1
|
Migalska M, Węglarczyk K, Mężyk-Kopeć R, Baliga-Klimczyk K, Homa J. Cross-reactivity of T cell-specific antibodies in the bank vole (Myodes glareolus). J Immunol Methods 2023; 520:113524. [PMID: 37463649 DOI: 10.1016/j.jim.2023.113524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
The bank vole is a common Cricetidae rodent that is a reservoir of several zoonotic pathogens and an emerging model in eco-immunology. Here, we add to a developing immunological toolkit for this species by testing the cross-reactivity of commercially available monoclonal antibodies (mAbs) to the bank vole lymphocyte differentiation molecules and a transcription factor. We show that a combination of mAbs against CD4, CD3, and Foxp3 allows flow cytometric distinction of the main subsets of T cells: putative helper CD4+, cytotoxic CD8+ (as CD3+CD4-) and regulatory CD4+Foxp3+. We also provide a comparative analysis of amino acid sequences of CD4, CD8αβ, CD3εγδ and Foxp3 molecules for a number of commonly studied Cricetidae rodents and discuss mAb cross-reactivity patterns reported so far in this rodent family. We found that in case of mAbs targeting the extracellular portions of commonly used T cell markers, sequence similarity is a poor prognostic of cross-reactivity. Use of more conserved, intracellular molecules or molecule fragments is a more reliable approach in non-model species, but the necessity of cell fixation limit its application in, e.g. functional studies.
Collapse
Affiliation(s)
- Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Medical College, Jagiellonian University Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow 30-663, Poland
| | - Renata Mężyk-Kopeć
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Katarzyna Baliga-Klimczyk
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow 30-387, Poland
| |
Collapse
|
2
|
LaPointe A, Gale M, Kell AM. Orthohantavirus Replication in the Context of Innate Immunity. Viruses 2023; 15:1130. [PMID: 37243216 PMCID: PMC10220641 DOI: 10.3390/v15051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication.
Collapse
Affiliation(s)
- Autumn LaPointe
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Menke L, Sperber HS, Aji AK, Chiantia S, Schwarzer R, Sieben C. Advances in fluorescence microscopy for orthohantavirus research. Microscopy (Oxf) 2023:6987530. [PMID: 36639937 DOI: 10.1093/jmicro/dfac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Orthohantaviruses are important zoonotic pathogens responsible for a considerable disease burden globally. Partly due to our incomplete understanding of orthohantavirus replication, there is currently no effective antiviral treatment available. Recently, novel microscopy techniques and cutting-edge, automated image analysis algorithms have emerged, enabling to study cellular, subcellular and even molecular processes in unprecedented detail and depth. To date, fluorescence light microscopy allows us to visualize viral and cellular components and macromolecular complexes in live cells which in turn enables the study of specific steps of the viral replication cycle such as particle entry or protein trafficking at high temporal and spatial resolution. In this review, we highlight how fluorescence microscopy has provided new insights and improved our understanding of orthohantavirus biology. We discuss technical challenges such as studying live infected cells, give alternatives with recombinant protein expression and highlight future opportunities for example the application of super-resolution microscopy techniques, which has shown great potential in studies of different cellular processes and viral pathogens.
Collapse
Affiliation(s)
- Laura Menke
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hannah S Sperber
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Amit Koikkarah Aji
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Roland Schwarzer
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Gallo G, Kotlik P, Roingeard P, Monot M, Chevreux G, Ulrich RG, Tordo N, Ermonval M. Diverse susceptibilities and responses of human and rodent cells to orthohantavirus infection reveal different levels of cellular restriction. PLoS Negl Trop Dis 2022; 16:e0010844. [PMID: 36223391 PMCID: PMC9591050 DOI: 10.1371/journal.pntd.0010844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/24/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Orthohantaviruses are rodent-borne emerging viruses that may cause severe diseases in humans but no apparent pathology in their small mammal reservoirs. However, the mechanisms leading to tolerance or pathogenicity in humans and persistence in rodent reservoirs are poorly understood, as is the manner in which they spread within and between organisms. Here, we used a range of cellular and molecular approaches to investigate the interactions of three different orthohantaviruses-Puumala virus (PUUV), responsible for a mild to moderate form of hemorrhagic fever with renal syndrome in humans, Tula virus (TULV) with low pathogenicity, and non-pathogenic Prospect Hill virus (PHV)-with human and rodent host cell lines. Besides the fact that cell susceptibility to virus infection was shown to depend on the cell type and virus strain, the three orthohantaviruses were able to infect Vero E6 and HuH7 human cells, but only the former secreted infectious particles. In cells derived from PUUV reservoir, the bank vole (Myodes glareolus), PUUV achieved a complete viral cycle, while TULV did not enter the cells and PHV infected them but did not produce infectious particles, reflecting differences in host specificity. A search for mature virions by electron microscopy (EM) revealed that TULV assembly occurred in part at the plasma membrane, whereas PHV particles were trapped in autophagic vacuoles in cells of the heterologous rodent host. We described differential interactions of orthohantaviruses with cellular factors, as supported by the cellular distribution of viral nucleocapsid protein with cell compartments, and proteomics identification of cellular partners. Our results also showed that interferon (IFN) dependent gene expression was regulated in a cell and virus species dependent manner. Overall, our study highlighted the complexity of the host-virus relationship and demonstrated that orthohantaviruses are restricted at different levels of the viral cycle. In addition, the study opens new avenues to further investigate how these viruses differ in their interactions with cells to evade innate immunity and how it depends on tissue type and host species.
Collapse
Affiliation(s)
- Giulia Gallo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
- * E-mail: (ME); (GG)
| | - Petr Kotlik
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Philippe Roingeard
- INSERM U1259 et plateforme IBISA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics Platform, C2RT, Paris, France
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Partner site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), Greifswald-Insel Riems, Germany
| | - Noël Tordo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinée
| | - Myriam Ermonval
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- * E-mail: (ME); (GG)
| |
Collapse
|
5
|
Welke RW, Sperber HS, Bergmann R, Koikkarah A, Menke L, Sieben C, Krüger DH, Chiantia S, Herrmann A, Schwarzer R. Characterization of Hantavirus N Protein Intracellular Dynamics and Localization. Viruses 2022; 14:v14030457. [PMID: 35336863 PMCID: PMC8954124 DOI: 10.3390/v14030457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins.
Collapse
Affiliation(s)
- Robert-William Welke
- Department of Molecular Biophysics, Humboldt University, 10115 Berlin, Germany; (R.-W.W.); (R.B.); (A.H.)
| | - Hannah Sabeth Sperber
- Institute for Translational HIV Research, University Hospital Essen, 45147 Essen, Germany;
| | - Ronny Bergmann
- Department of Molecular Biophysics, Humboldt University, 10115 Berlin, Germany; (R.-W.W.); (R.B.); (A.H.)
| | - Amit Koikkarah
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; (A.K.); (S.C.)
| | - Laura Menke
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
- Institute for Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Detlev H. Krüger
- Institut für Virologie, Charité–Universitätsmedizin Berlin, Gliedkörperschaft der Freien Universität Berlin und der Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; (A.K.); (S.C.)
| | - Andreas Herrmann
- Department of Molecular Biophysics, Humboldt University, 10115 Berlin, Germany; (R.-W.W.); (R.B.); (A.H.)
- Biophysikalische Chemie, Freie Universität, 14195 Berlin, Germany
| | - Roland Schwarzer
- Institute for Translational HIV Research, University Hospital Essen, 45147 Essen, Germany;
- Correspondence:
| |
Collapse
|
6
|
Binder F, Gallo G, Bendl E, Eckerle I, Ermonval M, Luttermann C, Ulrich RG. Inhibition of interferon I induction by non-structural protein NSs of Puumala virus and other vole-associated orthohantaviruses: phenotypic plasticity of the protein and potential functional domains. Arch Virol 2021; 166:2999-3012. [PMID: 34389893 PMCID: PMC8362652 DOI: 10.1007/s00705-021-05159-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The orthohantavirus Puumala virus (PUUV), which is transmitted by bank voles (Clethrionomys glareolus), and other vole-borne hantaviruses contain in their small (S) genome segment two overlapping open reading frames, coding for the nucleocapsid protein and the non-structural protein NSs, a putative type I interferon (IFN-I) antagonist. To investigate the role of NSs of PUUV and other orthohantaviruses, the expression pattern of recombinant NSs constructs and their ability to inhibit human IFN-I promoter activity were investigated. The NSs proteins of PUUV and related cricetid-borne orthohantaviruses showed strong inhibition of IFN-I promoter induction. We identified protein products originating from three and two methionine initiation codons in the NSs ORF of PUUV during transfection and infection, respectively. The three putative start codons are conserved in all PUUV strains analysed. Translation initiation at these start codons influenced the inhibitory activity of the NSs products, with the wild-type (wt) construct expressing two proteins starting at the first and second methionine and showing strong inhibition activity. Analysis of in vitro-generated variants and naturally occurring PUUV NSs proteins indicated that amino acid variation in the NSs protein is well tolerated, suggesting its phenotypic plasticity. The N-terminal 20-amino-acid region of the NSs protein was found to be associated with strong inhibition and to be highly vulnerable to amino acid exchanges and tag fusions. Infection studies using human, bank vole, and Vero E6 cells did not show obvious differences in the replication capacity of PUUV Sotkamo wt and a strain with a truncated NSs protein (NSs21Stop), showing that the lack of a full-length NSs might be compensated by its N-terminal peptide, as seen in transfection experiments. These results contribute to our understanding of virus-host interactions and highlight the importance of future innate immunity studies in reservoir hosts.
Collapse
Affiliation(s)
- Florian Binder
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Giulia Gallo
- Department of Virology, Institut Pasteur, Antiviral Strategies, Paris, France
| | - Elias Bendl
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.,University Hospital Freiburg, Institute of Virology, Freiburg, Germany
| | - Isabella Eckerle
- University of Bonn, Medical Centre, Bonn, Germany.,Geneva Centre for Emerging Viral Diseases, Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Myriam Ermonval
- Department of Virology, Institut Pasteur, Antiviral Strategies, Paris, France
| | - Christine Luttermann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses 2021; 13:v13081509. [PMID: 34452374 PMCID: PMC8402684 DOI: 10.3390/v13081509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Rodents (order Rodentia), followed by bats (order Chiroptera), comprise the largest percentage of living mammals on earth. Thus, it is not surprising that these two orders account for many of the reservoirs of the zoonotic RNA viruses discovered to date. The spillover of these viruses from wildlife to human do not typically result in pandemics but rather geographically confined outbreaks of human infection and disease. While limited geographically, these viruses cause thousands of cases of human disease each year. In this review, we focus on three questions regarding zoonotic viruses that originate in bats and rodents. First, what biological strategies have evolved that allow RNA viruses to reside in bats and rodents? Second, what are the environmental and ecological causes that drive viral spillover? Third, how does virus spillover occur from bats and rodents to humans?
Collapse
|
8
|
Benzarti E, Garigliany M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses 2020; 12:E1116. [PMID: 33008141 PMCID: PMC7599730 DOI: 10.3390/v12101116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.
Collapse
Affiliation(s)
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium;
| |
Collapse
|
9
|
Spatial and Temporal Evolutionary Patterns in Puumala Orthohantavirus (PUUV) S Segment. Pathogens 2020; 9:pathogens9070548. [PMID: 32650456 PMCID: PMC7400055 DOI: 10.3390/pathogens9070548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
The S segment of bank vole (Clethrionomys glareolus)-associated Puumala orthohantavirus (PUUV) contains two overlapping open reading frames coding for the nucleocapsid (N) and a non-structural (NSs) protein. To identify the influence of bank vole population dynamics on PUUV S segment sequence evolution and test for spillover infections in sympatric rodent species, during 2010–2014, 883 bank voles, 357 yellow-necked mice (Apodemus flavicollis), 62 wood mice (A. sylvaticus), 149 common voles (Microtus arvalis) and 8 field voles (M. agrestis) were collected in Baden-Wuerttemberg and North Rhine-Westphalia, Germany. In total, 27.9% and 22.3% of bank voles were positive for PUUV-reactive antibodies and PUUV-specific RNA, respectively. One of eight field voles was PUUV RNA-positive, indicating a spillover infection, but none of the other species showed evidence of PUUV infection. Phylogenetic and isolation-by-distance analyses demonstrated a spatial clustering of PUUV S segment sequences. In the hantavirus outbreak years 2010 and 2012, PUUV RNA prevalence was higher in our study regions compared to non-outbreak years 2011, 2013 and 2014. NSs amino acid and nucleotide sequence types showed temporal and/or local variation, whereas the N protein was highly conserved in the NSs overlapping region and, to a lower rate, in the N alone coding part.
Collapse
|
10
|
Isolation and characterization of new Puumala orthohantavirus strains from Germany. Virus Genes 2020; 56:448-460. [PMID: 32328924 PMCID: PMC7329759 DOI: 10.1007/s11262-020-01755-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022]
Abstract
Orthohantaviruses are re-emerging rodent-borne pathogens distributed all over the world. Here, we report the isolation of a Puumala orthohantavirus (PUUV) strain from bank voles caught in a highly endemic region around the city Osnabrück, north-west Germany. Coding and non-coding sequences of all three segments (S, M, and L) were determined from original lung tissue, after isolation and after additional passaging in VeroE6 cells and a bank vole-derived kidney cell line. Different single amino acid substitutions were observed in the RNA-dependent RNA polymerase (RdRP) of the two stable PUUV isolates. The PUUV strain from VeroE6 cells showed a lower titer when propagated on bank vole cells compared to VeroE6 cells. Additionally, glycoprotein precursor (GPC)-derived virus-like particles of a German PUUV sequence allowed the generation of monoclonal antibodies that allowed the reliable detection of the isolated PUUV strain in the immunofluorescence assay. In conclusion, this is the first isolation of a PUUV strain from Central Europe and the generation of glycoprotein-specific monoclonal antibodies for this PUUV isolate. The obtained virus isolate and GPC-specific antibodies are instrumental tools for future reservoir host studies.
Collapse
|
11
|
Meeting report: Eleventh International Conference on Hantaviruses. Antiviral Res 2020; 176:104733. [PMID: 32068071 DOI: 10.1016/j.antiviral.2020.104733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/24/2022]
Abstract
The 2019 11th International Conference on Hantaviruses (ICH 2019) was organized by the International Society for Hantaviruses (ISH), and held on September 1-4, 2019, at the Irish College, in Leuven, Belgium. These ICHs have been held every three years since 1989. ICH 2019 was attended by 158 participants from 33 countries. The current report summarizes research presented on all aspects of hantavirology: ecology; pathogenesis and immune responses; virus phylogeny, replication and morphogenesis; epidemiology; vaccines, therapeutics and prevention; and clinical aspects and diagnosis.
Collapse
|
12
|
Jeske K, Weber S, Pfaff F, Imholt C, Jacob J, Beer M, Ulrich RG, Hoffmann D. Molecular Detection and Characterization of the First Cowpox Virus Isolate Derived from a Bank Vole. Viruses 2019; 11:v11111075. [PMID: 31752129 PMCID: PMC6893522 DOI: 10.3390/v11111075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that infects a wide range of mammals. CPXV-specific DNA and antibodies were detected in different vole species, such as common voles (Microtus arvalis) and bank voles (Myodes glareolus). Therefore, voles are the putative main reservoir host of CPXV. However, CPXV was up to now only isolated from common voles. Here we report the detection and isolation of a bank vole-derived CPXV strain (GerMygEK 938/17) resulting from a large-scale screening of bank voles collected in Thuringia, Germany, during 2017 and 2018. Phylogenetic analysis using the complete viral genome sequence indicated a high similarity of the novel strain to CPXV clade 3 and to OPV “Abatino” but also to Ectromeliavirus (ECTV) strains. Phenotypic characterization of CPXV GerMygEK 938/17 using inoculation of embryonated chicken eggs displayed hemorrhagic pock lesions on the chorioallantoic membrane that are typical for CPXV but not for ECTV. CPXV GerMygEK 938/17 replicated in vole-derived kidney cell lines but at lower level than on Vero76 cell line. In conclusion, the first bank vole-derived CPXV isolate provides new insights into the genetic variability of CPXV in the putative reservoir host and is a valuable tool for further studies about CPXV-host interaction and molecular evolution of OPV.
Collapse
Affiliation(s)
- Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Imholt
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|