clones as the genome sequences and/or encoding proteins of some viral agents may be toxic to the host cells used for cloning. To circumvent this problem, we developed a polymerase chain reaction (PCR)-based protocol for generating a complete West Nile virus (WNV) cDNA. The fragmented cDNAs were synthesized from WNV RNA by reverse transcription-PCR, and subsequently cloned into plasmids for use as templates for WNV cDNA synthesis. The fragmented cDNAs were amplified and assembled by PCR to generate a full-length WNV cDNA. Using this cDNA as a template, WNV RNA was synthesized in vitro and transfected into mammalian cells. We also examined the generation of a mutant recombinant WNV containing a site-directed mutation within the viral genome sequence. Here, we discuss the possibility of developing a method for the generation of recombinant WNVs.
Collapse
Affiliation(s)
- Akihiko Maeda
- Department of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | | | | | | | | | |
Collapse
|