1
|
Rashid MHO, Ezzikouri S, Soliman AM, Akter L, Momohara K, Hifumi T, Miyoshi N, Hishiki T, Abdel-Moneim AS, Kohara M, Tsukiyama-Kohara K. Drug repositioning: Identification of potent inhibitors of NS3 protease and NS5 RdRp for control of DENV infection. Biomed Pharmacother 2025; 187:118104. [PMID: 40300391 DOI: 10.1016/j.biopha.2025.118104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Dengue virus (DENV) threatens global health; specific antiviral drugs are required to combat it. Such anti-DENV therapeutics can be rapidly developed by repositioning the drugs approved for other indications. This study investigated six medications of different classes drawn from a library of molecules. In silico analyses were performed to determine potential binding affinity for the DENV non-structural protein NS3 protease and NS5 RNA-dependent RNA polymerase (RdRp). Of the six candidates, galidesivir and tadalafil showed the highest binding affinities for the DENV NS3 protease and NS5 RdRp, with tadalafil demonstrating the highest binding affinity. Galidesivir and tadalafil substantially suppressed viral replication in DENV replicon cells without inducing cytotoxicity and showed half-maximal inhibitory concentrations of 10 μM and 2.56 μM, respectively. Both galidesivir and tadalafil effectively suppress DENV infection in human hepatoma and baby hamster kidney cells, and tadalafil demonstrates protease-inhibitory activity. In an AG129 mouse model of DENV infection, both galidesivir and tadalafil reduced viral loads in the serum, with tadalafil producing a notable reduction by day four. Both drugs markedly suppressed DENV replication in the hepatic tissue. Histopathologically, both galidesivir- and tadalafil-treated mice showed alleviation of DENV-induced lesions in the spleen and liver, indicating the potential therapeutic effects of these drugs. These findings highlight the potential of repositioning galidesivir and tadalafil as effective anti-DENV therapies with low cytotoxicity, meeting the urgent global need for new therapeutic agents against this pathogen.
Collapse
Affiliation(s)
- Md Haroon Or Rashid
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ahmed M Soliman
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Biotechnology department, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Lipi Akter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kenki Momohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Hifumi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Michinori Kohara
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Balingit JC, Denis D, Suzuki R, Hayati RF, Ngwe Tun MM, Takamatsu Y, Masyeni S, Sasmono RT, Morita K. Impact of pre-existing cross-reactive antibodies on cyclic dengue outbreaks in the hyperendemic region of Bali, Indonesia. Virus Res 2024; 348:199445. [PMID: 39089369 PMCID: PMC11342788 DOI: 10.1016/j.virusres.2024.199445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The four serotypes of the dengue virus (DENV) cause a range of diseases ranging from mild fever to severe conditions. Understanding the immunological interactions among the four serotypes is crucial in comprehending the dynamics of serotype shifting during outbreaks in areas where all four serotypes co-circulate. Hence, we evaluated the neutralizing antibody and antibody-dependent enhancement responses against the four DENV serotypes using acute-phase plasma samples collected from 48 laboratory-confirmed dengue patients during a dengue outbreak in Bali, Indonesia in 2022. Employing single-round infectious particles to exclusively investigate immunogenicity to the structural surface proteins of DENV, which are the targets of antibodies, we found that individuals with a probable prior history of DENV-1 infection exhibited increased susceptibility to secondary DENV-3 infection, attributed to cross-reactive antibodies with limited neutralizing activity against DENV-3 (geometric mean 50 % neutralization titer (GMNT50) = 47.6 ± 11.5). This susceptibility was evident in vitro, with a mean fold enhancement of 28.4 ± 33.9. Neutralization titers against DENV-3 were significantly lower compared to other serotypes (DENV-1 GMNT50 = 678.1 ± 9.0; DENV-2 GMNT50 = 210.5 ± 8.7; DENV-4 GMNT50 = 95.14 ± 7.0). We demonstrate that prior immunity to one serotype provides limited cross-protection against the other serotypes, influencing the dominant serotype in subsequent outbreaks. These findings underscore the complexity of dengue immunity and its implications for vaccine design and transmission dynamics in hyperendemic regions.
Collapse
Affiliation(s)
- Jean Claude Balingit
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | | | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Yuki Takamatsu
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Science, Universitas Warmadewa, Bali 80239, Indonesia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
3
|
Haga K, Chen Z(N, Himeno M, Majima R, Moi ML. Utility of an In-Vitro Micro-Neutralizing Test in Comparison to a Plaque Reduction Neutralization Test for Dengue Virus, Japanese Encephalitis Virus, and Zika Virus Serology and Drug Screening. Pathogens 2023; 13:8. [PMID: 38276154 PMCID: PMC10821437 DOI: 10.3390/pathogens13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Flavivirus infections, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), present significant global public health challenges. For successful vaccine design, the assessment of neutralizing antibody activity requires reliable and robust methodologies for determining antibody titers. Although the plaque reduction neutralization test (PRNT) is commonly acknowledged as the gold standard, it has limitations in terms of time and cost, and its usage may be limited in resource-limited settings. To address these challenges, we introduced the micro-neutralization test (MNT) as a simplified alternative to the PRNT. The MNT employs a 96-well plate format, conducts microscale neutralization assays, and assesses cell viability by dissolving cells to create a uniform color solution, which is measured with a spectrometer. In this study, we evaluated the utility of the MNT by contrasting the end-point titers of the MNT and PRNT using 4 monoclonal antibodies, 15 non-human primate serum samples, and 2 therapeutic drug candidates across flaviviruses. The results demonstrated a strong correlation between the MNT and PRNT titers, affirming the robustness and reproducibility of the MNT for evaluating control measures against flaviviruses. This research contributes valuable insights toward the development of a cost-effective antibody titer testing approach that is particularly suitable for resource-limited settings.
Collapse
MESH Headings
- Zika Virus/immunology
- Encephalitis Virus, Japanese/immunology
- Neutralization Tests/methods
- Humans
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Animals
- Dengue Virus/immunology
- Zika Virus Infection/immunology
- Zika Virus Infection/diagnosis
- Zika Virus Infection/blood
- Dengue/immunology
- Dengue/diagnosis
- Dengue/blood
- Drug Evaluation, Preclinical/methods
- Viral Plaque Assay/methods
- Encephalitis, Japanese/diagnosis
- Encephalitis, Japanese/immunology
- Serologic Tests/methods
- Antibodies, Monoclonal/immunology
- Encephalitis Viruses, Japanese/immunology
Collapse
Affiliation(s)
- Kazumi Haga
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| | - Zhenying (Nancy) Chen
- Department of Biology, Emory College of Art and Science, Emory University, Atlanta, GA 30322, USA;
| | - Misao Himeno
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| | - Ryuichi Majima
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| | - Meng Ling Moi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| |
Collapse
|
4
|
Henriques P, Rosa A, Caldeira-Araújo H, Soares P, Vigário AM. Flying under the radar - impact and factors influencing asymptomatic DENV infections. Front Cell Infect Microbiol 2023; 13:1284651. [PMID: 38076464 PMCID: PMC10704250 DOI: 10.3389/fcimb.2023.1284651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The clinical outcome of DENV and other Flaviviruses infections represents a spectrum of severity that ranges from mild manifestations to severe disease, which can ultimately lead to death. Nonetheless, most of these infections result in an asymptomatic outcome that may play an important role in the persistent circulation of these viruses. Also, although little is known about the mechanisms that lead to these asymptomatic infections, they are likely the result of a complex interplay between viral and host factors. Specific characteristics of the infecting viral strain, such as its replicating efficiency, coupled with host factors, like gene expression of key molecules involved in the immune response or in the protection against disease, are among crucial factors to study. This review revisits recent data on factors that may contribute to the asymptomatic outcome of the world's widespread DENV, highlighting the importance of silent infections in the transmission of this pathogen and the immune status of the host.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), Braga, Portugal
- Department of Biology, Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Yamanaka A, Rattanaamnuaychai P, Matsuda M, Suzuki R, Shimizu J, Shioda T, Miyazaki K. Development of a rapid assay system for detecting antibody-dependent enhancement of dengue virus infection. J Virol Methods 2023; 311:114641. [PMID: 36328082 DOI: 10.1016/j.jviromet.2022.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Antibody-dependent enhancement (ADE) is one of the pathogenic mechanisms related to disease severity in dengue virus infection. Conventional assays for detecting ADE activity usually require several days. In this study, we established a rapid assay system to evaluate ADE activity in dengue-seropositive samples using single round infectious particles (SRIPs). Human Fc-gamma receptor-bearing cells (K562 and Mylc cells) were infected with SRIP antigen in the presence of human serum samples to measure ADE activity. Two assay protocols were introduced: (i) rapid assay with 5 h of incubation, and (ii) semi-rapid assay with 24 h of incubation. The rapid assay requires a large quantity of SRIP antigen and gives results in half a day. Although the semi-rapid assay requires slightly more than a day, it can be performed using only a small amount of SRIP. Interestingly, the range of the number of Mylc cells required for the semi-rapid assay was wider than that of K562 cells. Significant correlations were observed between the rapid and semi-rapid assays for both cell types. Although it is difficult to judge which protocol best reflects the current immune status in vivo, both assays could rapidly provide valuable information regarding the risk assessment for severe diseases.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Department of Medical Sciences, Ministry of Public Health, 88/7 Tiwanon Road, Muang, Nonthaburi 11000, Thailand; Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Pimploy Rattanaamnuaychai
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Department of Medical Sciences, Ministry of Public Health, 88/7 Tiwanon Road, Muang, Nonthaburi 11000, Thailand
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Jun Shimizu
- MiCAN Technologies Inc., KKVP, 1-36 Goryo-ohara, Nishikyo-ku, Kyoto 615-8245 Japan
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., KKVP, 1-36 Goryo-ohara, Nishikyo-ku, Kyoto 615-8245 Japan
| |
Collapse
|
6
|
Shimizu J, Sasaki T, Yamanaka A, Ichihara Y, Koketsu R, Samune Y, Cruz P, Sato K, Tanga N, Yoshimura Y, Murakami A, Yamada M, Itoi K, Nakayama EE, Miyazaki K, Shioda T. The potential of COVID-19 patients' sera to cause antibody-dependent enhancement of infection and IL-6 production. Sci Rep 2021; 11:23713. [PMID: 34887501 PMCID: PMC8660863 DOI: 10.1038/s41598-021-03273-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many vaccine trials have been initiated. An important goal of vaccination is the development of neutralizing antibody (Ab) against SARS-CoV-2. However, the possible induction of antibody-dependent enhancement (ADE) of infection, which is known for other coronaviruses and dengue virus infections, is a particular concern in vaccine development. Here, we demonstrated that human iPS cell-derived, immortalized, and ACE2- and TMPRSS2-expressing myeloid cell lines are useful as host cells for SARS-CoV-2 infection. The established cell lines were cloned and screened based on their function in terms of susceptibility to SARS-CoV-2-infection or IL-6 productivity. Using the resulting K-ML2 (AT) clone 35 for SARS-CoV-2-infection or its subclone 35–40 for IL-6 productivity, it was possible to evaluate the potential of sera from severe COVID-19 patients to cause ADE and to stimulate IL-6 production upon infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Jun Shimizu
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Tadahiro Sasaki
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Yamanaka
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.,Faculty of Tropical Medicine, Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Yoko Ichihara
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Ritsuko Koketsu
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Samune
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Pedro Cruz
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Kei Sato
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Naomi Tanga
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Yuka Yoshimura
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Ami Murakami
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Misuzu Yamada
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Kiyoe Itoi
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Emi E Nakayama
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.
| | - Tatsuo Shioda
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Faculty of Tropical Medicine, Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Genotype-Dependent Immunogenicity of Dengue Virus Type 2 Asian I and Asian/American Genotypes in Common Marmoset ( Callithrix jacchus): Discrepancy in Neutralizing and Infection-Enhancing Antibody Levels between Genotypes. Microorganisms 2021; 9:microorganisms9112196. [PMID: 34835327 PMCID: PMC8618970 DOI: 10.3390/microorganisms9112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
Owing to genotype-specific neutralizing antibodies, analyzing differences in the immunogenic variation among dengue virus (DENV) genotypes is central to effective vaccine development. Herein, we characterized the viral kinetics and antibody response induced by DENV type 2 Asian I (AI) and Asian/American (AA) genotypes using marmosets (Callithrix jacchus) as models. Two groups of marmosets were inoculated with AI and AA genotypes, and serial plasma samples were collected. Viremia levels were determined using quantitative reverse transcription-PCR, plaque assays, and antigen enzyme-linked immunosorbent assay (ELISA). Anti-DENV immunoglobulin M and G antibodies, neutralizing antibody titer, and antibody-dependent enhancement (ADE) activity were determined using ELISA, plaque reduction neutralization test, and ADE assay, respectively. The AI genotype induced viremia for a longer duration, but the AA genotype induced higher levels of viremia. After four months, the neutralizing antibody titer induced by the AA genotype remained high, but that induced by the AI genotype waned. ADE activity toward Cosmopolitan genotypes was detected in marmosets inoculated with the AI genotype. These findings indicate discrepancies between heterologous genotypes that influence neutralizing antibodies and viremia in marmosets, a critical issue in vaccine development.
Collapse
|
8
|
Fukuta M, Nguyen CT, Nguyen TTT, Nguyen TTN, Vu TBH, Takemura T, Nguyen LKH, Inoue S, Morita K, Le TQM, Hasebe F, Moi ML. Discrepancies in Infectivity of Flavivirus and SARS-CoV-2 Clinical Samples: An Improved Assay for Infectious Virus Shedding and Viremia Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189845. [PMID: 34574767 PMCID: PMC8465741 DOI: 10.3390/ijerph18189845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Infectivity and neutralizing antibody titers of flavivirus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are frequently measured using the conventional plaque assay. While the assay is useful in the determination of infectivity, conventional plaque assays generally possess lower sensitivity and are time-consuming compared to nucleic acid amplification tests. In this study, a microcrystalline cellulose (MCC), Avicel, was evaluated as an alternative to the conventional virus overlay medium, methylcellulose, for a plaque assay. The plaque assay was performed using dengue and COVID-19 clinical samples and laboratory-established flavivirus and SARS-CoV-2 strains. In virus titration of clinical samples, the plaques were significantly larger, and the virus titers were higher when Avicel MCC-containing overlay medium was used than with conventional methylcellulose overlay medium. In addition, for some clinical samples and laboratory virus strains, infectious particles were detected as plaques in the Avicel MCC-containing medium, but not in the conventional methylcellulose medium. The results suggest that the viremia titer determined using the new overlay medium containing Avicel MCC may better reflect the innate infectious and plaque-forming capabilities of clinical samples and better reflect virus infectivity.
Collapse
Affiliation(s)
- Mizuki Fukuta
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
| | - Co Thach Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Thi Thu Thuy Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Thi Thanh Ngan Nguyen
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Thi Bich Hau Vu
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Taichiro Takemura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Le Khanh Hang Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Shingo Inoue
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Thi Quynh Mai Le
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Futoshi Hasebe
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: or ; Tel.: +81-95-819-7829
| |
Collapse
|
9
|
Balingit JC, Phu Ly MH, Matsuda M, Suzuki R, Hasebe F, Morita K, Moi ML. A Simple and High-Throughput ELISA-Based Neutralization Assay for the Determination of Anti-Flavivirus Neutralizing Antibodies. Vaccines (Basel) 2020; 8:E297. [PMID: 32532141 PMCID: PMC7350015 DOI: 10.3390/vaccines8020297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Abstract
Mosquito-borne flavivirus infections, including dengue virus and Zika virus, are major public health threats globally. While the plaque reduction neutralization test (PRNT) is considered the gold standard for determining neutralizing antibody levels to flaviviruses, the assay is time-consuming and laborious. This study, therefore, aimed to develop an enzyme-linked immunosorbent assay (ELISA)-based microneutralization test (EMNT) for the detection of neutralizing antibodies to mosquito-borne flaviviruses. The inhibition of viral growth due to neutralizing antibodies was determined colorimetrically by using EMNT. Given the significance of Fcγ-receptors (FcγR) in antibody-mediated neutralization and antibody-dependent enhancement (ADE) of flavivirus infection, non-FcγR and FcγR-expressing cell lines were used in the EMNT to allow the detection of the sum of neutralizing and immune-enhancing antibody activity as the neutralizing titer. Using anti-flavivirus monoclonal antibodies and clinical samples, the utility of EMNT was evaluated by comparing the end-point titers of the EMNT and the PRNT. The correlation between EMNT and PRNT titers was strong, indicating that EMNT was robust and reproducible. The new EMNT assay combines the biological functional assessment of virus neutralization activity and the technical advantages of ELISA and, is simple, reliable, practical, and could be automated for high-throughput implementation in flavivirus surveillance studies and vaccine trials.
Collapse
Affiliation(s)
- Jean Claude Balingit
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Minh Huong Phu Ly
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan; (M.M.); (R.S.)
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan; (M.M.); (R.S.)
| | - Futoshi Hasebe
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Viet Nam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; (J.C.B.); (M.H.P.L.); (F.H.); (K.M.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
Rawarak N, Suttitheptumrong A, Reamtong O, Boonnak K, Pattanakitsakul SN. Protein Disulfide Isomerase Inhibitor Suppresses Viral Replication and Production during Antibody-Dependent Enhancement of Dengue Virus Infection in Human Monocytic Cells. Viruses 2019; 11:v11020155. [PMID: 30781856 PMCID: PMC6410196 DOI: 10.3390/v11020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
One of several mechanisms that leads to the development of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) is called antibody-dependent enhancement (ADE). Monocytes can be infected by the ADE phenomenon, which occurs in dengue secondary infection. This study aimed to investigate the proteins involved in ADE of DENV infection in the human monocytic cell line U937. The phosphoproteins were used to perform and analyze for protein expression using mass spectrometry (GeLC-MS/MS). The differential phosphoproteins revealed 1131 altered proteins compared between isotype- and DENV-specific antibody-treated monocytes. The altered proteins revealed 558 upregulated proteins and 573 downregulated proteins. Protein disulfide isomerase (PDI), which is an enzyme that had a high-ranking fold change and that catalyzes the formation, breakage, and rearrangement of disulfide bonds within a protein molecule, was selected for further study. PDI was found to be important for dengue virus infectivity during the ADE model. The effect of PDI inhibition was also shown to be involved in the early stage of life cycle by time-of-drug-addition assay. These results suggest that PDI is important for protein translation and virion assembly of dengue virus during infection in human monocytes, and it may play a significant role as a chaperone to stabilize dengue protein synthesis.
Collapse
Affiliation(s)
- Nantapon Rawarak
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Aroonroong Suttitheptumrong
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Sa-Nga Pattanakitsakul
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
11
|
[Development of in-vitro and in-vivo assays for dengue vaccine and therapeutics evaluation, and pathogenesis studies]. Uirusu 2019; 69:91-98. [PMID: 32938898 DOI: 10.2222/jsv.69.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Abstract
It has been reported that virus-antibody immune complexes formed during secondary dengue virus infection are associated with increased disease severity. Here, we describe the details of a plaque titration method that uses FcγR -expressing BHK cells to detect and quantify infectious virus-immune complexes and a quantitative real-time PCR method for the quantification of virus genome in patients with secondary dengue infection. These methods detect both viruses in free-form and in immune complexes in patients with dengue infection, and are useful for determining viremia levels and patterns that better reflect in vivo conditions.
Collapse
|
13
|
Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, Singh RK, Chaicumpa W. Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection. Front Immunol 2018; 9:597. [PMID: 29740424 PMCID: PMC5925603 DOI: 10.3389/fimmu.2018.00597] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which preexisting poorly neutralizing antibodies leads to enhanced infection. It is a serious concern with mosquito-borne flaviviruses such as Dengue virus (DENV) and Zika virus (ZIKV). In vitro experimental evidences have indicated the preventive, as well as a pathogenicity-enhancing role, of preexisting DENV antibodies in ZIKV infections. ADE has been confirmed in DENV but not ZIKV infections. Principally, the Fc region of the anti-DENV antibody binds with the fragment crystallizable gamma receptor (FcγR), and subsequent C1q interactions and immune effector functions are responsible for the ADE. In contrast to normal DENV infections, with ADE in DENV infections, inhibition of STAT1 phosphorylation and a reduction in IRF-1 gene expression, NOS2 levels, and RIG-1 and MDA-5 expression levels occurs. FcγRIIA is the most permissive FcγR for DENV-ADE, and under hypoxic conditions, hypoxia-inducible factor-1 alpha transcriptionally enhances expression levels of FcγRIIA, which further enhances ADE. To produce therapeutic antibodies with broad reactivity to different DENV serotypes, as well as to ZIKV, bispecific antibodies, Fc region mutants, modified Fc regions, and anti-idiotypic antibodies may be engineered. An in-depth understanding of the immunological and molecular mechanisms of DENV-ADE of ZIKV pathogenicity will be useful for the design of common and safe therapeutics and prophylactics against both viral pathogens. The present review discusses the role of DENV antibodies in modulating DENV/ZIKV pathogenicity/infection and strategies to counter ADE to protect against Zika infection.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Ly MHP, Moi ML, Vu TBH, Tun MMN, Saunders T, Nguyen CN, Nguyen AKT, Nguyen HM, Dao TH, Pham DQ, Nguyen TTT, Le TQM, Hasebe F, Morita K. Dengue virus infection-enhancement activity in neutralizing antibodies of healthy adults before dengue season as determined by using FcγR-expressing cells. BMC Infect Dis 2018; 18:31. [PMID: 29321001 PMCID: PMC5763606 DOI: 10.1186/s12879-017-2894-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022] Open
Abstract
Background Antibodies are critical responses to protect the host from dengue virus(DENV) infection. Antibodies target DENV by two pathologic mechanisms: virus neutralization and infection enhancement. In dengue patients, the absence of neutralizing activity in the presence of FcγR implies that infection-enhancing activity hampers the neutralizing activity of antibodies, which could potentially lead to symptomatic presentations and severe clinical outcomes. Methods A total of 100 pair serum samples from adult healthy volunteers were obtained during the dengue season in Ha Noi in 2015 for evaluation of neutralizing and infection-enhancing activity. Additionally, 20 serum samples from acute secondary DENV infection patients were also used as the patient group in this study. PRNT was performed on BHK cells and FcγR-expressing BHK cell lines for all serum samples. Results Out of 100 residents, positive neutralizing antibodies (N.A) were found in 44.23 and 76.92% for DENV-1; 38.46 and 75% for DENV-2; 19.23 and 15.38% for DENV-3; and 1.92 and 9.62% for DENV-4 for pre and post-dengue season respectively. The percentage of post-exposure residents having positive responses against single, two, or more than three DENV serotypes were 38.46, 44.23 and 15.38%, respectively. A total of 34 residents were DENV seropositive before the dengue season and these individuals demonstrated further elevation of IgG antibodies after the dengue season. At the end of the season, 18 residents were confirmed to be new asymptomatic DENV infection cases. In both groups, N.A titers determined on BHK cells were higher than that on FcγR-expressing BHK cells. In heterotypic N.A responses, N.A titers to the infecting serotype from the samples obtained from pre-exposure group were significantly higher than those of the patient group. However, fold enhancement to the infecting serotypes from the samples in the pre-exposure group was substantially lower as compared to that of the patient group. Conclusion Before and after the dengue season, serum samples from healthy volunteers demonstrated high levels of neutralizing antibodies and low or absence of infection-enhancement activity. The results suggest that while infection-enhancement activity hampers neutralizing activity of antibodies, high levels of DENV neutralizing antibodies set a critical threshold in facilitating the prevention of disease progression. Electronic supplementary material The online version of this article (10.1186/s12879-017-2894-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minh Huong Phu Ly
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Meng Ling Moi
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.
| | - Thi Bich Hau Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Todd Saunders
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | | | | | | | - Than Huu Dao
- Ha Noi Preventive Medicine Center, Hanoi, Viet Nam
| | - Do Quyen Pham
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Thi Thu Thuy Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Thi Quynh Mai Le
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Futoshi Hasebe
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| |
Collapse
|
15
|
Blackman MA, Kim IJ, Lin JS, Thomas SJ. Challenges of Vaccine Development for Zika Virus. Viral Immunol 2017; 31:117-123. [PMID: 29227202 DOI: 10.1089/vim.2017.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The emergence of outbreaks of Zika virus (ZIKV) in Brazil in 2015 was associated with devastating effects on fetal development and prompted a world health emergency and multiple efforts to generate an effective vaccine against infection. There are now more than 40 vaccine candidates in preclinical development and six in clinical trials. Despite similarities with other flaviviruses to which successful vaccines have been developed, such as yellow fever virus and Japanese Encephalitis virus, there are unique challenges to the development and clinical trials of a vaccine for ZIKV.
Collapse
Affiliation(s)
| | | | | | - Stephen J Thomas
- 2 Infectious Disease Division, Upstate Medical University, State University of New York , Syracuse, New York
| |
Collapse
|
16
|
Clinical, virological and epidemiological characterization of dengue outbreak in Myanmar, 2015. Epidemiol Infect 2017; 145:1886-1897. [DOI: 10.1017/s0950268817000735] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SUMMARYHospital-based surveillance was conducted at two widely separated regions in Myanmar during the 2015 dengue epidemic. Acute phase serum samples were collected from 332 clinically diagnosed dengue patients during the peak season of dengue cases. Viremia levels were measured by quantitative real-time PCR and plaque assays using FcγRIIA-expressing and non-FcγRIIA-expressing BHK cells to specifically determine the infectious virus particles. By serology and molecular techniques, 280/332 (84·3%) were confirmed as dengue patients. All four serotypes of dengue virus (DENV) were isolated from among 104 laboratory-confirmed patients including two cases infected with two DENV serotypes. High percentage of primary infection was noted among the severe dengue patients. Patients with primary infection or DENV IgM negative demonstrated significantly higher viral loads but there was no significant difference among the severity groups. Viremia levels among dengue patients were notably high for a long period which was assumed to support the spread of the virus by the mosquito vector during epidemic. Phylogenetic analyses of the envelope gene of the epidemic strains revealed close similarity with the strains previously isolated in Myanmar and neighboring countries. DENV-1 dominated the epidemic in 2015 and the serotype (except DENV-3) and genotype distributions were similar in both study sites.
Collapse
|
17
|
Yamanaka A, Konishi E. Complement-independent dengue virus type 1 infection-enhancing antibody reduces complement-dependent and -independent neutralizing antibody activity. Vaccine 2016; 34:6449-6457. [PMID: 27866774 DOI: 10.1016/j.vaccine.2016.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Dengue fever and dengue hemorrhagic fever are globally important mosquito-transmitted viral diseases. However, the only licensed vaccine is not highly protective. Viremia is related to disease severity in infected humans, and it is thought to be reduced by neutralizing antibodies but increased by infection-enhancing antibodies. We established an assay system to measure the balance between neutralizing and enhancing antibodies and found that most dengue-immune individuals in endemic areas carry complement-independent enhancing antibodies (CiEAb). Studying CiEAb is important for dengue vaccine development because the enhancing activity of CiEAb does not decrease in the presence of complement, which can reduce the enhancing activity of other antibodies in vitro. Here, we investigated the effects of CiEAb on the activity of neutralizing antibodies (mainly, complement-dependent neutralizing antibodies; CdNAb) using cocktails of mouse monoclonal antibodies (MAbs) against dengue virus type 1 (DENV-1). These cocktails included MAbs with enhancing activity only (represented by D1-V-3H12 [3H12]) or neutralizing activity only (represented by D1-IV-7F4 [7F4]). Because 3H12, an IgG1 subclass antibody, is complement-independent and cross-reacted with all dengue serotypes, it is a suitable model of CiEAb. An approximately equal amount of 3H12 abolished the neutralizing activity of 7F4. The complement-dependent neutralizing activities of the IgG2a and IgG2b variants of 7F4 were also completely inhibited by ⩾3-fold concentrations of the IgG1 variant. The complement-dependent antibody activities of other anti-DENV-1 MAbs and those of MAbs directed against other serotypes were inhibited 50% by 3H12 at various mixing ratios, ranging from one-hundredth to 10-fold. The complement-dependent neutralizing activities of dengue-immune mouse ascites fluids were also effectively inhibited by 3H12. This suggests that concomitantly induced CiEAb exerts an unwanted effect on the protective capacity of a vaccine. Thus, the effective inhibition of the neutralizing activity of CdNAb by CiEAb has implications for dengue pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
18
|
Moi ML, Takasaki T, Kurane I. Human antibody response to dengue virus: implications for dengue vaccine design. Trop Med Health 2016; 44:1. [PMID: 27398060 PMCID: PMC4934144 DOI: 10.1186/s41182-016-0004-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
Dengue, a global health threat, is a leading cause of morbidity and mortality in most tropical and subtropical countries. Dengue can range from asymptomatic, relatively mild dengue fever to severe and life-threatening dengue hemorrhagic fever. Disease severity and outcome is largely associated with the host immune response. Several candidate vaccines in clinical trials appear promising as effective measures for dengue disease control. Vaccine development has been hampered by safety and efficacy issues, driven by a lack of understanding of the host immune response. This review focuses on recent research findings on the dengue host immune response, particularly in humans, and the relevance of these findings to challenges in vaccine development.
Collapse
Affiliation(s)
- Meng Ling Moi
- />Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- />National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Ichiro Kurane
- />National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
19
|
Abstract
Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as "knowns" and "unknowns."
Collapse
|
20
|
Acosta EG, Bartenschlager R. Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Rev Vaccines 2015; 15:467-82. [PMID: 26577689 DOI: 10.1586/14760584.2016.1121814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Highly effective prophylactic vaccines for flaviviruses including yellow fever virus, tick-borne encephalitis virus and Japanese encephalitis virus are currently in use. However, the development of a dengue virus (DENV) vaccine has been hampered by the requirement of simultaneous protection against four distinct serotypes and the threat that DENV-specific antibodies might either mediate neutralization or, on the contrary, exacerbate disease through the phenomenon of antibody-dependent enhancement (ADE) of infection. Therefore, understanding the cellular, biochemical and molecular basis of antibody-mediated neutralization and ADE are fundamental for the development of a safe DENV vaccine. Here we summarize current structural and mechanistic knowledge underlying these phenomena. We also review recent results demonstrating that the humoral immune response triggered during natural DENV infection is able to generate neutralizing antibodies binding complex quaternary epitopes only present on the surface of intact virions.
Collapse
Affiliation(s)
- Eliana G Acosta
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Ralf Bartenschlager
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,b German Center for Infection Research , Heidelberg University , Heidelberg , Germany
| |
Collapse
|
21
|
Moi ML, Ami Y, Shirai K, Lim CK, Suzaki Y, Saito Y, Kitaura K, Saijo M, Suzuki R, Kurane I, Takasaki T. Formation of infectious dengue virus-antibody immune complex in vivo in marmosets (Callithrix jacchus) after passive transfer of anti-dengue virus monoclonal antibodies and infection with dengue virus. Am J Trop Med Hyg 2014; 92:370-6. [PMID: 25548383 DOI: 10.4269/ajtmh.14-0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Infection with a dengue virus (DENV) serotype induces cross-reactive, weakly neutralizing antibodies to different dengue serotypes. It has been postulated that cross-reactive antibodies form a virus-antibody immune complex and enhance DENV infection of Fc gamma receptor (FcγR)-bearing cells. We determined whether infectious DENV-antibody immune complex is formed in vivo in marmosets after passive transfer of DENV-specific monoclonal antibody (mAb) and DENV inoculation and whether infectious DENV-antibody immune complex is detectable using FcγR-expressing cells. Marmosets showed that DENV-antibody immune complex was exclusively infectious to FcγR-expressing cells on days 2, 4, and 7 after passive transfer of each of the mAbs (mAb 4G2 and mAb 6B6C) and DENV inoculation. Although DENV-antibody immune complex was detected, contribution of the passively transferred antibody to overall viremia levels was limited in this study. The results indicate that DENV cross-reactive antibodies form DENV-antibody immune complex in vivo, which is infectious to FcγR-bearing cells but not FcγR-negative cells.
Collapse
Affiliation(s)
- Meng Ling Moi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Shirai
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuka Saito
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazutaka Kitaura
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuji Suzuki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Ichiro Kurane
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan; Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan; Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
Song KY, Zhao H, Jiang ZY, Li XF, Deng YQ, Jiang T, Zhu SY, Shi PY, Zhang B, Zhang FC, Qin ED, Qin CF. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus. BMC Microbiol 2014; 14:44. [PMID: 24548533 PMCID: PMC3930823 DOI: 10.1186/1471-2180-14-44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/12/2014] [Indexed: 12/21/2022] Open
Abstract
Background Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. Results In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. Conclusions This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
23
|
Sjatha F, Takizawa Y, Kotaki T, Yamanaka A, Konishi E. Comparison of infection-neutralizing and -enhancing antibody balance induced by two distinct genotype strains of dengue virus type 1 or 3 DNA vaccines in mice. Microbes Infect 2013; 15:828-36. [DOI: 10.1016/j.micinf.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/14/2013] [Accepted: 07/24/2013] [Indexed: 12/30/2022]
|
24
|
Moi ML, Takasaki T, Saijo M, Kurane I. Determination of antibody concentration as the main parameter in a dengue virus antibody-dependent enhancement assay using FcγR-expressing BHK cells. Arch Virol 2013; 159:103-16. [DOI: 10.1007/s00705-013-1787-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
|
25
|
Boonnak K, Slike BM, Donofrio GC, Marovich MA. Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:5659-65. [PMID: 23616574 DOI: 10.4049/jimmunol.1203052] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ab-dependent enhancement (ADE) of dengue virus (DENV) infection is mediated through the interaction of viral immune complexes with FcγRs, with notable efficiency of FcγRII. Most human dengue target cells coexpress activating (FcγRIIa) and inhibitory (FcγRIIb) isoforms, but their relative roles in ADE are not well understood. We studied the effects of FcγRIIa and FcγRIIb by transfecting cells to express each individual receptor isoform or through coexpression of both isoforms. We showed that although both isoforms similarly bind dengue-immune complexes, FcγRIIa efficiently internalized virus leading to productive cellular infection, unlike FcγRIIb. We next focused on the main discriminating feature of these isoforms: their distinct intracytoplasmic tails (FcγRIIa with an immunoreceptor tyrosine-based activation motif [ITAM] and FcγRIIb with an immunoreceptor tyrosine-based inhibitory motif [ITIM]). We engineered cells to express "swapped" versions of their FcγRII by switching the cytoplasmic tails containing the ITAM/ITIM motifs, leaving the remainder of the receptor intact. Our data show that both FcγRIIa and FcγRIIb comparably bind dengue immune complexes. However, wild type FcγRIIa facilitates DENV entry by virtue of the ITAM motif, whereas the swapped version FcγRIIa-ITIM significantly inhibited ADE. Similarly, replacing the inhibitory motif in FcγRIIb with an ITAM (FcγRIIb-ITAM) reconstituted ADE capacity to levels of the wild type activating counterpart, FcγRIIa. Our data suggest that FcγRIIa and FcγRIIb isoforms, as the most abundantly distributed class II Fcγ receptors, differentially influence Ab-mediated DENV infection under ADE conditions both at the level of cellular infection and viral production.
Collapse
Affiliation(s)
- Kobporn Boonnak
- Division of Retrovirology, Henry M Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
26
|
Fang X, Hu Z, Shang W, Zhu J, Xu C, Rao X. Genetic polymorphisms of molecules involved in host immune response to dengue virus infection. ACTA ACUST UNITED AC 2012; 66:134-46. [DOI: 10.1111/j.1574-695x.2012.00995.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/29/2012] [Accepted: 05/22/2012] [Indexed: 01/06/2023]
|
27
|
Yamanaka A, Tabuchi Y, Mulyatno KC, Susilowati H, Hendrianto E, Soegijanto S, Konishi E. Dengue virus infection-enhancing and neutralizing antibody balance in children of the Philippines and Indonesia. Microbes Infect 2012; 14:1152-9. [PMID: 22841680 DOI: 10.1016/j.micinf.2012.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 11/28/2022]
Abstract
Dengue fever and dengue hemorrhagic fever are important diseases worldwide. Although antibody-dependent enhancement of infection has been proposed as a mechanism for increased disease severity, enhancing antibodies in endemic people have not been thoroughly investigated. Recently, we established a serological assay system to measure the balance of enhancing and neutralizing activities, which provides useful information for estimating in vivo antibody status. We measured the balance of these activities against four dengue virus (DENV) types in endemic populations, and analyzed the proportion of sera containing enhancing and neutralizing antibodies. Predominantly healthy Filipino children were used for analysis, although a population of Indonesian children was also investigated. In the Filipino population, the highest proportion of neutralizing activities was shown against DENV2, followed by DENV1. A greater proportion of sera exhibited enhancing rather than neutralizing antibodies against other virus types. Neutralizing activities were complement-dependent, while enhancing activities were complement-independent. The Indonesian population showed a similar dengue antibody status. Our results indicate that a relatively high proportion of endemic children possessed complement-independent enhancing antibodies against some DENV types.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Kampus C, UNAIR Jl. Mulyorejo, Surabaya, Indonesia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ippolito G, Feldmann H, Lanini S, Vairo F, Di Caro A, Capobianchi MR, Nicastri E. Viral hemorrhagic fevers: advancing the level of treatment. BMC Med 2012; 10:31. [PMID: 22458265 PMCID: PMC3325866 DOI: 10.1186/1741-7015-10-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/29/2012] [Indexed: 11/10/2022] Open
Abstract
The management of viral hemorrhagic fevers (VHFs) has mainly focused on strict infection control measures, while standard clinical interventions that are provided to patients with other life-threatening conditions are rarely offered to patients with VHFs. Despite its complexity, a proper clinical case management of VHFs is neither futile nor is it lacking in scientific rationale. Given that patient outcomes improve when treatment is started as soon as possible, development and implementation of protocols to promptly identify and treat patients in the earliest phases of diseases are urgently needed. Different pharmacological options have been proposed to manage patients and, as for other life-threatening conditions, advanced life support has been proved effective to address multiorgan failure. In addition, high throughput screening of small molecular libraries has emerged as a novel promising way to find new candidates drugs for VHFs therapy and a relevant number of new molecules are currently under investigation. Here we discuss the current knowledge about VHF clinical management to propose a way to step up the approach to VHFs beyond the mere application of infection control measures.
Collapse
Affiliation(s)
- Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Dengue fever (DF) and dengue hemorrhagic fever (DHF) are mosquito-transmitted diseases of global importance. Despite significant research efforts, no approved vaccines or antiviral drugs against these diseases are currently available. This brief article reviews the status of dengue vaccine development, with particular emphasis on the vaccine strategies in more advanced stages of evaluation; these include traditional attenuation, chimerization and engineered attenuation. Several aspects of these vaccine design strategies, including concerns about vaccine candidates inducing infection-enhancing antibodies, are also presented.
Collapse
Affiliation(s)
- Eiji Konishi
- Division of Infectious Diseases, Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0412, Japan
| |
Collapse
|
30
|
Moi ML, Lim CK, Kotaki A, Takasaki T, Kurane I. Detection of higher levels of dengue viremia using FcγR-expressing BHK-21 cells than FcγR-negative cells in secondary infection but not in primary infection. J Infect Dis 2011; 203:1405-14. [PMID: 21502081 DOI: 10.1093/infdis/jir053] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been reported that levels of viremia reflect the severity of illness in dengue virus infection. We assessed the levels of viremia in patients with primary and secondary infections, using 2 cell lines: FcγR-expressing BHK cells and FcγR-negative cells. In primary infection, virus titers were at similar levels between FcγR-expressing and FcγR-negative cells. In secondary infection, however, virus titers were ∼10 times higher in FcγR-expressing cells on days 1-6 when compared with FcγR-negative cells, indicating discrepancy in viremia titers between FcγR-expressing and FcγR-negative cells. The results suggest that dengue virus-antibody complexes with infectious capacity exist in patients with secondary infection, and these immune complexes can be detected by using FcγR-expressing cells. As it has been reported that principal target cells of dengue virus infection are FcγR-positive, monocyte/macrophage lineage cells, virus titers determined using FcγR-expressing cells may better reflect the actual viremic conditions in vivo.
Collapse
Affiliation(s)
- Meng Ling Moi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Moi ML, Takasaki T, Kotaki A, Tajima S, Lim CK, Sakamoto M, Iwagoe H, Kobayashi K, Kurane I. Importation of dengue virus type 3 to Japan from Tanzania and Cote d'Ivoire. Emerg Infect Dis 2011; 16:1770-2. [PMID: 21029541 PMCID: PMC3294538 DOI: 10.3201/eid1611.101061] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Travelers can introduce viruses from disease-endemic to non–disease-endemic areas. Serologic and virologic tests confirmed dengue virus infections in 3 travelers returning to Japan: 2 from Tanzania and 1 from Côte d’Ivoire. Phylogenetic analysis of the envelope gene showed that 2 genetically related virus isolates belonged to dengue virus type 3 genotype III.
Collapse
Affiliation(s)
- Meng Ling Moi
- National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Modhiran N, Kalayanarooj S, Ubol S. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. PLoS Negl Trop Dis 2010; 4:e924. [PMID: 21200427 PMCID: PMC3006139 DOI: 10.1371/journal.pntd.0000924] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 11/23/2010] [Indexed: 12/24/2022] Open
Abstract
Background The phenomenon of antibody dependent enhancement as a major determinant that exacerbates disease severity in DENV infections is well accepted. While the detailed mechanism of antibody enhanced disease severity is unclear, evidence suggests that it is associated with both increased DENV infectivity and suppression of the type I IFN and pro-inflammatory cytokine responses. Therefore, it is imperative for us to understand the intracellular mechanisms altered during ADE infection to decipher the mechanism of severe pathogenesis. Methodology/Principal Findings In this present work, qRT-PCR, immunoblotting and gene array analysis were conducted to determine whether DENV-antibody complex infection exerts a suppressive effect on the expression and/or function of the pathogen recognition patterns, focusing on the TLR-signaling pathway. We show here that FcγRI and FcγRIIa synergistically facilitated entry of DENV-antibody complexes into monocytic THP-1 cells. Ligation between DENV-antibody complexes and FcR not only down regulated TLRs gene expression but also up regulated SARM, TANK, and negative regulators of the NF-κB pathway, resulting in suppression of innate responses but increased viral production. These results were confirmed by blocking with anti-FcγRI or anti-FcγRIIa antibodies which reduced viral production, up-regulated IFN-β synthesis, and increased gene expression in the TLR-dependent signaling pathway. The negative impact of DENV-ADE infection on the TLR-dependent pathway was strongly supported by gene array screening which revealed that both MyD88-dependent and –independent signaling molecules were down regulated during DENV-ADE infection. Importantly, the same phenomenon was seen in PBMC of secondary DHF/DSS patients but not in PBMC of DF patients. Conclusions/Significance Our present work demonstrates the mechanism by which DENV uses pre-existing immune mediators to defeat the principal activating pathway of innate defense resulting in suppression of an array of innate immune responses. Interestingly, this phenomenon specifically occurred during the severe form of DENV infection but not in the mild form of disease. Dengue is the most common vector-borne viral disease in humans, with 50–100 million infections per year. The severity of dengue ranges from an acute febrile illness, DF, to a life-threatening vascular leakage syndrome with or without shock, DHF/DSS. Determinants of these syndromes are mainly host factors including non protective but cross reactive antibodies which are known as preexisting enhancing antibodies. These antibodies enhance disease severity through increasing the virus infected cell mass and facilitating intracellular virus replication. Here we demonstrate that DENV exploits preexisting subneutralizing antibodies to defeat the pathogen recognition system and to down regulate the TLR signaling pathway resulting in suppression of an array of innate immune responses. Furthermore, we also show that this phenomenon specifically occurs in the severe form of dengue but not in the mild form of disease.
Collapse
Affiliation(s)
- Naphak Modhiran
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siripen Kalayanarooj
- WHO Collaborating Centre Case Management of Dengue/DHF/DSS, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
33
|
Moi ML, Lim CK, Kotaki A, Takasaki T, Kurane I. Discrepancy in dengue virus neutralizing antibody titers between plaque reduction neutralizing tests with Fcgamma receptor (FcgammaR)-negative and FcgammaR-expressing BHK-21 cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:402-7. [PMID: 20042518 PMCID: PMC2837954 DOI: 10.1128/cvi.00396-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 10/29/2009] [Accepted: 12/18/2009] [Indexed: 01/22/2023]
Abstract
Protective immunity against dengue virus (DENV) is best reflected by the presence of neutralizing antibodies. The conventional plaque reduction neutralizing test (PRNT) is performed using Fcgamma receptor (FcgammaR)-negative cells. Because FcgammaR plays a key role in antibody-dependent enhancement, we examined neutralizing antibody titers of mouse monoclonal antibodies and human serum samples in PRNTs using FcgammaRIIA-negative and FcgammaRIIA-expressing BHK cells. There was a discrepancy in dengue virus neutralizing antibody titers between PRNTs using FcgammaRIIA-negative versus FcgammaRIIA-expressing BHK cells. Neutralizing antibody titers to DENV-1 and DENV-2 tested with monoclonal antibodies, and with most of the human serum samples, were higher in assays using BHK cells than those using FcgammaRIIA-expressing BHK cells. The results suggest that neutralizing antibody titers determined using FcgammaRIIA-expressing cells may better reflect the protective capacity of anti-DENV antibodies, as the major target cells of DENV infection are FcgammaR-positive cells.
Collapse
Affiliation(s)
- Meng Ling Moi
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|