1
|
Brizić I, Lisnić B, Krstanović F, Brune W, Hengel H, Jonjić S. Mouse Models for Cytomegalovirus Infections in Newborns and Adults. Curr Protoc 2022; 2:e537. [PMID: 36083111 DOI: 10.1002/cpz1.537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article describes procedures for infecting adult mice with murine cytomegalovirus (MCMV) and for infecting newborn mice to model congenital CMV infection. Methods are included for propagating MCMV in cell cultures and preparing a more virulent form of MCMV from the salivary glands of infected mice. A plaque assay is provided for determining MCMV titers of infected tissues or virus stocks. Also, methods are described for preparing the murine embryonic fibroblasts used for propagating MCMV, and for the plaque assay. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Hartmut Hengel
- Institute of Virology, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
2
|
Olfactory Entry Promotes Herpesvirus Recombination. J Virol 2021; 95:e0155521. [PMID: 34523965 DOI: 10.1128/jvi.01555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus genomes show abundant evidence of past recombination. Its functional importance is unknown. A key question is whether recombinant viruses can outpace the immunity induced by their parents to reach higher loads. We tested this by coinfecting mice with attenuated mutants of murid herpesvirus 4 (MuHV-4). Infection by the natural olfactory route routinely allowed mutant viruses to reconstitute wild-type genotypes and reach normal viral loads. Lung coinfections rescued much less well. Attenuated murine cytomegalovirus mutants similarly showed recombinational rescue via the nose but not the lungs. These infections spread similarly, so route-specific rescue implied that recombination occurred close to the olfactory entry site. Rescue of replication-deficient MuHV-4 confirmed this, showing that coinfection occurred in the first encountered olfactory cells. This worked even with asynchronous inoculation, implying that a defective virus can wait here for later rescue. Virions entering the nose get caught on respiratory mucus, which the respiratory epithelial cilia push back toward the olfactory surface. Early infection was correspondingly focused on the anterior olfactory edge. Thus, by concentrating incoming infection into a small area, olfactory entry seems to promote functionally significant recombination. IMPORTANCE All organisms depend on genetic diversity to cope with environmental change. Small viruses rely on frequent point mutations. This is harder for herpesviruses because they have larger genomes. Recombination provides another means of genetic optimization. Human herpesviruses often coinfect, and they show evidence of past recombination, but whether this is rare and incidental or functionally important is unknown. We showed that herpesviruses entering mice via the natural olfactory route meet reliably enough for recombination routinely to repair crippling mutations and restore normal viral loads. It appeared to occur in the first encountered olfactory cells and reflected a concentration of infection at the anterior olfactory edge. Thus, natural host entry incorporates a significant capacity for herpesvirus recombination.
Collapse
|
3
|
Rodent Models of Congenital Cytomegalovirus Infection. Methods Mol Biol 2021. [PMID: 33555596 DOI: 10.1007/978-1-0716-1111-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Human cytomegalovirus (HCMV) is a leading viral cause of congenital infections in the central nervous system (CNS) and may result in severe long-term sequelae. High rates of sequelae following congenital HCMV infection and insufficient antiviral therapy in the perinatal period makes the development of an HCMV-specific vaccine a high priority of modern medicine. Due to the species specificity of HCMV, animal models are frequently used to study CMV pathogenesis. Studies of murine cytomegalovirus (MCMV) infections of adult mice have played a significant role as a model of CMV biology and pathogenesis, while MCMV infection of newborn mice has been successfully used as a model of perinatal CMV infection. Newborn mice infected with MCMV have high levels of viremia during which the virus establishes a productive infection in most organs, coupled with a robust inflammatory response. Productive infection in the brain parenchyma during early postnatal period leads to an extensive nonnecrotizing multifocal widespread encephalitis characterized by infiltration of components of both innate and adaptive immunity. As a result, impairment in postnatal development of mouse cerebellum leads to long-term motor and sensor disabilities. This chapter summarizes current findings of rodent models of perinatal CMV infection and describes methods for analysis of perinatal MCMV infection in newborn mice.
Collapse
|
4
|
An Alphaherpesvirus Exploits Antimicrobial β-Defensins To Initiate Respiratory Tract Infection. J Virol 2020; 94:JVI.01676-19. [PMID: 31996426 PMCID: PMC7108845 DOI: 10.1128/jvi.01676-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 01/22/2023] Open
Abstract
How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine β-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution. β-Defensins protect the respiratory tract against the myriad of microbial pathogens entering the airways with each breath. However, this potentially hostile environment is known to serve as a portal of entry for herpesviruses. The lack of suitable respiratory model systems has precluded understanding of how herpesvirus virions overcome the abundant mucosal β-defensins during host invasion. We demonstrate how a central alphaherpesvirus, equine herpesvirus type 1 (EHV1), actually exploits β-defensins to invade its host and initiate viral spread. The equine β-defensins (eBDs) eBD1, -2, and -3 were produced and secreted along the upper respiratory tract. Despite the marked antimicrobial action of eBD2 and -3 against many bacterial and viral pathogens, EHV1 virions were resistant to eBDs through the action of the viral glycoprotein M envelope protein. Pretreatment of EHV1 virions with eBD2 and -3 increased the subsequent infection of rabbit kidney (RK13) cells, which was dependent on viral N-linked glycans. eBD2 and -3 also caused the aggregation of EHV1 virions on the cell surface of RK13 cells. Pretreatment of primary equine respiratory epithelial cells (EREC) with eBD1, -2, and -3 resulted in increased EHV1 virion binding to and infection of these cells. EHV1-infected EREC, in turn, showed an increased production of eBD2 and -3 compared to that seen in mock- and influenza virus-infected EREC. In addition, these eBDs attracted leukocytes, which are essential for EHV1 dissemination and which serve as latent infection reservoirs. These novel mechanisms provide new insights into herpesvirus respiratory tract infection and pathogenesis. IMPORTANCE How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine β-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution.
Collapse
|
5
|
Abstract
Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| |
Collapse
|
6
|
Murine Cytomegalovirus Spread Depends on the Infected Myeloid Cell Type. J Virol 2019; 93:JVI.00540-19. [PMID: 31092580 DOI: 10.1128/jvi.00540-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cytomegaloviruses (CMVs) colonize blood-borne myeloid cells. Murine CMV (MCMV) spreads from the lungs via infected CD11c+ cells, consistent with an important role for dendritic cells (DC). We show here that MCMV entering via the olfactory epithelium, a natural transmission portal, also spreads via infected DC. They reached lymph nodes, entered the blood via high endothelial venules, and then entered the salivary glands, driven by constitutive signaling of the viral M33 G protein-coupled receptor (GPCR). Intraperitoneal infection also delivered MCMV to the salivary glands via DC. However, it also seeded F4/80+ infected macrophages to the blood; they did not enter the salivary glands or require M33 for extravasation. Instead, they seeded infection to a range of other sites, including brown adipose tissue (BAT). Peritoneal cells infected ex vivo then adoptively transferred showed similar cell type-dependent differences in distribution, with abundant F4/80+ cells in BAT and CD11c+ cells in the salivary glands. BAT colonization by CMV-infected cells was insensitive to pertussis toxin inhibition of the GPCR signaling through Gi/o substrate, whereas salivary gland colonization was sensitive. Since salivary gland infection required both M33 and Gi/o-coupled signaling, whereas BAT infection required neither, these migrations were mechanistically distinct. MCMV spread from the lungs or nose depended on DC, controlled by M33. Infecting other monocyte populations resulted in unpredictable new infections.IMPORTANCE Cytomegaloviruses (CMVs) spread through the blood by infecting monocytes, and this can lead to disease. With murine CMV (MCMV) we can track infected myeloid cells and so understand how CMVs spread. Previous experiments have injected MCMV into the peritoneal cavity. MCMV normally enters mice via the olfactory epithelium. We show that olfactory infection spreads via dendritic cells, which MCMV directs to the salivary glands. Peritoneal infection similarly reached the salivary glands via dendritic cells. However, it also infected other monocyte types, and they spread infection to other tissues. Thus, infecting the "wrong" monocytes altered virus spread, with potential to cause disease. These results provide a basis for understanding how the monocyte types infected by human CMV might promote different infection outcomes.
Collapse
|
7
|
Abstract
Cytomegaloviruses (CMVs) are large, complex pathogens that persistently and systemically colonize most mammals. Human cytomegalovirus (HCMV) causes congenital harm, and has proved hard to control. One problem is that key vaccine targets - virus entry and spread in naive hosts - remain ill-defined. As CMVs predate human speciation, those of other mammals can provide new insight. Murine CMV (MCMV) enters new hosts via olfactory neurons. Like HCMV it binds to heparan, which is lacking from most differentiated apical epithelia but is displayed on olfactory neuronal cilia. It then spreads via infected dendritic cells (DCs), which migrate to draining lymph nodes (LNs), rejoin the circulation by entering high endothelial venules (HEVs), and extravasate into other tissues. This migration depends quantitatively on M33, a constitutively active viral G protein-coupled receptor (GPCR). The homologous US28 GPCR of HCMV can substitute for M33 in allowing MCMV-infected DCs to leave LNs via HEVs, so HCMV could potentially use the same route. The capacity of DCs to seed MCMV to tissues, and for other DCs to collect it for redistribution, suggest that DC recirculation chronically maintains and links diverse CMV reservoirs through lytic exchange.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Glauser DL, Milho R, Lawler C, Stevenson PG. Antibody arrests γ-herpesvirus olfactory super-infection independently of neutralization. J Gen Virol 2018; 100:246-258. [PMID: 30526737 DOI: 10.1099/jgv.0.001183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protecting against persistent viruses is an unsolved challenge. The clearest example for a gamma-herpesvirus is resistance to super-infection by Murid herpesvirus-4 (MuHV-4). Most experimental infections have delivered MuHV-4 into the lungs. A more likely natural entry site is the olfactory epithelium. Its protection remains unexplored. Here, prior exposure to olfactory MuHV-4 gave good protection against super-infection. The protection was upstream of B cell infection, which occurs in lymph nodes, and showed redundancy between antibody and T cells. Adding antibody to virions that blocked heparan binding strongly reduced olfactory host entry - unlike in the lungs, opsonized virions did not reach IgG Fc receptor+ myeloid cells. However, the nasal antibody response to primary infection was too low to reduce host entry. Instead, the antibody acted downstream, reducing viral replication in the olfactory epithelium. This depended on IgG Fc receptor engagement rather than virion neutralization. Thus antibody can protect against natural γ-herpesvirus infection before it reaches B cells and independently of neutralization.
Collapse
Affiliation(s)
- Daniel L Glauser
- 1Division of Virology, University of Cambridge, UK
- ‡Present address: Suisselab AG, Bern, Switzerland
| | - Ricardo Milho
- 1Division of Virology, University of Cambridge, UK
- §Present address: Costello Medical, Cambridge, UK
| | - Clara Lawler
- 2School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | - Philip G Stevenson
- 3Royal Children's Hospital, Brisbane, Australia
- 1Division of Virology, University of Cambridge, UK
- 2School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| |
Collapse
|
9
|
Brizić I, Lisnić B, Brune W, Hengel H, Jonjić S. Cytomegalovirus Infection: Mouse Model. CURRENT PROTOCOLS IN IMMUNOLOGY 2018; 122:e51. [PMID: 30044539 PMCID: PMC6347558 DOI: 10.1002/cpim.51] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This unit describes procedures for infecting newborn and adult mice with murine cytomegalovirus (MCMV). Methods are included for propagating MCMV in cell cultures and for preparing a more virulent form of MCMV from salivary glands of infected mice. A plaque assay is provided for determining MCMV titers of infected tissues or virus stocks. Also, a method is described for preparing the murine embryonic fibroblasts used for propagating MCMV and for the plaque assay. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ilija Brizić
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
10
|
Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells. J Virol 2018; 92:JVI.02199-17. [PMID: 29343572 DOI: 10.1128/jvi.02199-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre- mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8+ T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads.IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We conclude that viral lytic infection is a potential target to reduce B cell proliferation.
Collapse
|
11
|
Type I Interferon Signaling to Dendritic Cells Limits Murid Herpesvirus 4 Spread from the Olfactory Epithelium. J Virol 2017; 91:JVI.00951-17. [PMID: 28904198 DOI: 10.1128/jvi.00951-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
Murid herpesvirus 4 (MuHV-4) is a B cell-tropic gammaherpesvirus that can be studied in vivo Despite viral evasion, type I interferons (IFN-I) limit its spread. After MuHV-4 inoculation into footpads, IFN-I protect lymph node subcapsular sinus macrophages (SSM) against productive infection; after peritoneal inoculation, they protect splenic marginal zone macrophages, and they limit MuHV-4 replication in the lungs. While invasive infections can be used to test specific aspects of host colonization, it is also important to understand natural infection. MuHV-4 taken up spontaneously by alert mice enters them via olfactory neurons. We determined how IFN-I act in this context. Blocking IFN-I signaling did not increase neuronal infection but allowed the virus to spread to the adjacent respiratory epithelium. In lymph nodes, a complete IFN-I signaling block increased MuHV-4 lytic infection in SSM and increased the number of dendritic cells (DC) expressing viral green fluorescent protein (GFP) independently of lytic infection. A CD11c+ cell-directed signaling block increased infection of DC only. However, this was sufficient to increase downstream infection, consistent with DC providing the main viral route to B cells. The capacity of IFN-I to limit DC infection indicated that viral IFN-I evasion was only partly effective. Therefore, DC are a possible target for IFN-I-based interventions to reduce host colonization.IMPORTANCE Human gammaherpesviruses infect B cells and cause B cell cancers. Interventions to block virus binding to B cells have not stopped their infection. Therefore, we must identify other control points that are relevant to natural infection. Human infections are difficult to analyze. However, gammaherpesviruses colonize all mammals. A related gammaherpesvirus of mice reaches B cells not directly but via infected dendritic cells. We show that type I interferons, an important general antiviral defense, limit gammaherpesvirus B cell infection by acting on dendritic cells. Therefore, dendritic cell infection is a potential point of interferon-based therapeutic intervention.
Collapse
|
12
|
Farrell H, Oliveira M, Macdonald K, Yunis J, Mach M, Bruce K, Stevenson P, Cardin R, Davis-Poynter N. Luciferase-tagged wild-type and tropism-deficient mouse cytomegaloviruses reveal early dynamics of host colonization following peripheral challenge. J Gen Virol 2016; 97:3379-3391. [PMID: 27902356 DOI: 10.1099/jgv.0.000642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cytomegaloviruses (CMVs) establish persistent, systemic infections and cause disease by maternal-foetal transfer, suggesting that their dissemination is a key target for antiviral intervention. Late clinical presentation has meant that human CMV (HCMV) dissemination is not well understood. Murine CMV (MCMV) provides a tractable model. Whole mouse imaging of virus-expressed luciferase has proved a useful way to track systemic infections. MCMV, in which the abundant lytic gene M78 was luciferase-tagged via a self-cleaving peptide (M78-LUC), allowed serial, unbiased imaging of systemic and peripheral infection without significant virus attenuation. Ex vivo luciferase imaging showed greater sensitivity than plaque assay, and revealed both well-known infection sites (the lungs, lymph nodes, salivary glands, liver, spleen and pancreas) and less explored sites (the bone marrow and upper respiratory tract). We applied luciferase imaging to tracking MCMV lacking M33, a chemokine receptor conserved in HCMV and a proposed anti-viral drug target. M33-deficient M78-LUC colonized normally in peripheral sites and local draining lymph nodes but spread poorly to the salivary gland, suggesting a defect in vascular transport consistent with properties of a chemokine receptor.
Collapse
Affiliation(s)
- Helen Farrell
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Martha Oliveira
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia.,Child Health Research Centre, University of Queensland, South Brisbane, Australia
| | - Kate Macdonald
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Joseph Yunis
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael Mach
- Institut fur Klinische und Molekulare Virologie, Friedrich-Alexander-Universitat Erlangen-Nurnber, Erlangen, Germany
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Philip Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Rhonda Cardin
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
13
|
Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol 2016; 90:8661-72. [PMID: 27440876 DOI: 10.1128/jvi.00881-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1 in vitro depends on their differentiation state; the outcome in vivo is unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM(+)) and CD11c(+) cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control.
Collapse
|
14
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
15
|
Abstract
Viruses transmit via the environmental and social interactions of their hosts. Herpesviruses have colonized mammals since their earliest origins, suggesting that they exploit ancient, common pathways. Cytomegaloviruses (CMVs) are assumed to enter new hosts orally, but no site has been identified. We show by live imaging that murine CMV (MCMV) infects nasally rather than orally, both after experimental virus uptake and during natural transmission. Replication-deficient virions revealed the primary target as olfactory neurons. Local, nasal replication by wild-type MCMV was not extensive, but there was rapid systemic spread, associated with macrophage infection. A long-term, transmissible infection was then maintained in the salivary glands. The viral m131/m129 chemokine homolog, which influences tropism, promoted salivary gland colonization after nasal entry but was not required for entry per se. The capacity of MCMV to transmit via olfaction, together with previous demonstrations of experimental olfactory infection by murid herpesvirus 4 (MuHV-4) and herpes simplex virus 1 (HSV-1), suggest that this is a common, conserved route of mammalian herpesvirus entry. Cytomegaloviruses (CMVs) infect most mammals. Human CMV (HCMV) harms people with poor immune function and can damage the unborn fetus. It infects approximately 1% of live births. We lack a good vaccine. One problem is that how CMVs first enter new hosts remains unclear. Oral entry is often assumed, but the evidence is indirect, and no infection site is known. The difficulty of analyzing HCMV makes related animal viruses an important source of insights. Murine CMV (MCMV) infected not orally but nasally. Specifically, it targeted olfactory neurons. Viral transmission was also a nasal infection. Like HCMV, MCMV infected cells by binding to heparan, and olfactory surfaces display heparan to incoming viruses, whereas most other mucosal surfaces do not. These data establish a new understanding of CMV infections and a basis for infection control.
Collapse
|
16
|
Zhang S, Xiang J, Desmarets LMB, Nauwynck HJ. Pattern of circulation of MCMV mimicking natural infection upon oronasal inoculation. Virus Res 2015; 215:114-20. [PMID: 26732487 DOI: 10.1016/j.virusres.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 01/30/2023]
Abstract
Cytomegaloviruses may infect mammals via oronasal route. However, up till now it remains unclear how this exposure leads to a general infection and shedding. To address this issue, BALB/c female mice were oronasally inoculated with either the highly passaged murine cytomegalovirus (MCMV) Smith or the low passaged MCMV HaNa1. Virus titration showed a productive virus replication of both strains in the nasal mucosa from 1 dpi until the end of the experiment (14 dpi), in lungs from 5 until 14 dpi, and in submandibular glands from 7 until 14 dpi. In contrast to MCMV HaNa1, MCMV Smith also established a low level productive infection in abdominal organs (spleen, liver and kidneys) from 5 dpi (spleen), 7 dpi (liver), and 10 dpi (kidneys) until the end of the experiment. Co-culture showed that for both strains, cell-associated virus was detected in a non-infectious form in nasopharynx-associated lymphoid tissues (NALT) from 1 until 14 dpi, in submandibular lymph nodes from 3 until 5 dpi, in deep cervical lymph nodes from 3 until 14 dpi, in mediastinal lymph nodes from 7 until 14 dpi, in spleen from 5 until at least 10 dpi and in the peripheral blood mononuclear cells (PBMC) at 7 and 10 dpi. The present study shows that upon oronasal exposure, MCMV first enters the nasal mucosa and NALT, from where the virus disseminates to the spleen possibly via the draining lymphatic system and blood; a subsequent cell-associated viremia transports MCMV to submandibular glands and for MCMV Smith also to liver and kidneys, where a second productive replication starts.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jun Xiang
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lowiese M B Desmarets
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
17
|
Xiang J, Zhang S, Nauwynck H. Infections of neonatal and adult mice with murine CMV HaNa1 strain upon oronasal inoculation: New insights in the pathogenesis of natural primary CMV infections. Virus Res 2015; 211:96-102. [PMID: 26474525 DOI: 10.1016/j.virusres.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 12/17/2022]
Abstract
In healthy individuals, naturally acquired infections of human cytomegalovirus (HCMV) are generally asymptomatic. Animal models mimicking the natural primary HCMV infections in infants and adults are scarce. Here, neonatal and adult BALB/c mice were inoculated oronasally with a Belgian isolate HaNa1 of murine cytomegalovirus (MCMV). None of the mice showed clinical symptoms. In neonatal mice, a typical systemic infection occurred. In adult mice, viral replication was restricted to the nasal mucosa and submandibular glands. Infectious virus was not detected in trachea, oral mucosa, pharynx, esophagus, small intestines of both neonatal and adult mice at all time points. Nose was demonstrated to be the entry site. Double immunofluorescence staining showed that in nose infected cells were olfactory neurons and sustentacular cells in olfactory epithelium and were macrophages and dendritic cells in nasopharynx-associated lymphoid tissues (NALT). Neonatal and adult mice developed similar antibody response pattern, though former magnitude was lower. In summary, we have established intranasal (without anesthesia) infections of neonatal and adult mice with murine CMV HaNa1 strain, which mimic the range and extent of virus replication during natural primary HCMV infections in healthy infants and adults. These findings might bring new insights in the pathogenesis of natural primary CMV infections.
Collapse
Affiliation(s)
- Jun Xiang
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Shunchuan Zhang
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
18
|
Chao B, Frederico B, Stevenson PG. B-cell-independent lymphoid tissue infection by a B-cell-tropic rhadinovirus. J Gen Virol 2015; 96:2788-2793. [PMID: 25986632 DOI: 10.1099/vir.0.000188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphocytes provide gammaherpesviruses with a self-renewing substrate for persistent infection and with transport to mucosal sites for host exit. Their role in the initial colonization of new hosts is less clear. Murid herpesvirus 4 (MuHV-4), an experimentally accessible, B-cell-tropic rhadinovirus (gamma-2 herpesvirus), persistently infects both immunocompetent and B-cell-deficient mice. A lack of B-cells did not compromise MuHV-4 entry into lymphoid tissue, which involved myeloid cell infection. However, it impaired infection amplification and MuHV-4 exit from lymphoid tissue, which involved myeloid to B-cell transfer.
Collapse
Affiliation(s)
- Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip G Stevenson
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, School of Chemistry and Molecular Biosciences, Royal Children's Hospital and University of Queensland, Brisbane, Australia.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Lymph Node Macrophages Restrict Murine Cytomegalovirus Dissemination. J Virol 2015; 89:7147-58. [PMID: 25926638 DOI: 10.1128/jvi.00480-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cytomegaloviruses (CMVs) establish chronic infections that spread from a primary entry site to secondary vascular sites, such as the spleen, and then to tertiary shedding sites, such as the salivary glands. Human CMV (HCMV) is difficult to analyze, because its spread precedes clinical presentation. Murine CMV (MCMV) offers a tractable model. It is hypothesized to spread from peripheral sites via vascular endothelial cells and associated monocytes. However, viral luciferase imaging showed footpad-inoculated MCMV first reaching the popliteal lymph nodes (PLN). PLN colonization was rapid and further spread was slow, implying that LN infection can be a significant bottleneck. Most acutely infected PLN cells were CD169(+) subcapsular sinus macrophages (SSM). Replication-deficient MCMV also reached them, indicating direct infection. Many SSM expressed viral reporter genes, but few expressed lytic genes. SSM expressed CD11c, and MCMV with a cre-sensitive fluorochrome switch showed switched infected cells in PLN of CD11c-cre mice but yielded little switched virus. SSM depletion with liposomal clodronate or via a CD169-diphtheria toxin receptor transgene shifted infection to ER-TR7(+) stromal cells, increased virus production, and accelerated its spread to the spleen. Therefore, MCMV disseminated via LN, and SSM slowed this spread by shielding permissive fibroblasts and poorly supporting viral lytic replication. IMPORTANCE HCMV chronically infects most people, and it can cause congenital disability and harm the immunocompromised. A major goal of vaccination is to prevent systemic infection. How this is established is unclear. Restriction to humans makes HCMV difficult to analyze. We show that peripheral MCMV infection spreads via lymph nodes. Here, MCMV infected filtering macrophages, which supported virus replication poorly. When these macrophages were depleted, MCMV infected susceptible fibroblasts and spread faster. The capacity of filtering macrophages to limit MCMV spread argued that their infection is an important bottleneck in host colonization and might be a good vaccine target.
Collapse
|
20
|
Frederico B, Chao B, Lawler C, May JS, Stevenson PG. Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J Gen Virol 2015; 96:2314-2327. [PMID: 25872742 PMCID: PMC4681069 DOI: 10.1099/vir.0.000140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lymphocyte proliferation, mobility and longevity make them prime targets for virus infection. Myeloid cells that process and present environmental antigens to lymphocytes are consequently an important line of defence. Subcapsular sinus macrophages (SSMs) filter the afferent lymph and communicate with B-cells. How they interact with B-cell-tropic viruses is unknown. We analysed their encounter with murid herpesvirus-4 (MuHV-4), an experimentally accessible gammaherpesvirus related to Kaposi's sarcoma-associated herpesvirus. MuHV-4 disseminated via lymph nodes, and intranasally or subcutaneously inoculated virions readily infected SSMs. However, this infection was poorly productive. SSM depletion with clodronate-loaded liposomes or with diphtheria toxin in CD169–diphtheria toxin receptor transgenic mice increased B-cell infection and hastened virus spread to the spleen. Dendritic cells provided the main route to B-cells, and SSMs slowed host colonization, apparently by absorbing virions non-productively from the afferent lymph.
Collapse
Affiliation(s)
- Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Clara Lawler
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, School of Chemistry and Molecular Biosciences, Royal Children's Hospital and University of Queensland, Brisbane, Australia
| | - Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.,Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, School of Chemistry and Molecular Biosciences, Royal Children's Hospital and University of Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Abstract
UNLABELLED Viruses commonly infect the respiratory tract. Analyses of host defense have focused on the lungs and the respiratory epithelium. Spontaneously inhaled murid herpesvirus 4 (MuHV-4) and herpes simplex virus 1 (HSV-1) instead infect the olfactory epithelium, where neuronal cilia are exposed to environmental antigens and provide a route across the epithelial mucus. We used MuHV-4 to define how B cells respond to virus replication in this less well-characterized site. Olfactory infection elicited generally weaker acute responses than lung infection, particularly in the spleen, reflecting slower viral replication and spread. Few virus-specific antibody-forming cells (AFCs) were found in the nasal-associated lymphoid tissue (NALT), a prominent response site for respiratory epithelial infection. Instead, they appeared first in the superficial cervical lymph nodes. The focus of the AFC response then moved to the spleen, matching the geography of virus dissemination. Little virus-specific IgA response was detected until later in the bone marrow. Neuroepithelial HSV-1 infection also elicited no significant AFC response in the NALT and a weak IgA response. Thus, olfactory herpesvirus infection differed immunologically from an infection of the adjacent respiratory epithelium. Poor IgA induction may help herpesviruses to transmit via long-term mucosal shedding. IMPORTANCE Herpesviruses are widespread, persistent pathogens against which vaccines have had limited success. We need to understand better how they interact with host immunity. MuHV-4 and HSV-1 inhaled by alert mice infect the olfactory neuroepithelium, suggesting that this is a natural entry route. Its immunology is almost completely unknown. The antibody response to neuroepithelial herpesvirus infection started in the cervical lymph nodes, and unlike respiratory influenza virus infection, did not significantly involve the nasal-associated lymphoid tissue. MuHV-4 and HSV-1 infections also elicited little virus-specific IgA. Therefore, vaccine-induced IgA might provide a defense that herpesviruses are ill-equipped to meet.
Collapse
|