1
|
Nguyen TNT, Park D, Canova CT, Sangerman J, Srinivasan P, Ou RW, Barone PW, Neufeld C, Wolfrum JM, Springs SL, Sinskey AJ, Braatz RD. Perfusion-Based Production of rAAV via an Intensified Transient Transfection Process. Biotechnol Bioeng 2025; 122:1424-1440. [PMID: 40103325 PMCID: PMC12067042 DOI: 10.1002/bit.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Increasing demand for recombinant adeno-associated virus (rAAV)-based gene therapies necessitates increased manufacturing production. Transient transfection of mammalian cells remains the most commonly used method to produce clinical-grade rAAVs due to its ease of implementation. However, transient transfection processes are often characterized by suboptimal yields and low fractions of full-to-total capsids, both of which contribute to the high cost of goods of many rAAV-based gene therapies. Our previously developed mechanistic model for rAAV2/5 production indicated that the inadequate capsid filling is due to a temporal misalignment between viral DNA replication and capsid synthesis within the cells and the repression of later phase capsid formation by Rep proteins. We experimentally validated this prediction and showed that performing multiple, time-separated doses of plasmid increases the production of rAAV. In this study, we use the insights generated by our mechanistic model to develop an intensified process for rAAV production that combines perfusion with high cell density re-transfection. We demonstrate that performing multiple, time-separated doses at high cell density boosts both cell-specific and volumetric productivity and improves plasmid utilization when compared to a single bolus at standard operating conditions. Our results establish a new paradigm for continuously manufacturing rAAV via transient transfection that improves productivity and reduces manufacturing costs.
Collapse
Affiliation(s)
- Tam N. T. Nguyen
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Damdae Park
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher T. Canova
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jose Sangerman
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Prasanna Srinivasan
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Rui Wen Ou
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Paul W. Barone
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Caleb Neufeld
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jacqueline M. Wolfrum
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Stacy L. Springs
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anthony J. Sinskey
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Richard D. Braatz
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Center for Biomedical InnovationMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Nie J, Xu Z, Sun Y, Ren H, Song Z, Zhang Y, Bai Z. Improved productivity of recombinant adeno-associated virus (rAAV) via triple transfection of HEK293 cells using perfusion cultivation. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03167-9. [PMID: 40285883 DOI: 10.1007/s00449-025-03167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
In recent years, recombinant adeno-associated virus (rAAV) vectors are the promising viral transfer tools for gene therapy and clinical trials, thanks to their favorable safety profile and long-term transgene expression. The increasing demand for rAAVs for gene therapy led to a rise in the amount of these vectors required for pre-clinical trials, clinical trials, and approved therapeutic applications. A majority of suspension HEK293 cell-based rAAV production protocols reported rely on a triple transfection at cell density below 2 × 106 cells/mL. However, the low yield of such biomanufacturing challenges bioprocess engineers to develop more efficient strategies capable of increasing volumetric productivity. In this study, we developed a perfusion bioprocess to enable rAAV production efficiently at high cell density. We first optimized three key process parameters (the total DNA amount, ratio of polyethyleneimine (PEI) to DNA, and proportion of the three plasmids) of rAAV production at cell density of 2 × 106 cells/mL by the design of experiment method, from which the robust setpoint (total DNA amount of 1.37 μg/mL, ratio of PEI to DNA of 1.52 μL/μg, the proportion of plasmids pHelper 24%, pRC 46%, pGOI 30%) was explored. We then developed a rAAV production process at a cell density of ~ 8 × 106 cells/mL, with increasing DNA amount on a cell basis and optimizing transfection complex preparation. This approach was confirmed in a 5 L benchtop bioreactor connected with a perfusion system, resulting in a viral genomic titer of 7.28 × 1011 vg/mL and a cell-specific viral genomic titer of 4.97 × 104 vg/cell. This study demonstrates that the perfusion process coupled with optimized transfection complex preparation has the potential to improve manufacturing productivity.
Collapse
Affiliation(s)
- Jianqi Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhaojing Xu
- Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yang Sun
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - He Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Zichuan Song
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
- Zhengzhou University of Technology, Zhengzhou, 450044, China.
| |
Collapse
|
3
|
Liu T, Pu G, Wang L, Ye Z, Li H, Li R, Li Y, Guo X, Cho WC, Yin H, Zheng Y, Luo X. LncRNA gm40262 promotes liver fibrosis and parasite growth through the gm40262-miR-193b-5p-TLR4/Col1α1 axis. mBio 2025; 16:e0228724. [PMID: 39998227 PMCID: PMC11980551 DOI: 10.1128/mbio.02287-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Alveolar echinococcosis (AE) is a severe and life-threatening parasitic disease caused by Echinococcus multilocularis. Liver fibrosis is a significant pathological feature of advanced AE, characterized by the excessive production and accumulation of extracellular matrix (ECM). However, the precise underlying mechanism remains largely unknown. In this study, we show that the long noncoding RNA gm40262, predominantly expressed in hepatic stellate cells (HSCs), is upregulated in AE. Interestingly, its knockdown leads to liver fibrosis resolution, accompanied by a substantial suppression of parasite growth. Gm40262 functions by targeting miR-193b-5p to activate HSCs and stimulate their proliferation in a TGF-β-dependent manner, thereby promoting ECM production by upregulating Col1α1. Moreover, gm40262 is also involved in inflammation through the gm40262-miR-193b-5p-TLR4 axis. Our findings suggest that gm40262 plays a pivotal role in parasite-induced liver fibrosis through multiple mechanisms, highlighting its potential as a therapeutic target for hepatic fibrosis. IMPORTANCE Echinococcus multilocularis is a tiny parasite with significant medical implications. The chronic parasitism of E. multilocularis in the liver generally leads to liver fibrosis, but the underlying mechanisms are poorly understood. We herein show that gm40262, a long noncoding RNA predominantly expressed in hepatic stellate cells (HSCs), is involved in hepatic fibrogenesis during infection by activating HSCs and promoting extracellular matrix production. The gm40262-orchestrating fibrogenesis occurs through the gm40262-miR-193b-5p-TLR4 and gm40262-miR-193b-5p-Col1α1 axes. The knockdown of gm40262 remarkably alleviates liver fibrosis, with decreased parasite growth. Our findings reveal a key role of gm40262 in liver fibrosis during E. multilocularis infection, rendering it a therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Tingli Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
- Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Guiting Pu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Liqun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Ziyu Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang province, China
| | - Hong Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang province, China
| | - Yanping Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Xiaola Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang province, China
| | - Xuenong Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Green EA, Fu Q, Ndhairo N, Leibiger TM, Wang Y, Lee Y, Lee KH, Betenbaugh M, Yoon S, McNally DJ. Development of an HEK293 Suspension Cell Culture Medium, Transient Transfection Optimization Workflow, and Analytics for Batch rAAV Manufacturing. Biotechnol Bioeng 2025. [PMID: 40197832 DOI: 10.1002/bit.28980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Recombinant adeno associated virus (rAAV) vectors have become popular delivery vehicles for in vivo gene therapies, but demand for rAAVs continues to outpace supply. Platform processes for rAAV production are being developed by many manufacturers, and transient chemical transfection of human embryonic kidney 293 (HEK293) cells is currently the most popular approach. However, the cutting edge nature of rAAV process development encourages manufacturers to keep cell culture media formulations, plasmid sequences, and other details proprietary, which creates hurdles for small companies and academic labs seeking to innovate in this space. To address this problem, we leveraged the resources of an academic-industry consortium (Advanced Mammalian Biomanufacturing Innovation Center, AMBIC) to develop an rAAV production system based on transient transfection of suspension HEK293 cells adapted to an in-house, chemically defined medium. We found that balancing iron and calcium levels in the medium were crucial for maintaining transfection efficiency and minimizing cell aggregation, respectively. A design of experiments approach was used to optimize the transient transfection process for batch rAAV production, and PEI:DNA ratio and cell density at transfection were the parameters with the strongest effects on vector genome (VG) titer. When the optimized transient process was transferred between two university sites, VG titers were within a twofold range. Analytical characterization showed that purified rAAV from the AMBIC process had comparable viral protein molecular weights versus vector derived from commercial processes, but differences in transducing unit (TU) titer were observed between vector preps. The developed media formulation, transient transfection process, and analytics for VG titer, capsid identity, and TU titer constitute a set of workflows that can be adopted by others to study fundamental problems that could improve product yield and quality in the nascent field of rAAV manufacturing.
Collapse
Affiliation(s)
- Erica A Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Nelson Ndhairo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas M Leibiger
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yongsuk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - David J McNally
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
- MassBiologics, University of Massachusetts Chan Medical School, Fall River, Massachusetts, USA
| |
Collapse
|
5
|
Zhu X, Yang K, Xie J, Feng X, Wu T, Hu M, Wang H, Yu C, Yu X, Hemmatzadeh F, Zhu L, Zhang L. An SDS-NaOH-based method to isolate genome of recombinant adeno-associated virus vectors for physical titer measurement. PLoS One 2025; 20:e0315921. [PMID: 40179116 PMCID: PMC11967980 DOI: 10.1371/journal.pone.0315921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) vectors are promising for their safety and sustained expression of genetic payloads across various tissues. These vectors consist of a protein capsid enclosing a 4.7 kb single-stranded DNA genome. Rapid and accurate determination of the physical titers of rAAV vector is crucial for quality control in rAAV manufacturing and precise drug dosage in clinical trials. To prepare vector DNA for genome titer assessment, it is essential to completely degrade unencapsulated DNA and dissociate the capsid. Conventional methods typically involve co-incubation with DNase I to degrade unencapsidated DNA, followed by co-incubation with Proteinase K to cleave protein shells. Here, we present a "Benzonase & SDS-NaOH" pretreatment as an effective alkaline lysis for releasing the vector DNA. In the presence of producer cell crude extract, Benzonase demonstrated superior efficacy in degrading unencapsidated DNA compared to DNase I. Additionally, the use of SDS-NaOH, effective at 65 °C for 30 min, significantly reduces the time required compared to that of Proteinase K at 56 °C for 2 hours. We also showed that the "Benzonase & SDS-NaOH" pretreatment is applicable for vector genome titration in rAAV production, harvest, and purified stock. Moreover, our method is effective for both scAAV and ssAAV forms and across all serotypes, including the thermally stable rAAV5. Overall, this method offers a rapid and straightforward solution to determine rAAV vector genome titers in both purified preparations and during the manufacturing process.
Collapse
Affiliation(s)
- Xiangying Zhu
- Zhejiang Hengyu Biological Technology Co., Ltd., Jiaxing, Zhejiang, China
| | - Keying Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinyan Xie
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xilin Feng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Wu
- Zhejiang Hengyu Biological Technology Co., Ltd., Jiaxing, Zhejiang, China
| | - Mengjun Hu
- Zhejiang Hengyu Biological Technology Co., Ltd., Jiaxing, Zhejiang, China
| | - Haijian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghui Yu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaomin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Liqing Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Linhua Zhang
- Department of Clinical Laboratory, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
| |
Collapse
|
6
|
Yan J, Li Z, Shu Y, Chen H, Wang T, Li X, Zhang Y, Li L, Zhang Y. The Unveiled Novel regulator of Adeno-associated virus production in HEK293 cells. Gene 2025; 938:149122. [PMID: 39581356 DOI: 10.1016/j.gene.2024.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The field of gene therapy using Adeno-associated viral (AAV) vector delivery is rapidly advancing in the biotherapeutics industry. Despite its successes, AAV manufacturing remains a challenge due to limited production yields. The triple plasmid transfection of HEK293 cells represents the most extensively utilized system for AAV production. The regulatory factors and mechanisms underlying viral production in HEK293 cells are largely unknown. In this study, we isolated high-titer AAV production clones from a parental HEK293 population using a single limiting dilution step, and subsequently elucidating their underlying molecular mechanisms through whole transcriptome analysis. LncRNA TCONS_00160397 was upregulated in clones and shown to promoted HEK293 cells proliferation and improved the titer of AAV production. Mechanistically, results from proteomics and metabolomics indicated that TCONS_00160397 regulated the ABC transporters pathway. These findings furnish a rich repository of knowledge and actionable targets for the rational optimization of HEK293-based producer lines, thereby paving the way for tangible improvements in AAV vector output and expediting the broad implementation of gene therapies.
Collapse
Affiliation(s)
- Junyu Yan
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Ziqian Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yue Shu
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Hui Chen
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Tianxingzi Wang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Xin Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yuhang Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - LiLi Li
- Beijing Institute of Biological Products Company Limited, Beijing, China.
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China; China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
7
|
Duzenli OF, Aslanidi G. Consecutive Affinity and Ion-Exchange Chromatography for AAV9 Vectors Purification. Biomedicines 2025; 13:361. [PMID: 40002774 PMCID: PMC11852678 DOI: 10.3390/biomedicines13020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Irrespective of the rapid development of AAV-based gene therapy, the production of clinical-grade vectors has a bottleneck resulting from product-related impurities such as empty and partially filled capsids, which lack a functional recombinant genome. Methods: In the current study, we applied the sequential affinity chromatography (AC)- and anion-exchange chromatography (AEX)-based method for purification of AAV9 vector harboring single-stranded genome encoding the fusion of firefly luciferase (fLuc)-yellow fluorescent protein (YFP) under chicken beta actin (CBA) promoter. We assessed the efficiency of two different pre-packed cross-linked sepharose and one monolithic AEX columns following AC purification to separate fully encapsulated with recombinant DNA AAV vectors from byproducts. Results: We showed the possibility to achieve approximately 20-80% recovery and over 90% calculated DNA-containing/empty capsid ratio depending on column and buffers composition. Additionally, we confirmed the infectivity of AAV by in vitro luciferase assay regardless of recovery method from different AEX columns. Conclusions: Our purification data indicate the effectiveness of dual chromatography method to obtain rAAV9 vectors with DNA-containing capsid content over 90%.
Collapse
Affiliation(s)
| | - George Aslanidi
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| |
Collapse
|
8
|
Deng Z, Lv YL, Wang XT, Yuan LH, Zhao K, Du ZM, Xiao X. Production of Recombinant Adeno-Associated Virus Through High-Cell-Density Transfection of HEK293 Cells Based on Fed-Perfusion Culture. Hum Gene Ther 2025; 36:116-127. [PMID: 39761134 DOI: 10.1089/hum.2024.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield. In this study, we optimized the cell culture process with high cell density up to 2 × 107 cells/mL by employing a perfusion culture system with centrifugation and medium exchange in shake flasks and perfusion device in bioreactor. Furthermore, we utilized a design of experiments strategy to systematically modulate a series of transfection-related variables including the quantity of plasmid DNA, the DNA-to-polyethylenimine ratio, incubation duration, and the impact of post-transfection feeding strategies on the yield of recombinant AAV (rAAV). Our comprehensive analysis and subsequent optimizations actualized a remarkable unit yield reaching nearly 2 × 1012 vector genomes (vg)/mL. Importantly, the resulting single-cell yield and biological activity were found to be comparable with those obtained from fed-batch cultures, underscoring the efficacy of our approach. Based on these findings, we investigated rAAV yield via high-density suspend culture in bioreactor, particularly focusing on cell aggregation and the use of perfusion technology. Intriguingly, we attempted to elevate the yield of an oversized recombinant coagulation factor VIII AAV843 vector by 3.5-fold, reaching a yield of 1 × 1012 vg/mL. Concurrently, the medium usage rate was only double that of batch feeding, thereby significantly shrinking the upstream cost of rAAV manufacture. In summary, this strategy significantly benefits large-scale AAV production for both commercial and clinical applications.
Collapse
Affiliation(s)
- Zhe Deng
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
- Process Development Department, Belief BioMed Co., Ltd, Shanghai, China
| | - Yan-Ling Lv
- Process Development Department, Belief BioMed Co., Ltd, Shanghai, China
| | - Xin-Tao Wang
- Process Development Department, Belief BioMed Co., Ltd, Shanghai, China
| | - Long-Hui Yuan
- Process Development Department, Belief BioMed Co., Ltd, Shanghai, China
| | - Kai Zhao
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
- Process Development Department, Belief BioMed Co., Ltd, Shanghai, China
| | - Zeng-Min Du
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
- Process Development Department, Belief BioMed Co., Ltd, Shanghai, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
- Process Development Department, Belief BioMed Co., Ltd, Shanghai, China
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Yang R, Tran NT, Chen T, Cui M, Wang Y, Sharma T, Liu Y, Zhang J, Yuan X, Zhang D, Chen C, Shi Z, Wang L, Dai Y, Zaidi H, Liang J, Chen M, Jaijyan D, Hu H, Wang B, Xu C, Hu W, Gao G, Yu D, Tai PWL, Wang Q. AAVone: A Cost-Effective, Single-Plasmid Solution for Efficient AAV Production with Reduced DNA Impurities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631712. [PMID: 39829756 PMCID: PMC11741346 DOI: 10.1101/2025.01.07.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Currently, the most common approach for manufacturing GMP-grade adeno-associated virus (AAV) vectors involves transiently transfecting mammalian cells with three plasmids that carry the essential components for production. The requirement for all three plasmids to be transfected into a single cell and the necessity for high quantities of input plasmid DNA, limits AAV production efficiency, introduces variability between production batches, and increases time and labor costs. Here, we developed an all-in-one, single-plasmid AAV production system, called AAVone. In this system, the adenovirus helper genes ( E2A , E4orf6 , and VA RNA ), packaging genes ( rep and cap ), and the vector transgene cassette are consolidated into a single compact plasmid with a 13-kb backbone. The AAVone system achieves a two- to four-fold increase in yields compared to the traditional triple-plasmid system. Furthermore, the AAVone system exhibits low batch-to-batch variation and eliminates the need for fine-tuning the ratios of the three plasmids, simplifying the production process. In terms of vector quality, AAVs generated by the AAVone system show similar in vitro and in vivo transduction efficiency, but a substantial reduction in sequences attributed to plasmid backbones and a marked reduction in non-functional snap-back genomes. In Summary, the AAVone platform is a straightforward, cost-effective, and highly consistent AAV production system - making it particularly suitable for GMP-grade AAV vectors.
Collapse
|
10
|
Park S, Shin S, Han G, Lee GM. Knockout of Pro-Apoptotic BAX and BAK1 Genes in HEK293T Cells Enhances Adeno-Associated Virus (AAV) Production: AAV2 and AAV9. Biotechnol J 2025; 20:e202400529. [PMID: 39865382 DOI: 10.1002/biot.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells. BAX/BAK1 knockout (BBKO) in HEK293T cells significantly increased the production of both AAV2 and AAV9. For AAV2, BBKO increased the genome titer of AAV2 by 55% without negatively affecting the proportion of unwanted empty capsids generated during AAV production. Empty capsid ratios were determined based on viral genome and capsid titers and confirmed via transmission electron microscopy (TEM). Likewise, for AAV9, BBKO increased the genome titer of AAV9 by 66% without negatively affecting the proportion of empty capsids. Additionally, as assessed using a transduction assay, BBKO increased the functional titers of AAV2 and AAV9 by 30% and 46%, respectively. Therefore, BBKO increased AAV production, while maintaining full capsid ratio and infectivity. Taken together, BBKO proved to be an efficient method for enhancing AAV production in HEK293T cells for both AAV2 and AAV9.
Collapse
Affiliation(s)
- Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Gyucheol Han
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Sorroza-Martinez L, Pelletier M, Guay D, Gaillet B. Recent Advances in Therapeutics and Manufacturing Processes of Recombinant Adeno-Associated Virus for the Treatment of Lung Diseases. Curr Gene Ther 2025; 25:237-256. [PMID: 39225214 DOI: 10.2174/0115665232294935240826061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Developing delivery vectors capable of transducing genetic material across the lung epithelia and mucus barrier is a major challenge and of great interest to enable gene therapies to treat pulmonary diseases. Recombinant Adeno-associated Viruses (rAAVs) have emerged as attractive candidates among viral and non-viral vectors due to their broad tissue tropism, ability to transduce dividing and quiescent cells, and their safety profile in current human applications. While rAAVs have demonstrated safety in earlier clinical trials for lung disease applications, there are still some limitations regarding rAAV-transgene delivery in pulmonary cells. Thus, further improvements in rAAV engineering are needed to enhance the effectiveness of rAAV-based therapies for lung diseases. Such therapies could benefit patients with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary hypertension, and cystic fibrosis, among others, by regulating hereditary gene mutations or acquired gene deregulations causing these conditions. Alongside therapeutic development, advances in the rAAV production process are essential to meet increasing production demands, while reducing manufacturing costs. This review discusses current challenges and recent advances in the field of rAAV engineering and manufacturing to encourage the clinical development of new pulmonary gene therapy treatments.
Collapse
Affiliation(s)
- Luis Sorroza-Martinez
- Département de génie chimique, Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien- Pouliot, Québec, QC, G1V 0A6, Canada
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC, G1P 4S6, Canada
| | - Mia Pelletier
- Département de génie chimique, Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien- Pouliot, Québec, QC, G1V 0A6, Canada
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC, G1P 4S6, Canada
| | - David Guay
- Département de génie chimique, Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien- Pouliot, Québec, QC, G1V 0A6, Canada
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC, G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique, Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien- Pouliot, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
12
|
Destro F, Wu W, Srinivasan P, Joseph J, Bal V, Neufeld C, Wolfrum JM, Manalis SR, Sinskey AJ, Springs SL, Barone PW, Braatz RD. The state of technological advancement to address challenges in the manufacture of rAAV gene therapies. Biotechnol Adv 2024; 76:108433. [PMID: 39168354 DOI: 10.1016/j.biotechadv.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Current processes for the production of recombinant adeno-associated virus (rAAV) are inadequate to meet the surging demand for rAAV-based gene therapies. This article reviews recent advances that hold the potential to address current limitations in rAAV manufacturing. A multidisciplinary perspective on technological progress in rAAV production is presented, underscoring the necessity to move beyond incremental refinements and adopt a holistic strategy to address existing challenges. Since several recent reviews have thoroughly covered advancements in upstream technology, this article provides only a concise overview of these developments before moving to pivotal areas of rAAV manufacturing not well covered in other reviews, including analytical technologies for rapid and high-throughput measurement of rAAV quality attributes, mathematical modeling for platform and process optimization, and downstream approaches to maximize efficiency and rAAV yield. Novel technologies that have the potential to address the current gaps in rAAV manufacturing are highlighted. Implementation challenges and future research directions are critically discussed.
Collapse
Affiliation(s)
- Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivekananda Bal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Howe G, Bal M, Wasmuth M, Massaro G, Rahim AA, Ali S, Rivera M, Schofield DM, Omotosho A, Ward J, Keshavarz-Moore E, Mason C, Nesbeth DN. An autonucleolytic suspension HEK293F host cell line for high-titer serum-free AAV5 and AAV9 production with reduced levels of DNA impurity. Mol Ther Methods Clin Dev 2024; 32:101317. [PMID: 39257529 PMCID: PMC11385518 DOI: 10.1016/j.omtm.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
We sought to engineer mammalian cells to secrete nuclease activity as a step toward removing the need to purchase commercial nucleases as process additions in bioprocessing of AAV5 and AAV9 as gene therapy vectors. Engineering HeLa cells with a serratial nuclease transgene did not bring about nuclease activity in surrounding media whereas engineering serum-free, suspension-adapted HEK293F cells with a staphylococcal nuclease transgene did result in detectable nuclease activity in surrounding media of the resultant stable transfectant cell line, "NuPro-1S." When cultivated in serum-free media, NuPro-1S cells yielded 3.06 × 1010 AAV5 viral genomes (vg)/mL via transient transfection, compared with 3.85 × 109 vg/mL from the parental HEK293F cell line. AAV9 production, followed by purification by ultracentrifugation, yielded 1.8 × 1013 vg/mL from NuPro-1S cells compared with 7.35 × 1012 vg/mL from HEK293F cells. AAV9 from both HEK293F and NuPro-1S showed almost identical ability to transduce cells embedded in a scaffold tissue mimic or cells of mouse neonate brain tissue in vivo. Comparison of agarose gel data indicated that the DNA content of AAV5 and AAV9 process streams from NuPro-1S cells was reduced by approximately 60% compared with HEK293F cells. A similar reduction in HEK293F cells was only achievable with a 50 U/mL Benzonase treatment.
Collapse
Affiliation(s)
- Geoffrey Howe
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Mehtap Bal
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Matt Wasmuth
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Sadfer Ali
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Milena Rivera
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Desmond M Schofield
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Aminat Omotosho
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - John Ward
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Eli Keshavarz-Moore
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Chris Mason
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Darren N Nesbeth
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Ismail AM, Witt E, Bouwman T, Clark W, Yates B, Franco M, Fong S. The longitudinal kinetics of AAV5 vector integration profiles and evaluation of clonal expansion in mice. Mol Ther Methods Clin Dev 2024; 32:101294. [PMID: 39104575 PMCID: PMC11298592 DOI: 10.1016/j.omtm.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
Adeno-associated virus (AAV)-based vectors are used clinically for gene transfer and persist as extrachromosomal episomes. A small fraction of vector genomes integrate into the host genome, but the theoretical risk of tumorigenesis depends on vector regulatory features. A mouse model was used to investigate integration profiles of an AAV serotype 5 (AAV5) vector produced using Sf and HEK293 cells that mimic key features of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), a gene therapy for severe hemophilia A. The majority (95%) of vector genome reads were derived from episomes, and mean (± standard deviation) integration frequency was 2.70 ± 1.26 and 1.79 ± 0.86 integrations per 1,000 cells for Sf- and HEK293-produced vector. Longitudinal integration analysis suggested integrations occur primarily within 1 week, at low frequency, and their abundance was stable over time. Integration profiles were polyclonal and randomly distributed. No major differences in integration profiles were observed for either vector production platform, and no integrations were associated with clonal expansion. Integrations were enriched near transcription start sites of genes highly expressed in the liver (p = 1 × 10-4) and less enriched for genes of lower expression. We found no evidence of tumorigenesis or fibrosis caused by the vector integrations.
Collapse
Affiliation(s)
| | - Evan Witt
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | | | - Wyatt Clark
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | | | - Matteo Franco
- ProtaGene CGT GmbH, Heidelberg 69120, Germany
- ProtaGene Inc., Burlington, MA 01803, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| |
Collapse
|
15
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
16
|
Catalán-Tatjer D, Tzimou K, Nielsen LK, Lavado-García J. Unravelling the essential elements for recombinant adeno-associated virus (rAAV) production in animal cell-based platforms. Biotechnol Adv 2024; 73:108370. [PMID: 38692443 DOI: 10.1016/j.biotechadv.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) stand at the forefront of gene therapy applications, holding immense significance for their safe and efficient gene delivery capabilities. The constantly increasing and unmet demand for rAAVs underscores the need for a more comprehensive understanding of AAV biology and its impact on rAAV production. In this literature review, we delved into AAV biology and rAAV manufacturing bioprocesses, unravelling the functions and essentiality of proteins involved in rAAV production. We discuss the interconnections between these proteins and how they affect the choice of rAAV production platform. By addressing existing inconsistencies, literature gaps and limitations, this review aims to define a minimal set of genes that are essential for rAAV production, providing the potential to advance rAAV biomanufacturing, with a focus on minimizing the genetic load within rAAV-producing cells.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
17
|
Coplan L, Zhang Z, Ragone N, Reeves J, Rodriguez A, Shevade A, Bak H, Tustian AD. High-yield recombinant adeno-associated viral vector production by multivariate optimization of bioprocess and transfection conditions. Biotechnol Prog 2024; 40:e3445. [PMID: 38450973 DOI: 10.1002/btpr.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are one of the most used vehicles for gene therapy, with five rAAV therapeutics commercially approved by the FDA. To improve product yield, we optimized the suspension production process of rAAV8 vectors carrying a proprietary transgene using a commercially available transfection reagent, FectoVIR-AAV. Using a miniaturized automated 250 mL scale bioreactor system, we generated models of vector genome (vg) titer, capsid (cp) titer, and Vg:Cp percentage from two multivariate design of experiment studies, one centered around bioreactor operating parameters, and another based on the transfection conditions. Using the optimized process returned from these models, the vector genome titer from the bioreactor was improved to beyond 1 × 1012 vg/mL. Five critical parameters were identified that had large effects on the pre-purification vector quantity-the transfection pH, production pH, complexation time, viable cell density at transfection, and transfection reagent to DNA ratio. The optimized process was further assessed for its performance extending to six AAV serotypes, namely AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9 carrying a transgene encoding for green fluorescent protein (GFP). Five of the six serotypes returned higher vector genome titers than the control condition. These data suggest that the choice of transfection reagent is a major factor in improving vector yield. The multivariate design of experiment approach is a powerful way to optimize production processes, and the optimized process from one AAV vector can to some extent be generalized to other serotypes and transgenes to accelerate development timelines of new programs.
Collapse
Affiliation(s)
- Louis Coplan
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Zhe Zhang
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Nicole Ragone
- Research Operations, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - John Reeves
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Audrey Rodriguez
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Aishwarya Shevade
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Hanne Bak
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Andrew D Tustian
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| |
Collapse
|
18
|
Xie Y, Butler M. N-glycomic profiling of capsid proteins from Adeno-Associated Virus serotypes. Glycobiology 2024; 34:cwad074. [PMID: 37774344 PMCID: PMC10950483 DOI: 10.1093/glycob/cwad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector has become the leading platform for gene delivery. Each serotype exhibits a different tissue tropism, immunogenicity, and in vivo transduction performance. Therefore, selecting the most suitable AAV serotype is critical for efficient gene delivery to target cells or tissues. Genome divergence among different serotypes is due mainly to the hypervariable regions of the AAV capsid proteins. However, the heterogeneity of capsid glycosylation is largely unexplored. In the present study, the N-glycosylation profiles of capsid proteins of AAV serotypes 1 to 9 have been systemically characterized and compared using a previously developed high-throughput and high-sensitivity N-glycan profiling platform. The results showed that all 9 investigated AAV serotypes were glycosylated, with comparable profiles. The most conspicuous feature was the high abundance mannosylated N-glycans, including FM3, M5, M6, M7, M8, and M9, that dominated the chromatograms within a range of 74 to 83%. Another feature was the relatively lower abundance of fucosylated and sialylated N-glycan structures, in the range of 23%-40% and 10%-17%, respectively. However, the exact N-glycan composition differed. These differences may be utilized to identify potential structural relationships between the 9 AAV serotypes. The current research lays the foundation for gaining better understanding of the importance of N-glycans on the AAV capsid surface that may play a significant role in tissue tropism, interaction with cell surface receptors, cellular uptake, and intracellular processing.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
19
|
Ibreljic N, Draper BE, Lawton CW. Recombinant AAV genome size effect on viral vector production, purification, and thermostability. Mol Ther Methods Clin Dev 2024; 32:101188. [PMID: 38327806 PMCID: PMC10847916 DOI: 10.1016/j.omtm.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Adeno-associated virus (AAV) has shown great promise as a viral vector for gene therapy in clinical applications. The present work studied the effect of genome size on AAV production, purification, and thermostability by producing AAV2-GFP using suspension-adapted HEK293 cells via triple transfection using AAV plasmids containing the same GFP transgene with DNA stuffers for variable-size AAV genomes consisting of 1.9, 3.4, and 4.9 kb (ITR to ITR). Production was performed at the small and large shake flask scales and the results showed that the 4.9 kb GFP genome had significantly reduced encapsidation compared to other genomes. The large shake flask productions were purified by AEX chromatography, and the results suggest that the triple transfection condition significantly affects the AEX retention time and resolution between the full and empty capsid peaks. Charge detection-mass spectrometry was performed on all AEX full-capsid peak samples showing a wide distribution of empty, partial, full length, and copackaged DNA in the capsids. The AEX-purified samples were then analyzed by differential scanning fluorimetry, and the results suggest that sample formulation may improve the thermostability of AAV genome ejection melting temperature regardless of the packaged genome content.
Collapse
Affiliation(s)
- Nermin Ibreljic
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
- Sarepta Therapeutics, 55 Blue Sky Drive, Burlington, MA 01803, USA
| | | | - Carl W. Lawton
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
20
|
Park S, Shin S, Lee H, Jang JH, Lee GM. Enhancing the production of adeno-associated virus (AAV)2 and AAV9 with high full capsid ratio in HEK293 cells through design-of-experiment optimization of triple plasmid ratio. Biotechnol J 2024; 19:e2300667. [PMID: 38479987 DOI: 10.1002/biot.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The recombinant adeno-associated virus (rAAV) vectors used in gene therapy are usually produced by transfecting three different plasmids (Adenoviral helper plasmid (pHelper), AAV rep/cap plasmids (pRepCap), and Transgene plasmid (pAAV-GOI)) into human embryonic kidney 293 (HEK293) cells. However, the high proportion of unwanted empty capsids generated during rAAV production is problematic. To simultaneously enhance the genome titer and full capsid ratio, the ratio of the three plasmids transfected into HEK293 cells was optimized using design-of-experiment (DoE). AAV2 and AAV9, which have different production kinetics, were selected as cell-associated and secreted model AAVs, respectively. In 125 mL Erlenmeyer flasks, the genome titers of rAAV2 and rAAV9 at DoE-optimized plasmid weight ratios (pHelper:pRep2Cap2:pAAV-GOI = 1:3.52:0.50 for rAAV2 and pHelper:pRep2Cap9:pAAV-GOI = 1:1.44:0.27 for rAAV9) were 2.23-fold and 2.26-fold higher than those in the widely used plasmid weight ratio (1:1:1), respectively. In addition, compared with the plasmid ratio of 1:1:1, the relative VP3 band intensities of rAAV2 and rAAV9, which represent the relative empty capsid ratios, were reduced by 26% and 25%, respectively, at the DoE-optimized plasmid ratio. Reduced empty capsid ratios in the DoE-optimized plasmid ratios were also confirmed using transmission electron microscopy (TEM). Taken together, regardless of the AAV serotype, DoE-aided optimization of the triple plasmid ratio was found to be an efficient means of improving the production of rAAV with a high full capsid ratio.
Collapse
Affiliation(s)
- Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
- R&D Center, GluGene Therapeutics Inc., Seoul, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Chen K, Kim S, Yang S, Varadkar T, Zhou ZZ, Zhang J, Zhou L, Liu XM. Advanced biomanufacturing and evaluation of adeno-associated virus. J Biol Eng 2024; 18:15. [PMID: 38360753 PMCID: PMC10868095 DOI: 10.1186/s13036-024-00409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) has been developed as a safe and effective gene delivery vehicle to treat rare genetic diseases. This study aimed to establish a novel biomanufacturing process to achieve high production and purification of various AAV serotypes (AAV2, 5, DJ, DJ8). First, a robust suspensive production process was developed and optimized using Gibco Viral Production Cell 2.0 in 30-60 mL shaker flask cultures by evaluating host cells, cell density at the time of transfection and plasmid amount, adapted to 60-100 mL spinner flask production, and scaled up to 1.2-2.0-L stirred-tank bioreactor production at 37 °C, pH 7.0, 210 rpm and DO 40%. The optimal process generated AAV titer of 7.52-8.14 × 1010 vg/mL. Second, a new AAV purification using liquid chromatography was developed and optimized to reach recovery rate of 85-95% of all four serotypes. Post-purification desalting and concentration procedures were also investigated. Then the generated AAVs were evaluated in vitro using Western blotting, transmission electron microscope, confocal microscope and bioluminescence detection. Finally, the in vivo infection and functional gene expression of AAV were confirmed in tumor xenografted mouse model. In conclusion, this study reported a robust, scalable, and universal biomanufacturing platform of AAV production, clarification and purification.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH, 43210, USA
| | - Siying Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Zhuoxin Zora Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH, 43210, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH, 43210, USA
| | - Xiaoguang Margaret Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center (CCC), The Ohio State University, 650 Ackerman Rd, Columbus, OH, 43202, USA.
| |
Collapse
|
22
|
Schieferecke AJ, Lee H, Chen A, Kilaru V, Krish Williams J, Schaffer DV. Evolving membrane-associated accessory protein variants for improved adeno-associated virus production. Mol Ther 2024; 32:340-351. [PMID: 38115579 PMCID: PMC10861973 DOI: 10.1016/j.ymthe.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/14/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Manufacturing sufficient adeno-associated virus (AAV) to meet current and projected clinical needs is a significant hurdle to the growing gene therapy industry. The recently discovered membrane-associated accessory protein (MAAP) is encoded by an alternative open reading frame in the AAV cap gene that is found in all presently reported natural serotypes. Recent evidence has emerged supporting a functional role of MAAP in AAV egress, although the underlying mechanisms of MAAP function remain unknown. Here, we show that inactivation of MAAP from AAV2 by a single point mutation that is silent in the VP1 open reading frame (ORF) (AAV2-ΔMAAP) decreased exosome-associated and secreted vector genome production. We hypothesized that novel MAAP variants could be evolved to increase AAV production and thus subjected a library encoding over 1 × 106 MAAP protein variants to five rounds of packaging selection into the AAV2-ΔMAAP capsid. Between each successive packaging round, we observed a progressive increase in both overall titer and ratio of secreted vector genomes conferred by the bulk-selected MAAP library population. Next-generation sequencing uncovered enriched mutational features, and a resulting selected MAAP variant containing missense mutations and a frameshifted C-terminal domain increased overall GFP transgene packaging in AAV2, AAV6, and AAV9 capsids.
Collapse
Affiliation(s)
- Adam J Schieferecke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hyuncheol Lee
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aleysha Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vindhya Kilaru
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Luo N, Chen X, Li J, Huynh D, Li Y, Ou L, Liu S. Evaluation of recombinant baculovirus clearance during rAAV production in Sf9 cells using a newly developed fluorescent-TCID 50 assay. Front Med (Lausanne) 2024; 11:1302648. [PMID: 38318248 PMCID: PMC10839039 DOI: 10.3389/fmed.2024.1302648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Recombinant adeno-associated virus (rAAV) vectors provide a safe and efficient means for in vivo gene delivery, although its large-scale production remains challenging. Featuring high manufacturing speed, flexible product design, and inherent safety and scalability, the baculovirus/Sf9 cell system offers a practical solution to the production of rAAV vectors in large quantities and high purity. Nonetheless, removal and inactivation of recombinant baculoviruses during downstream purification of rAAV vectors remain critical prior to clinical application. Methods The present study utilized a newly developed fluorescent-TCID50 (F-TCID50) assay to determine the infectious titer of recombinant baculovirus (rBV) stock after baculovirus removal and inactivation, and to evaluate the impact of various reagents and solutions on rBV infectivity. Results and discussion The results showed that a combination of sodium lauryl sulfate (SLS) and Triton X-100 lysis, AAVx affinity chromatography, low pH hold (pH3.0), CsCl ultracentrifugation, and NFR filtration led to effective removal and/or inactivation of recombinant baculoviruses, and achieved a log reduction value (LRV) of more than 18.9 for the entire AAV purification process. In summary, this study establishes a standard protocol for downstream baculovirus removal and inactivation and a reliable F-TCID50 assay to detect rBV infectivity, which can be widely applied in AAV manufacturing using the baculovirus system.
Collapse
|
24
|
Liu S, Li J, Peraramelli S, Luo N, Chen A, Dai M, Liu F, Yu Y, Leib RD, Li Y, Lin K, Huynh D, Li S, Ou L. Systematic comparison of rAAV vectors manufactured using large-scale suspension cultures of Sf9 and HEK293 cells. Mol Ther 2024; 32:74-83. [PMID: 37990495 PMCID: PMC10787191 DOI: 10.1016/j.ymthe.2023.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors could be manufactured by plasmid transfection into human embryonic kidney 293 (HEK293) cells or baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. However, systematic comparisons between these systems using large-scale, high-quality AAV vectors are lacking. rAAV from Sf9 cells (Sf9-rAAV) at 2-50 L and HEK293 cells (HEK-rAAV) at 2-200 L scales were characterized. HEK-rAAV had ∼40-fold lower yields but ∼10-fold more host cell DNA measured by droplet digital PCR and next-generation sequencing, respectively. The electron microscope observed a lower full/empty capsid ratio in HEK-rAAV (70.8%) than Sf9-rAAV (93.2%), while dynamic light scattering and high-performance liquid chromatography analysis showed that HEK-rAAV had more aggregation. Liquid chromatography tandem mass spectrometry identified different post-translational modification profiles between Sf9-rAAV and HEK-rAAV. Furthermore, Sf9-rAAV had a higher tissue culture infectious dose/viral genome than HEK-rAAV, indicating better infectivity. Additionally, Sf9-rAAV achieved higher in vitro transgene expression, as measured by ELISA. Finally, after intravitreal dosing into a mouse laser choroidal neovascularization model, Sf9-rAAV and HEK-rAAV achieved similar efficacy. Overall, this study detected notable differences in the physiochemical characteristics of HEK-rAAV and Sf9-rAAV. However, the in vitro and in vivo biological functions of the rAAV from these systems were highly comparable. Sf9-rAAV may be preferred over HEK293-rAAV for advantages in yields, full/empty ratio, scalability, and cost.
Collapse
Affiliation(s)
| | - Jinzhong Li
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | | | | | - Alan Chen
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Minghua Dai
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Fang Liu
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Ying Li
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Kevin Lin
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | | | - Shuyi Li
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Li Ou
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| |
Collapse
|
25
|
Gaudry JP, Aebi A, Valdés P, Schneider BL. Production and Purification of Adeno-Associated Viral Vectors (AAVs) Using Orbitally Shaken HEK293 Cells. Methods Mol Biol 2024; 2810:55-74. [PMID: 38926272 DOI: 10.1007/978-1-0716-3878-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Here, we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium using orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI)-mediated transfection of a three-plasmid system and is specified for production in milliliter-to-liter scales. After PEI and plasmid DNA (pDNA) complex formation, the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 7-day batch process, cell cultures are further processed using a set of methods for cell lysis and vector recovery. Methods for the purification of viral particles are described, including immunoaffinity and anion-exchange chromatography, ultrafiltration, as well as digital PCR to quantify the concentration of vector particles.
Collapse
Affiliation(s)
- Jean-Philippe Gaudry
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Aline Aebi
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pamela Valdés
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroX Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
26
|
Cao TM, Chen D, Barnard GC, Shen A. Recombinant adeno-associated virus production evaluation in Chinese hamster ovary cells. Biotechnol Bioeng 2024; 121:395-402. [PMID: 37902721 DOI: 10.1002/bit.28578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 10/31/2023]
Abstract
The gene therapy field has advanced in recent years with five recombinant adeno-associated virus (rAAV) based products winning Food and Drug Administration (FDA) approval. As the number of therapeutic applications and overall production demands for rAAV increase, it is valuable to evaluate rAAV production in different production cells. Chinese hamster ovary (CHO) cells have been a robust host for biomolecule manufacturing for more than 35 years. However, there is no report to our knowledge describing the use of CHO cells for rAAV production. In this study, we examined the ability of CHO cells to produce rAAV using a transient plasmid transfection approach. Our results demonstrated that CHO is capable of producing rAAV with detectable viral fundamental components including viral RNAs, proteins, and rAAV viral particles. We identified the expression of cap proteins as one of the limiting factors for rAAV production in CHO cells. We therefore added an additional cytomegalovirus (CMV)-Cap plasmid to the CHO transfection. After increasing cap protein expression, we detected rAAV titers as high as 3 × 108 viral genomes for every 2 × 109 capsids in CHO cells using a quintuple transfection method (standard AAV2 Rep/Cap, helper, gene of interest plasmids, plus CMV-E1, and CMV-Cap plasmids) with comparable full particle percent (average 15%) to that of human embryo kidney (HEK)-derived rAAV. Our study provides a foundation for potential rAAV production in CHO cells.
Collapse
Affiliation(s)
- Thu M Cao
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Dayue Chen
- Department of Cell Therapy and Engineering Development, Genentech, Inc, South San Francisco, California, USA
| | - Gavin C Barnard
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Amy Shen
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
27
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
28
|
Fu Q, Lee YS, Green EA, Wang Y, Park SY, Polanco A, Lee KH, Betenbaugh M, McNally D, Yoon S. Design space determination to optimize DNA complexation and full capsid formation in transient rAAV manufacturing. Biotechnol Bioeng 2023; 120:3148-3162. [PMID: 37475681 PMCID: PMC11585969 DOI: 10.1002/bit.28508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapies. However, cost-effective, well-characterized processes necessary to manufacture rAAV therapeutics are challenging to develop without an understanding of how process parameters (PPs) affect rAAV product quality attributes (PQAs). In this work, a central composite orthogonal experimental design was employed to examine the influence of four PPs for transient transfection complex formation (polyethylenimine:DNA [PEI:DNA] ratio, total DNA/cell, cocktail volume, and incubation time) on three rAAV PQAs related to capsid content (vector genome titer, vector genome:capsid particle ratio, and two-dimensional vector genome titer ratio). A regression model was established for each PQA using partial least squares, and a design space (DS) was defined in which Monte Carlo simulations predicted < 1% probability of failure (POF) to meet predetermined PQA specifications. Of the three PQAs, viral genome titer was most strongly correlated with changes in complexation PPs. The DS and acceptable PP ranges were largest when incubation time and cocktail volume were kept at mid-high setpoints, and PEI:DNA ratio and total DNA/cell were at low-mid setpoints. Verification experiments confirmed model predictive capability, and this work establishes a framework for studying other rAAV PPs and their relationship to PQAs.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Erica A. Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - David McNally
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
29
|
Jalšić L, Lytvyn V, Elahi SM, Hrapovic S, Nassoury N, Chahal PS, Gaillet B, Gilbert R. Inducible HEK293 AAV packaging cell lines expressing Rep proteins. Mol Ther Methods Clin Dev 2023; 30:259-275. [PMID: 37560197 PMCID: PMC10407821 DOI: 10.1016/j.omtm.2023.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Packaging or producer cell lines for scalable recombinant adeno-associated virus (rAAV) production have been notoriously difficult to create due in part to the cytostatic nature of the Rep proteins required for AAV production. The most difficult challenge being creating AAV packaging cell lines using HEK293 parental cells, currently the best mammalian platform for rAAV production due to the constitutive expression of E1A in HEK293 cells, a key REP transcription activator. Using suspension and serum-free media adapted HEK293SF carrying a gene expression regulation system induced by addition of cumate and coumermycin, we were able to create REP-expressing AAV packaging cells. This was achieved by carefully choosing two of the AAV Rep proteins (Rep 40 and 68), using two inducible promoters with different expression levels and integrating into the cells through lentiviral vector transduction. Three of our best clones produced rAAV titers comparable to titers obtained by standard triple plasmid transfection of their parental cells. These clones were stable for up to 7 weeks under continuous cultures condition. rAAV production from one clone was also validated at scale of 1 L in a wave bioreactor using serum-free suspension culture.
Collapse
Affiliation(s)
- Lovro Jalšić
- Département de Génie Chimique, Université Laval, Québec, QC G1V0A6, Canada
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Sabahudin Hrapovic
- Advanced Biomaterials and Chemical Synthesis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Nasha Nassoury
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Parminder Singh Chahal
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Bruno Gaillet
- Département de Génie Chimique, Université Laval, Québec, QC G1V0A6, Canada
| | - Rénald Gilbert
- Département de Génie Chimique, Université Laval, Québec, QC G1V0A6, Canada
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9 Canada
| |
Collapse
|
30
|
Moço PD, Xu X, Silva CAT, Kamen AA. Production of adeno-associated viral vector serotype 6 by triple transfection of suspension HEK293 cells at higher cell densities. Biotechnol J 2023; 18:e2300051. [PMID: 37337925 DOI: 10.1002/biot.202300051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
In recent years, the use of adeno-associated viruses (AAVs) as vectors for gene and cell therapy has increased, leading to a rise in the amount of AAV vectors required during pre-clinical and clinical trials. AAV serotype 6 (AAV6) has been found to be efficient in transducing different cell types and has been successfully used in gene and cell therapy protocols. However, the number of vectors required to effectively deliver the transgene to one single cell has been estimated at 106 viral genomes (VG), making large-scale production of AAV6 necessary. Suspension cell-based platforms are currently limited to low cell density productions due to the widely reported cell density effect (CDE), which results in diminished production at high cell densities and decreased cell-specific productivity. This limitation hinders the potential of the suspension cell-based production process to increase yields. In this study, we investigated the improvement of the production of AAV6 at higher cell densities by transiently transfecting HEK293SF cells. The results showed that when the plasmid DNA was provided on a cell basis, the production could be carried out at medium cell density (MCD, 4 × 106 cells mL-1 ) resulting in titers above 1010 VG mL-1 . No detrimental effects on cell-specific virus yield or cell-specific functional titer were observed at MCD production. Furthermore, while medium supplementation alleviated the CDE in terms of VG/cell at high cell density (HCD, 10 × 106 cells mL-1 ) productions, the cell-specific functional titer was not maintained, and further studies are necessary to understand the observed limitations for AAV production in HCD processes. The MCD production method reported here lays the foundation for large-scale process operations, potentially solving the current vector shortage in AAV manufacturing.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Xingge Xu
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Cristina A T Silva
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Mehta N, Gilbert R, Chahal PS, Moreno MJ, Nassoury N, Coulombe N, Lytvyn V, Mercier M, Fatehi D, Lin W, Harvey EM, Zhang LH, Nazemi-Moghaddam N, Elahi SM, Ross CJD, Stanimirovic DB, Hayden MR. Preclinical Development and Characterization of Novel Adeno-Associated Viral Vectors for the Treatment of Lipoprotein Lipase Deficiency. Hum Gene Ther 2023; 34:927-946. [PMID: 37597209 DOI: 10.1089/hum.2023.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023] Open
Abstract
Lipoprotein lipase deficiency (LPLD) results from mutations within the lipoprotein lipase (LPL) gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues. The aim of this study was to develop a more efficacious AAV gene therapy vector for LPLD. Following preclinical biodistribution, efficacy and non-Good Laboratory Practice toxicity studies with novel AAV1 and AAV8-based vectors in mice, we identified AAV8 pVR59. AAV8 pVR59 delivered a codon-optimized, human gain-of-function hLPLS447X transgene driven by a CAG promoter in an AAV8 capsid. AAV8 pVR59 was significantly more efficacious, at 10- to 100-fold lower doses, compared with an AAV1 vector based on Glybera, when delivered intramuscularly or intravenously, respectively, in mice with LPLD. Efficient gene transfer was observed within the injected skeletal muscle and liver following delivery of AAV8 pVR59, with long-term correction of LPLD phenotypes, including normalization of plasma triglycerides and lipid tolerance, for up to 6 months post-treatment. While intramuscular delivery of AAV8 pVR59 was well tolerated, intravenous administration augmented liver pathology. These results highlight the feasibility of developing a superior AAV vector for the treatment of LPLD and provide critical insight for initiating studies in larger animal models. The identification of an AAV gene therapy vector that is more efficacious at lower doses, when paired with recent advances in production and manufacturing technologies, will ultimately translate to increased safety and accessibility for patients.
Collapse
Affiliation(s)
- Neel Mehta
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Rénald Gilbert
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Parminder S Chahal
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Maria J Moreno
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Nasha Nassoury
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Nathalie Coulombe
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Mario Mercier
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Dorothy Fatehi
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Wendy Lin
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Emily M Harvey
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Lin-Hua Zhang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Danica B Stanimirovic
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Ramírez F, Wu J, Haitjema C, Heger C. Development of a highly sensitive imaged cIEF immunoassay for studying AAV capsid protein charge heterogeneity. Electrophoresis 2023; 44:1258-1266. [PMID: 37138377 DOI: 10.1002/elps.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) of adeno-associated virus (AAV) capsid proteins tune and regulate the AAV infective life cycle, which can impact the safety and efficacy of AAV gene therapy products. Many of these PTMs induce changes in protein charge heterogeneity, including deamidation, oxidation, glycation, and glycosylation. To characterize the charge heterogeneity of a protein, imaged capillary isoelectric focusing (icIEF) has become the gold standard method. We have previously reported an icIEF method with native fluorescence detection for denatured AAV capsid protein charge heterogeneity analysis. Although well suited for final products, the method does not have sufficient sensitivity for upstream, low-concentration AAV samples, and lacks the specificity for capsid protein detection in complex samples like cell culture supernatants and cell lysates. In contrast, the combination of icIEF, protein capture, and immunodetection affords significantly higher sensitivity and specificity, addressing the challenges of the icIEF method. By leveraging different primary antibodies, the icIEF immunoassay provides additional selectivity and affords a detailed characterization of individual AAV capsid proteins. In this study, we describe an icIEF immunoassay method for AAV analysis that is 90 times more sensitive than native fluorescence icIEF. This icIEF immunoassay provides AAV stability monitoring, where changes in individual capsid protein charge heterogeneity can be observed in response to heat stress. When applied to different AAV serotypes, this method also provides serotype identity with reproducible quantification of VP protein peak areas and apparent isoelectric point (pI). Overall, the described icIEF immunoassay is a sensitive, reproducible, quantitative, specific, and selective tool that can be used across the AAV biomanufacturing process, especially in upstream process development where complex sample types are often encountered.
Collapse
Affiliation(s)
| | - Jiaqi Wu
- ProteinSimple, a Bio-Techne Brand, San Jose, California, USA
| | | | - Chris Heger
- ProteinSimple, a Bio-Techne Brand, San Jose, California, USA
| |
Collapse
|
33
|
Zhao H, Meisen WH, Wang S, Lee KJ. Process Development of Recombinant Adeno-Associated Virus Production Platform Results in High Production Yield and Purity. Hum Gene Ther 2023; 34:56-67. [PMID: 36401498 DOI: 10.1089/hum.2022.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optimization of recombinant adeno-associated virus (rAAV) production has important clinical implications, as manufacturing is one of the major challenges for rAAV gene therapy. In this study, we optimized upstream and downstream processing of the rAAV production platform created by an earlier design-of-experiment approach. Our results showed that adding peptones (yeastolate, Trypton N1 or both) increased production yield by 2.8- to 3.4-folds. For downstream processing, a variety of wash buffers for an affinity resin, POROS™ CaptureSelect™ (PCS)-AAVX, were tested for their effects on rAAV8 purity, including NaCl, MgCl2, arginine, Triton X-100, CHAPS, Tween 20, octyl β-d-1-thioglucopyranoside (OTG), and low pH. The results showed that the OTG wash significantly improved the rAAV purity to 97% and reduced endotoxins to an undetectable level (<0.5 EU/mL), while retaining the yield at 92.3% of the phosphate-buffered saline (PBS) wash. The OTG wash was successfully applied to purifications of rAAV1, rAAV2, and rAAV5 using PCS-AAVX, and rAAV9 using PCS-AAV9. rAAV8 purified with OTG wash showed comparable transduction efficiency in HEK 293T cells to the rAAV8 purified with PBS wash. The optimized rAAV production process yielded 5.5-6.0 × 1014 and 7.6 × 1014 vector genome per liter of HEK 293T cells for purified rAAV8- and rAAV5-EF1α-EGFP (enhanced green fluorescent protein), respectively. The platform described in this study is simple with high yields and purity, which will be beneficial to both research and clinical gene therapy.
Collapse
Affiliation(s)
- Huiren Zhao
- Research Biomics of Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - W Hans Meisen
- Research Biomics of Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Songli Wang
- Research Biomics of Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Ki Jeong Lee
- Research Biomics of Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
34
|
Handyside B, Ismail AM, Zhang L, Yates B, Xie L, Sihn CR, Murphy R, Bouwman T, Kim CK, De Angelis R, Karim OA, McIntosh NL, Doss MX, Shroff S, Pungor E, Bhat VS, Bullens S, Bunting S, Fong S. Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells. Mol Ther 2022; 30:3570-3586. [PMID: 36348622 PMCID: PMC9734079 DOI: 10.1016/j.ymthe.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.
Collapse
Affiliation(s)
- Britta Handyside
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Lening Zhang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Bridget Yates
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Lin Xie
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Choong-Ryoul Sihn
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Ryan Murphy
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Taren Bouwman
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Chan Kyu Kim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Omair A. Karim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | | | - Shilpa Shroff
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Erno Pungor
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Vikas S. Bhat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sherry Bullens
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Stuart Bunting
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA,Corresponding author: Sylvia Fong, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| |
Collapse
|
35
|
Celebi Torabfam G, Yetisgin AA, Erdem C, Cayli A, Kutlu O, Cetinel S. A feasibility study of different commercially available serum-free mediums to enhance lentivirus and adeno-associated virus production in HEK 293 suspension cells. Cytotechnology 2022; 74:635-655. [PMID: 36389283 PMCID: PMC9652196 DOI: 10.1007/s10616-022-00551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023] Open
Abstract
Lentivirus and adeno-associated viruses are invaluable tools for biotechnology applications due to their genetic material delivery abilities both in vitro and in vivo. However, their large-scale productions with Good Manufacturing Practices yield low efficiency when adherent and serum dependent HEK293 (Human Embryonic Kidney) cells are used as the host. To increase production efficiency, HEK293 cells are adapted to grow in suspension using commercially available and chemically defined serum-free mediums. Suspended cells can be transiently transfected for viral vector production; however, significant improvements are still needed to increase yield and thereby cost effectiveness. Here, we evaluated four most preferred commercially available mediums that are IVY, FreeStyle293, LV-MAX, and BalanCD HEK293 for the transient transfection feasibility of lentiviral (LV) and adeno-associated virus serotype 2 (AAV2) production in FlorabioHEK293 suspension cells. The highest transfection efficiency was over 90% and obtained by using polyethyleneimine (PEI) 25 K and by media adaptation in IVY without using any transfection enhancer. For the first time the feasibility of HEK293 cells, which were adapted to grow in suspension culture by Florabio and IVY media, were tested for virus production. This study demonstrates the best transfection medium for scalable and optimized production of Lentivirus and Adeno-Associated Virus in suspended HEK293 cell culture. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00551-1.
Collapse
Affiliation(s)
- Gizem Celebi Torabfam
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, 34956 Turkey
| | - Abuzer Alp Yetisgin
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul, 34956 Turkey
| | - Cem Erdem
- FloraBio Technology, Urla, 35430 İzmir Turkey
| | - Aziz Cayli
- FloraBio Technology, Urla, 35430 İzmir Turkey
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, 34956 Turkey
| | - Sibel Cetinel
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, 34956 Turkey
| |
Collapse
|
36
|
Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis. Viruses 2022; 14:v14112539. [PMID: 36423148 PMCID: PMC9695396 DOI: 10.3390/v14112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Virus-based biopharmaceutical products are used in clinical applications such as vaccines, gene therapy, and immunotherapy. However, their manufacturing remains a challenge, hampered by the lack of appropriate analytical tools for purification monitoring or characterization of the final product. This paper describes the implementation of a highly sensitive method, capillary electrophoresis (CE)-sodium dodecyl sulfate (SDS) combined with a laser-induced fluorescence (LIF) detector to monitor the impact of various bioprocess steps on the quality of different viral vectors. The fluorescence labelling procedure uses the (3-(2-furoyl) quinoline-2-carboxaldehyde dye, and the CE-SDS LIF method enables the evaluation of in-process besides final product samples. This method outperforms other analytical methods, such as SDS-polyacrylamide gel electrophoresis with Sypro Ruby staining, in terms of sensitivity, resolution, and high-throughput capability. Notably, this CE-SDS LIF method was also successfully implemented to characterize enveloped viruses such as Maraba virus and lentivirus, whose development as biopharmaceuticals is now restricted by the lack of suitable analytical tools. This method was also qualified for quantification of rAAV2 according to the International Council for Harmonisation guidelines. Overall, our work shows that CE-SDS LIF is a precise and sensitive analytical platform for in-process sample analysis and quantification of different virus-based targets, with a great potential for application in biomanufacturing.
Collapse
|
37
|
Mendes JP, Fernandes B, Pineda E, Kudugunti S, Bransby M, Gantier R, Peixoto C, Alves PM, Roldão A, Silva RJS. AAV process intensification by perfusion bioreaction and integrated clarification. Front Bioeng Biotechnol 2022; 10:1020174. [PMID: 36420444 PMCID: PMC9676353 DOI: 10.3389/fbioe.2022.1020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 08/31/2023] Open
Abstract
Adeno-associated viruses (AAVs) demand for clinical trials and approved therapeutic applications is increasing due to this vector's overall success and potential. The high doses associated with administration strategies challenges bioprocess engineers to develop more efficient technologies and innovative strategies capable of increasing volumetric productivity. In this study, alternating tangential flow (ATF) and Tangential Flow Depth filtration (TFDF) techniques were compared as to their potential for 1) implementing a high-cell-density perfusion process to produce AAV8 using mammalian HEK293 cells and transient transfection, and 2) integrating AAV harvest and clarification units into a single step. On the first topic, the results obtained demonstrate that AAV expression improves with a medium exchange strategy. This was evidenced firstly in the small-scale perfusion-mocking study and later verified in the 2 L bioreactor operated in perfusion mode. Fine-tuning the shear rate in ATF and TFDF proved instrumental in maintaining high cell viabilities and, most importantly, enhancing AAV-specific titers (7.6 × 104 VG/cell), i.e., up to 4-fold compared to non-optimized perfusion cultures and 2-fold compared with batch operation mode. Regarding the second objective, TFDF enabled the highest recovery yields during perfusion-based continuous harvest of extracellular virus and lysate clarification. This study demonstrates that ATF and TFDF techniques have the potential to support the production and continuous harvest of AAV, and enable an integrated clarification procedure, contributing to the simplification of operations and improving manufacturing efficiency.
Collapse
Affiliation(s)
- João P. Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Fernandes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
38
|
Shupe J, Zhang A, Odenwelder DC, Dobrowsky T. Gene therapy: challenges in cell culture scale-up. Curr Opin Biotechnol 2022; 75:102721. [DOI: 10.1016/j.copbio.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
|
39
|
Dash S, Sharon DM, Mullick A, Kamen AA. ONLY A SMALL FRACTION OF CELLS PRODUCE ASSEMBLED CAPSIDS DURING TRANSFECTION-BASED MANUFACTURING OF ADENO-ASSOCIATED VIRUS VECTORS. Biotechnol Bioeng 2022; 119:1685-1690. [PMID: 35182435 PMCID: PMC9314941 DOI: 10.1002/bit.28068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022]
Abstract
Plasmid transfection of mammalian cells is the dominant platform used to produce adeno‐associated virus (AAV) vectors for clinical and research applications. Low yields from this platform currently make it difficult to supply these activities with adequate material. In an effort to better understand the current limitations of transfection‐based manufacturing, this study examines what proportion of cells in a model transfection produce appreciable amounts of assembled AAV capsid. Using conformation‐specific antibody staining and flow cytometry, we report the surprising result that despite obtaining high transfection efficiencies and nominal vector yields in our model system, only 5%–10% of cells appear to produce measurable levels of assembled AAV capsids. This finding implies that considerable increases in vector titer could be realized through increasing the proportion of productive cells. Furthermore, we suggest that the flow cytometry assay used here to quantify productive cells may be a useful metric for future optimization of transfection‐based AAV vector manufacturing platforms.
Collapse
Affiliation(s)
- S Dash
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - D M Sharon
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - A Mullick
- Human Health Therapeutics, National Research Council of Canada, Montreal, QC, Canada
| | - A A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada.,Human Health Therapeutics, National Research Council of Canada, Montreal, QC, Canada
| |
Collapse
|
40
|
Guan JS, Chen K, Si Y, Kim T, Zhou Z, Kim S, Zhou L, Liu X“M. Process improvement of adeno-associated virus (AAV) production. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4:830421. [PMID: 35685827 PMCID: PMC9176270 DOI: 10.3389/fceng.2022.830421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Adeno-associated viruses (AAVs) have been well characterized and used to deliver therapeutic genes for diseases treatment in clinics and basic research. This study used the triple transient transfection of AAV-DJ/8 as a model expression system to develop and optimize the laboratory production of AAV for research and pre-clinical applications. Specifically, various production parameters, including host cell, transfection reagent, cell density, ratio of plasmid DNA and cells, gene size, and production mode, were tested to determine the optimal process. Our results showed that the adherent production using HEK 293AAV with calcium transfection generated the highest volumetric productivity of 7.86x109 gc/mL. The optimal suspensive production using HEK 293F had best AAV productivity of 5.78x109 gc/mL in serum-free medium under transfection conditions of transfection density of 0.4x106 cells/mL, plasmid DNA:cells ratio of 1.6 μg:106 cells and synthesized cationic liposomes as transfection reagent. The similar AAV productivity was confirmed at scales of 30 mL - 450 mL in shaker and/or spinner flasks. The in vitro transfection and in vivo infection efficiency of the harvested AAV-DJ/8 carrying luciferase reporter gene was confirmed using cell line and xenograft mouse model, respectively. The minimal or low purification recovery rate of AAV-DJ/8 in ion-exchange chromatography column and affinity column was observed in this study. In summary, we developed and optimized a scalable suspensive production of AAV to support the large-scale preclinical animal studies in research laboratories.
Collapse
Affiliation(s)
- Jia-Shiung Guan
- Department of Medicine, UAB, 703 19 Street South, Birmingham, AL 35294, USA
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Taehyun Kim
- Department of Medicine, UAB, 703 19 Street South, Birmingham, AL 35294, USA
| | - Zhuoxin Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| | - Lufang Zhou
- Department of Medicine, UAB, 703 19 Street South, Birmingham, AL 35294, USA
| | - Xiaoguang “Margaret” Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
41
|
Quan DN, Shiloach J. rAAV Production and Titration at the Microscale for High-Throughput Screening. Hum Gene Ther 2022; 33:94-102. [PMID: 34328798 PMCID: PMC8819507 DOI: 10.1089/hum.2021.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the literature, there are few high-throughput screens or even methods for high-throughput screens of recombinant adeno-associated virus (rAAV) production despite potential benefits to research and production. In this study, a generalizable high-throughput relative rAAV titration method is examined within the context of an siRNA screen as siRNA knockdown is a common means of pathway engineering in bioproduction. Crude samples generated from transfected HEK293T/17 cultures were subjected to quantitative PCR (qPCR) and used to transduce COS7 cells to assess relative differences in genomic and infectious rAAV titer, respectively, at the 384-well scale, evaluating both supernatant and lysed samples. To evaluate relevant differences in titer for conditions that could be used in an actual screen, cultures subjected to an siRNA reverse transfection and subsequent rAAV forward transfection were also tested. The delayed forward rAAV triple-plasmid transfection was not seen to affect the siRNA activity of tested controls, while siRNA transfection was shown to measurably impact rAAV titer. Effective differentiation between infectious titer levels was dependent upon the choice of sample dilution, but trends between qPCR and infectious titer assays were consistent across sample sets.
Collapse
Affiliation(s)
- David Nathan Quan
- NIDDK Biotechnology Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Shiloach
- NIDDK Biotechnology Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA.,Correspondence: Dr. Joseph Shiloach, NIDDK Biotechnology Core, National Institutes of Health, 14 Service Road W, Bethesda, MD 20894, USA.
| |
Collapse
|
42
|
Tan E, Chin CSH, Lim ZFS, Ng SK. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Front Bioeng Biotechnol 2021; 9:796991. [PMID: 34966729 PMCID: PMC8711270 DOI: 10.3389/fbioe.2021.796991] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023] Open
Abstract
Animal cell-based expression platforms enable the production of complex biomolecules such as recombinant proteins and viral vectors. Although most biotherapeutics are produced in animal cell lines, production in human cell lines is expanding. One important advantage of using human cell lines is the increased potential that the resulting biotherapeutics would carry more “human-like” post-translational modifications. Among the human cell lines, HEK293 is widely utilized due to its high transfectivity, rapid growth rate, and ability to grow in a serum-free, suspension culture. In this review, we discuss the use of HEK293 cells and its subtypes in the production of biotherapeutics. We also compare their usage against other commonly used host cell lines in each category of biotherapeutics and summarise the factors influencing the choice of host cell lines used.
Collapse
Affiliation(s)
- Evan Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Cara Sze Hui Chin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhi Feng Sherman Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
43
|
Proton-transfer-reaction mass spectrometry (PTR-MS) for online monitoring of glucose depletion and cell concentrations in HEK 293 gene therapy processes. Biotechnol Lett 2021; 44:77-88. [PMID: 34767126 PMCID: PMC8854141 DOI: 10.1007/s10529-021-03205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
Objectives The applicability of proton-transfer-reaction mass spectrometry (PTR-MS) as a versatile online monitoring tool to increase consistency and robustness for recombinant adeno-associated virus (rAAV) producing HEK 293 bioprocesses was evaluated. We present a structured workflow to extract process relevant information from PTR-MS data. Results Reproducibility of volatile organic compound (VOC) measurements was demonstrated with spiking experiments and the process data sets used for applicability evaluation consisted of HEK 293 cell culture triplicates with and without transfection. The developed data workflow enabled the identification of six VOCs, of which two were used to develop a soft sensor providing better real-time estimates than the conventional capacitance sensor. Acetaldehyde, another VOC, provides online process information about glucose depletion that can directly be used for process control purposes. Conclusions The potential of PTR-MS for HEK 293 cell culture monitoring has been shown. VOC data derived information can be used to develop soft sensors and to directly set up new process control strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03205-y.
Collapse
|
44
|
Meade O, Clark J, McCutchen M, Kerwin J. Exploring the design space of AAV transient-transfection in suspension cell lines. Methods Enzymol 2021; 660:341-360. [PMID: 34742397 DOI: 10.1016/bs.mie.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The safety and utility of adeno-associated virus (AAV) to modulate target gene expression has been well demonstrated, and AAV vectors are a leading gene therapy platform. However, manufacturing presents challenges in terms of productivity and scalability as compared to incumbent therapeutic modalities. In particular, a pivot from adherent cell- to suspension culture-based AAV manufacturing processes requires enhanced study of the transfection step. For the method proposed herein, a Response Surface Design of Experiments is suggested to explore the role of five transfection factors-cell density at transfection, DNA concentration, ratio of complexing reagent to DNA, and molar ratios of the transfecting plasmids-influencing viral genome titer and biological potency. Additionally, an AAV categorical factor matrix is presented for developing a workflow to interrogate the impact of AAV permutations for different capsid serotypes, harbored genes of interest, and inverted terminal repeat configurations on transfection process parameters.
Collapse
Affiliation(s)
- Oliver Meade
- Gene Therapy Process Development, Resilience, Boston, MA, United States
| | - Jeffrey Clark
- Gene Therapy Process Development, Resilience, Boston, MA, United States
| | - Michael McCutchen
- Gene Therapy Process Development, Resilience, Boston, MA, United States
| | - John Kerwin
- Gene Therapy Process Development, Resilience, Boston, MA, United States.
| |
Collapse
|
45
|
Abaandou L, Quan D, Shiloach J. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes. Cells 2021; 10:cells10071667. [PMID: 34359846 PMCID: PMC8304725 DOI: 10.3390/cells10071667] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
The HEK293 cell line has earned its place as a producer of biotherapeutics. In addition to its ease of growth in serum-free suspension culture and its amenability to transfection, this cell line’s most important attribute is its human origin, which makes it suitable to produce biologics intended for human use. At the present time, the growth and production properties of the HEK293 cell line are inferior to those of non-human cell lines, such as the Chinese hamster ovary (CHO) and the murine myeloma NSO cell lines. However, the modification of genes involved in cellular processes, such as cell proliferation, apoptosis, metabolism, glycosylation, secretion, and protein folding, in addition to bioprocess, media, and vector optimization, have greatly improved the performance of this cell line. This review provides a comprehensive summary of important achievements in HEK293 cell line engineering and on the global engineering approaches and functional genomic tools that have been employed to identify relevant genes for targeted engineering.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Department of Chemistry and Biochemistry, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - David Quan
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
| | - Joseph Shiloach
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Correspondence:
| |
Collapse
|
46
|
Ramirez GA, Gasmi M. Manufacturing of Viral Gene Therapies. Int Ophthalmol Clin 2021; 61:91-112. [PMID: 34196319 DOI: 10.1097/iio.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Nguyen TN, Sha S, Hong MS, Maloney AJ, Barone PW, Neufeld C, Wolfrum J, Springs SL, Sinskey AJ, Braatz RD. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol Ther Methods Clin Dev 2021; 21:642-655. [PMID: 34095346 PMCID: PMC8143981 DOI: 10.1016/j.omtm.2021.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Manufacturing of recombinant adeno-associated virus (rAAV) viral vectors remains challenging, with low yields and low full:empty capsid ratios in the harvest. To elucidate the dynamics of recombinant viral production, we develop a mechanistic model for the synthesis of rAAV viral vectors by triple plasmid transfection based on the underlying biological processes derived from wild-type AAV. The model covers major steps starting from exogenous DNA delivery to the reaction cascade that forms viral proteins and DNA, which subsequently result in filled capsids, and the complex functions of the Rep protein as a regulator of the packaging plasmid gene expression and a catalyst for viral DNA packaging. We estimate kinetic parameters using dynamic data from literature and in-house triple transient transfection experiments. Model predictions of productivity changes as a result of the varied input plasmid ratio are benchmarked against transfection data from the literature. Sensitivity analysis suggests that (1) the poorly coordinated timeline of capsid synthesis and viral DNA replication results in a low ratio of full virions in harvest, and (2) repressive function of the Rep protein could be impeding capsid production at a later phase. The analyses from the mathematical model provide testable hypotheses for evaluation and reveal potential process bottlenecks that can be investigated.
Collapse
Affiliation(s)
- Tam N.T. Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W. Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L. Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J. Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
48
|
Joshi PRH, Bernier A, Chahal PS, Kamen A. Development and Validation of an Anion Exchange High-Performance Liquid Chromatography Method for Analysis of Empty Capsids and Capsids Encapsidating Genetic Material in a Purified Preparation of Recombinant Adeno-Associated Virus Serotype 5. Hum Gene Ther 2021; 32:1390-1402. [PMID: 33860673 PMCID: PMC10112873 DOI: 10.1089/hum.2020.317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of various manufacturing platforms and analytical technologies has substantially contributed to successfully translating the recombinant adeno-associated viral vector from the laboratory to the clinic. The active deployment of these analytical technologies for process and product characterization has helped define critical quality attributes and improve the quality of the clinical grade material. In this article, we report an anion exchange high-performance liquid chromatography (AEX-HPLC) method for relative and as well as absolute quantification of empty capsids (EC) and capsids encapsidating genetic material (CG) in purified preparations of adeno-associated virus (AAV) using serotype 5 as a model. The selection of optimal chromatographic buffer composition and step-gradient elution protocol offered baseline separation of EC and CG in the form of two peaks, as validated with the respective reference standards. The native amino acid fluorescence-based detection offered excellent linearity with a correlation coefficient of 0.9983 over two-log dilutions of the sample. The limit of detection and limit of quantification values associated with the total AAV5 capsid assay are 3.1E + 09 and 9.5E + 09, respectively. AEX-HPLC showed method comparability with the analytical ultracentrifugation (AUC) method for determination of relative proportions of EC and CG, supporting the reported HPLC method as an easy-to-access alternative to AUC with operational simplicity. Moreover, rapid and easy adaptation of this method to AAV8 material also demonstrated the robustness of the proposed approach.
Collapse
Affiliation(s)
- Pranav R H Joshi
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, Canada
| | - Alice Bernier
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, Canada
| | - Parminder S Chahal
- Human Health Therapeutics, National Research Council of Canada, Montreal, Canada
| | - Amine Kamen
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
49
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|
50
|
Wu Y, Han Z, Duan M, Jiang L, Tian T, Jin D, Wang Q, Xu F. Popularizing Recombinant Baculovirus-derived OneBac System for Laboratory Production of all Recombinant Adeno-associated Virus Vector Serotypes. Curr Gene Ther 2021; 21:167-176. [PMID: 33461466 DOI: 10.2174/1566523221666210118111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recombinant adeno-associated virus (rAAV) has been widely used as an efficient transgenic vector in biomedical research, as well as gene therapy. Serotype-associated transduction efficiency, tissue- or cell-type tropism and immunological profile are major considerations in the various applications of rAAVs. There are increasing needs for different serotypes of rAAV, either naturally isolated or artificially engineered. However, affordable and scalable production of a desired serotype of rAAV remains very difficult, especially for researchers lacking relevant experience. OBJECTIVE On the basis of our previously established single recombinant baculovirus expression vector (BEV)-derived OneBac system, we have optimized the process and expanded the rAAV production range to the full range of serotypes rAAV1-13. METHODS Firstly, the AAV Cap gene was optimized to translate by ribosome leaky scanning and the gene of interest (GOI) was cloned into the pFD/Cap-(ITR-GOI)-Rep2 shuttle plasmid. Following the classical Bac-to-Bac method, sufficient BEV stock containing all rAAV packaging elements can be quickly obtained. Finally, we can repeatedly scale up the production of rAAVs in one week by using a single BEV to infect suspension-cultured Sf9 cells. The rAAV1-13 shows relatively high yields ranging from 5×104 to 4×105 VG/cell. More than 1×1015 VG purified rAAVs can be easily obtained from 5 L suspension-cultured Sf9 cells. RESULTS As expected, rAAV serotypes 1-13 show different potencies for in vitro transduction and cell-type tropisms. CONCLUSION In summary, the single BEV-derived OneBac system should prove popular for laboratory scaling-up production of any serotype of rAAV.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mingzhu Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tiantian Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dingyu Jin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qitian Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|