1
|
Fang Z, Sun M, Cai X, An T, Tu Y, Wang H. Identification of a conserved B-cell epitope on the capsid protein of porcine circovirus type 4. mSphere 2024; 9:e0022524. [PMID: 38926905 PMCID: PMC11288031 DOI: 10.1128/msphere.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine circovirus type 4 (PCV4), a recently identified circovirus, is prevalent in numerous provinces in China, as well as in South Korea, Thailand, and Europe. PCV4 virus rescued from an infectious clone showed pathogenicity, suggesting the economic impact of PCV4. However, there remains a lack of understanding regarding the immunogenicity and epitopes of PCV4. This study generated a monoclonal antibody (MAb) 1D8 by immunizing mice with PCV4 virus-like particles (VLPs). Subsequently, the epitope recognized by the MAb 1D8 was identified by truncated protein expression and alanine scanning mutagenesis analysis. Results showed that the 225PKQG228 located at the C-terminus of the PCV4 Cap protein is the minimal motif binding to the MAb. Homology modeling analysis and immunoelectron microscopy revealed that the epitope extends beyond the outer surface of the PCV4 VLP. Moreover, the epitope is highly conserved among PCV4 strains and does not react with other PCVs. Together, the MAb 1D8 recognized epitope shows potential for detecting PCV4. These findings significantly contribute to the design of antigens for PCV4 detection and control strategies. IMPORTANCE Porcine circovirus type 4 (PCV4) is a novel circovirus. Although PCV4 has been identified in several countries, including China, Korea, Thailand, and Spain, no vaccine is available. Given the potential pathogenic effects of PCV4 on pigs, PCV4 could threaten the global pig farming industry, highlighting the urgency for further investigation. Thus, epitopes of PCV4 remain to be determined. Our finding of a conserved epitope significantly advances vaccine development and pathogen detection.
Collapse
Affiliation(s)
- Zheng Fang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Veterinary Biopharmaceutical Engineering Technology Research Center, Harbin, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Yabin Tu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
2
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
3
|
Pan H, Huan C, Zhang W, Hou Y, Zhou Z, Yao J, Gao S. PDZK1 upregulates nitric oxide production through the PI3K/ERK2 pathway to inhibit porcine circovirus type 2 replication. Vet Microbiol 2022; 272:109514. [PMID: 35917623 DOI: 10.1016/j.vetmic.2022.109514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ziyan Zhou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jingting Yao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
4
|
Cui X, Wang X, Gao Q, Liu X, Kai Y, Chen C, Gao S. Colonisation of mice and pigs by a chimeric porcine circovirus 1-2 prototype vaccine strain and a PCV2 isolate originating in China and their induction of cytokines. J Virol Methods 2020; 283:113905. [PMID: 32502500 DOI: 10.1016/j.jviromet.2020.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
A chimeric porcine circovirus (PCV) 1-2b vaccine strain and its parental wild-type PCV2b strain from China (PCV2-J) were used separately to vaccinate BALB/c mice and tissue and serum samples were collected from the mice to investigate whether the replication properties of the viruses differed. The spleen lymphocytes from the infected mice were cultured in vitro; the amounts of interferon-γ-secreting cells (IFN-γ-SCs) and levels of interleukin (IL) 2, IL-4 and IL-10 in the culture fluids were monitored. The results showed that PCV1-2b induced higher levels of antibody production in the infected mice than the PCV2b-J isolate. Viremia declined gradually in both infection groups and the DNA copy numbers were nearly equal in both groups of mouse tissues tested. The IFN-γ-SC levels were clearly up-regulated in both the PCV1-2b- and PCV2b-J-infected mice. In both mouse groups, IL-2 was up-regulated, and IL-10 was detected at low levels, while IL-4 was always below the limit of detection. Similar experiments were performed in pigs and the results showed that when infected with either PCV1-2b or PCV2b-J the pigs experienced high-level antibody responses, with no significant differences between the infection groups. In the pig model, the development of IFN-γ-SCs in response to PCV1-2b and PCV2b-J infections was detected. However, the PCV1-2b strain tended to elicit more IFN-γ-SCs in the peripheral blood mononuclear cell population of the infected pigs from 21 to 28 days post infection than the PCV2b-J isolate did. The concentrations of IL-2 were transiently different between the PCV1-2b and PCV2b-J infected pigs, while those of IL-10 and IL-2 were similar in both groups, but were lower than those elicited in mice. These results indicated that BALB/c mouse could be used as an alternate model for evaluating the efficacy of attenuated PCV1-2b vaccines.
Collapse
Affiliation(s)
- Xiang Cui
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaobo Wang
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qingqing Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yan Kai
- Jiangsu Provincial Center for Animal Disease Control and Prevention, Nanjing, Jiangsu 210036, China
| | - Changhai Chen
- Jiangsu Provincial Center for Animal Disease Control and Prevention, Nanjing, Jiangsu 210036, China
| | - Song Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
5
|
Li J, Yu T, Zhang F, Wang X, Zhou J, Gao X, Gao S, Liu X. Inactivated chimeric porcine circovirus (PCV) 1-2 vaccines based on genotypes 2b and 2d exhibit similar immunological effectiveness in protecting pigs against challenge with PCV2b strain 0233. Arch Virol 2016; 162:235-246. [PMID: 27722993 DOI: 10.1007/s00705-016-3099-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/29/2016] [Indexed: 01/27/2023]
Abstract
Porcine circovirus type 2 (PCV2) is subdivided into four genotypes: PCV2a, PCV2b, PCV2c and PCV2d. Here, for the first time, we compared the efficacy of two experimental inactivated chimeric PCV1-2 vaccines based on genotypes 2b and 2d. Seventeen 3-week-old pigs were divided randomly into four groups. Group 1 and 2 pigs were inoculated with genotype 2b- and 2d-based inactivated vaccines, respectively. At 28 days post-vaccination (DPV), pigs in groups 1-3 were challenged with the PCV2b 0233 strain. All experimental pigs were necropsied at 21 days post-challenge (DPC). Pigs vaccinated with the genotype 2b- or 2d-based vaccine had high antibody titres and lower PCV2b copy numbers in samples of sera, faeces and nasal secretions compared with pigs in the unvaccinated challenge group. Interestingly, we detected no DNA from the challenge strain in the superficial inguinal lymph nodes of the pigs immunized with the PCV2b vaccine, while one pig in the PCV2d- immunized group had detectable DNA from the challenge strain at 21 DPC. We found no significant differences in the humoral immune response, PCV2b load, or PCV-related microscopic lesions between the two vaccinated groups post-challenge. Therefore, both vaccines were equally effective at inducing immunity against challenge with PCV2b strain 0233.
Collapse
Affiliation(s)
- Jizong Li
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Tianqi Yu
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Feipeng Zhang
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Xiaobo Wang
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jinzhu Zhou
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Xing Gao
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Song Gao
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Xiufan Liu
- Key lab of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Li J, Yu T, Wang X, Zhou J, Gao R, Zhang F, Gao X, Gao S, Liu X. Comparative efficacy of experimental inactivated and live-attenuated chimeric porcine circovirus (PCV) 1-2b vaccines derived from PCV1 and PCV2b isolates originated in China. Virol J 2015. [PMID: 26220290 PMCID: PMC4518523 DOI: 10.1186/s12985-015-0338-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Porcine circovirus type-2b (PCV2b) is recognized as the etiological agent of the various clinical manifestations of porcine circovirus-associated disease (PCVAD). Previous studies have demonstrated effectiveness of chimeric PCV1-2 vaccines against PCV2b challenge. In this study, the efficacy of inactivated and live-attenuated (2 × 103.5 or 2 × 104.0 50 % tissue culture infective dose [TCID50] dose) chimeric PCV1-2b vaccines was compared side-by-side in conventional pigs. Methods Twenty-seven non-PCV2 viremic pigs without PCV2-specific antibody were randomly divided into six groups, including four vaccinated and challenged groups, a nonvaccinated challenged group, and a mock group. All pigs except those in the mock group were challenged at 28 days post vaccination (DPV) using PCV2b. Results Both inactivated and live-attenuated chimeric PCV1-2b vaccines induced a robust antibody responses, and significantly decreased microscopic lesion and lower viral loads in serum or superficial inguinal lymph nodes (SILN) compared with that in the nonvaccinated challenged group. PCV2 antibody titers decreased after 7 days post challenge (DPC) in pigs administered the inactivated PCV1-2b vaccine and they were lower than those in pigs inoculated with live-attenuated PCV1-2b on the day of necropsy. Moreover, no viremia was present in pigs inoculated with live-attenuated PCV1-2b vaccine at 21 DPC regardless of the dose difference. Conclusions The results demonstrated that both inactivated and live-attenuated chimeric PCV1-2b vaccines were effective to induce protective immunity against PCV2b infection.
Collapse
Affiliation(s)
- Jizong Li
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Tianqi Yu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Xiaobo Wang
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Jinzhu Zhou
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Ruxia Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Feipeng Zhang
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Xing Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Song Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|