1
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
2
|
Connexin 43 Expression in Cutaneous Biopsies of Lupus Erythematosus. Am J Dermatopathol 2022; 44:664-668. [PMID: 35503887 DOI: 10.1097/dad.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Gap junctions are channels between adjacent cells formed by connexins (Cxs). Cxs also form hemichannels that connect the cell with its extracellular milieu. These channels allow the transport of ions, metabolites, and small molecules; therefore, Cxs, and more specifically, connexin (Cx) 43 has been demonstrated to be in control of several crucial events such as inflammation and cell death. MATERIAL AND METHODS We examined the immunostaining of Cx43 in the endothelia of the cutaneous blood vessels of biopsies from 28 patients with several variants of lupus erythematosus. RESULTS In 19 cases (67.86%), staining of more than half of the dermal vessels including both vessels of the papillary and of the reticular dermis was identified. Only in 4 cases (14.28%), less than 25% of the vessels in the biopsy showed expression of the marker. CONCLUSIONS Our results suggest a role of Cx43 in regulating the endothelial activity in lupus erythematosus, which also opens a door for targeted therapeutic options.
Collapse
|
3
|
Yang L, Yan J, Zhang JA, Zhou XH, Fang C, Zeng EM, Tang B, Duan J, Lu GH, Hong T. The important role of connexin 43 in subarachnoid hemorrhage-induced cerebral vasospasm. J Transl Med 2019; 17:433. [PMID: 31888653 PMCID: PMC6936071 DOI: 10.1186/s12967-019-02190-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gap junctions are involved in the development of cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). However, the specific roles and regulatory functions of related connexin isoforms remain unknown. The aim of this study was to investigate the importance of connexin 43 (Cx43) in CVS and determine whether Cx43 alterations are modulated via the protein kinase C (PKC) signaling transduction pathway. Methods Oxyhemoglobin (OxyHb)-induced smooth muscle cells of basilar arterial and second-injection model in rat were used as CVS models in vitro and in vivo. In addition, dye transfer assays were used for gap junction-mediated intercellular communication (GJIC) observation in vitro and delayed cerebral ischemia (DCI) was observed in vivo by perfusion-weighted imaging (PWI) and intravital fluorescence microscopy. Results Increase in Cx43 mediated the development of SAH-induced CVS was found in both in vitro and in vivo CVS models. Enhanced GJIC was observed in vitro CVS model, this effect and increased Cx43 were reversed by preincubation with specific PKC inhibitors (chelerythrine or GF 109203X). DCI was observed in vivo on day 7 after SAH. However, DCI was attenuated by pretreatment with Cx43 siRNA or PKC inhibitors, and the increased Cx43 expression in vivo was also reversed by Cx43 siRNA or PKC inhibitors. Conclusions These data provide strong evidence that Cx43 plays an important role in CVS and indicate that changes in Cx43 expression may be mediated by the PKC pathway. The current findings suggest that Cx43 and the PKC pathway are novel targets for developing treatments for SAH-induced CVS.
Collapse
Affiliation(s)
- Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Jian Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Jin-An Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Xin-Hui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Chao Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Guo-Hui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang, China.
| |
Collapse
|
4
|
Longchamp A, Kaur K, Macabrey D, Dubuis C, Corpataux JM, Déglise S, Matson JB, Allagnat F. Hydrogen sulfide-releasing peptide hydrogel limits the development of intimal hyperplasia in human vein segments. Acta Biomater 2019; 97:374-384. [PMID: 31352106 PMCID: PMC6801028 DOI: 10.1016/j.actbio.2019.07.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Currently available interventions for vascular occlusive diseases suffer from high failure rates due to re-occlusive vascular wall adaptations, a process called intimal hyperplasia (IH). Naturally occurring hydrogen sulfide (H2S) works as a vasculoprotective gasotransmitter in vivo. However, given its reactive and hazardous nature, H2S is difficult to administer systemically. Here, we developed a hydrogel capable of localized slow release of precise amounts of H2S and tested its benefits on IH. The H2S-releasing hydrogel was prepared from a short peptide attached to an S-aroylthiooxime H2S donor. Upon dissolution in aqueous buffer, the peptide self-assembled into nanofibers, which formed a gel in the presence of calcium. This new hydrogel delivered H2S over the course of several hours, in contrast with fast-releasing NaHS. The H2S-releasing peptide/gel inhibited proliferation and migration of primary human vascular smooth muscle cells (VSMCs), while promoting proliferation and migration of human umbilical endothelial cells (ECs). Both NaHS and the H2S-releasing gel limited IH in human great saphenous vein segments obtained from vascular patients undergoing bypass surgery, with the H2S-releasing gel showing efficacy at a 5x lower dose than NaHS. These results suggest local perivascular H2S release as a new strategy to limit VSMC proliferation and IH while promoting EC proliferation, hence re-endothelialization. STATEMENT OF SIGNIFICANCE: Arterial occlusive disease is the leading cause of death in Western countries, yet current therapies suffer from high failure rates due to intimal hyperplasia (IH), a thickening of the vascular wall leading to secondary vessel occlusion. Hydrogen sulfide (H2S) is a gasotransmitter with vasculoprotective properties. Here we designed and synthesized a peptide-based H2S-releasing hydrogel and found that local application of the gel reduced IH in human vein segments obtained from patients undergoing bypass surgery. This work provides the first evidence of H2S efficacy against IH in human tissue, and the results show that the gel is more effective than NaHS, a common instantaneous H2S donor.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Kuljeet Kaur
- Virginia Tech, Department of Chemistry, Macromolecules Innovation Institute and Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA
| | - Diane Macabrey
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Celine Dubuis
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - John B Matson
- Virginia Tech, Department of Chemistry, Macromolecules Innovation Institute and Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA.
| | - Florent Allagnat
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
5
|
Cao L, Zhao C, Cong H, Hou K, Wan L, Wang J, Zhao L, Yan H. The effect of Telmisartan on the expression of connexin43 and neointimal hyperplasia in a rabbit iliac artery restenosis model. Heart Vessels 2019; 34:1230-1239. [PMID: 30671641 DOI: 10.1007/s00380-018-01338-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
We established a rabbit iliac artery restenosis model to explore the impact of Telmisartan on the expression of Connexin43 (Cx43) and neointimal hyperplasia. Thirty New Zealand white rabbits were randomly divided into three groups: control group (n = 10), restenosis group (n = 10), and Telmisartan group (n = 10). The restenosis model was established by high-cholesterol diet combined with double-balloon injury of iliac arteries. In addition, Telmisartan at 5 mg/(kg day) was administered to the rabbits of Telmisartan group on the second day after the second balloon injury. All rabbits were killed at the end of the experiment followed by institution policy. Before sacrifice, blood samples were obtained to test serum angiotensinII (AngII). Iliac arteries were isolated for morphological analysis and determining the expression of Cx43 by HE staining, immunohistochemical analysis, reverse transcription-polymerase chain reaction (RT-PCR), and Western Blotting analysis. Then, the local AngII levels of arteries were measured by radioimmunoassay. As compared with controls, the expression of Cx43 mRNA (0.98 ± 0.08) vs. (1.27 ± 0.17), P < 0.01), and Cx43 protein [(0.75 ± 0.08) vs. (0.90 ± 0.08), P < 0.05] of restenosis group were increased, which were significantly higher than those of Telmisartan group [Cx43 mRNA: (1.27 ± 0.17) vs. (1.00 ± 0.20), P < 0.01; Cx43 protein: (0.90 ± 0.08) vs. (0.82 ± 0.05), P < 0.05]. Furthermore, The intima thickness [(266.12 ± 70.27) vs. (2.85 ± 0.19) μm, P < 0.01] and the local AngII [(115.6 ± 15.7) vs. (90.1 ± 7.7), P < 0.05] of restenosis group were raised when compared with controls. Telmisartan group exhibited thinner intima compared with restenosis group [(68.22 ± 24.37) vs. (266.12 ± 70.27), P < 0.01]. However, the local AngII levels between these two groups were approximate. In addition, the plasma concentration of AngII was not significantly different among three groups. In conclusion, Telmisartan can inhibit the expression of connexin43 and neointimal hyperplasia in iliac artery restenosis model.
Collapse
Affiliation(s)
- Lu Cao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China.
| | - Cui Zhao
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hongliang Cong
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Kai Hou
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lianghui Wan
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Jixiang Wang
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Lili Zhao
- Cardiology Department, Tianjin Chest Hospital, Tianjin, 300222, People's Republic of China
| | - Haiyang Yan
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Affiliated Hospital of Logistics University of the Chinese People's Armed Police Forces, Tianjin, 300162, People's Republic of China
| |
Collapse
|
6
|
Prim DA, Menon V, Hasanian S, Carter L, Shazly T, Potts JD, Eberth JF. Perfusion Tissue Culture Initiates Differential Remodeling of Internal Thoracic Arteries, Radial Arteries, and Saphenous Veins. J Vasc Res 2018; 55:255-267. [PMID: 30179877 DOI: 10.1159/000492484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/23/2018] [Indexed: 01/26/2023] Open
Abstract
Adaptive remodeling processes are essential to the maintenance and viability of coronary artery bypass grafts where clinical outcomes depend strongly on the tissue source. In this investigation, we utilized an ex vivo perfusion bioreactor to culture porcine analogs of common human bypass grafts: the internal thoracic artery (ITA), the radial artery (RA), and the great saphenous vein (GSV), and then evaluated samples acutely (6 h) and chronically (7 days) under in situ or coronary-like perfusion conditions. Although morphologically similar, primary cells harvested from the ITA illustrated lower intimal and medial, but not adventitial, cell proliferation rates than those from the RA or GSV. Basal gene expression levels were similar in all vessels, with only COL3A1, SERPINE1, FN1, and TGFB1 being differentially expressed prior to culture; however, over half of all genes were affected nominally by the culturing process. When exposed to coronary-like conditions, RAs and GSVs experienced pathological remodeling not present in ITAs or when vessels were studied in situ. Many of the remodeling genes perturbed at 6 h were restored after 7 days (COL3A1, FN1, MMP2, and TIMP1) while others (SERPINE1, TGFB1, and VCAM1) were not. The findings elucidate the potential mechanisms of graft failure and highlight strategies to encourage healthy ex vivo pregraft conditioning.
Collapse
Affiliation(s)
- David A Prim
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Vinal Menon
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Shahd Hasanian
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Laurel Carter
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA.,Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Jay D Potts
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA.,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - John F Eberth
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, .,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina,
| |
Collapse
|
7
|
Allagnat F, Dubuis C, Lambelet M, Le Gal L, Alonso F, Corpataux JM, Déglise S, Haefliger JA. Connexin37 reduces smooth muscle cell proliferation and intimal hyperplasia in a mouse model of carotid artery ligation. Cardiovasc Res 2017; 113:805-816. [PMID: 28449099 DOI: 10.1093/cvr/cvx079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS Intimal hyperplasia (IH) is an abnormal response to vessel injury characterized by the dedifferentiation, migration, and proliferation of quiescent vascular smooth muscle cells (VSMC) to form a neointima layer. Vascular connexins (Cx) are involved in the pathophysiology of various vascular diseases, and Cx43, the main Cx expressed in VSMC, has been shown to promote VSMC proliferation and IH. The aim of this study was to investigate the participation of another Cx, namely Cx37, in the formation of the neointima layer. METHODS AND RESULTS Wild-type (WT) and Cx37-deficient (Cx37-/-) C57BL/6J mice were subjected to carotid artery ligation (CAL), a model of vessel injury and IH. The neointima developed linearly in WT until 28 days post surgery. In contrast, the neointima layer was almost absent 14 days after surgery in Cx37-/- mice, and twice as more developed after 28 days compared to WT mice. This large neointima formation correlated with a two-fold increase in cell proliferation in the media and neointima regions between 14 and 28 days in Cx37-/- mice compared to WT mice. The CAL triggered Cx43 overexpression in the media and neointima layers of ligated carotids in WT mice, and selectively up-regulated Cx37 expression in the media layer, but not in the neointima layer. The de novo expression of Cx37 in human primary VSMC reduced cell proliferation and P-Akt levels, in association with lower Cx43 levels, whereas Cx43 overexpression increased P-Akt levels. CONCLUSION The presence of Cx37 in the media layer of injured arteries restrains VSMC proliferation and limits the development of IH, presumably by interfering with the pro-proliferative effect of Cx43 and the Akt pathway.
Collapse
MESH Headings
- Aged
- Animals
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Arteries/surgery
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Stenosis/genetics
- Carotid Stenosis/metabolism
- Carotid Stenosis/pathology
- Cell Proliferation
- Cells, Cultured
- Connexin 43/metabolism
- Connexins/deficiency
- Connexins/genetics
- Connexins/metabolism
- Disease Models, Animal
- Female
- Humans
- Hyperplasia
- Ligation
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Time Factors
- Gap Junction alpha-4 Protein
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Céline Dubuis
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Martine Lambelet
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Loïc Le Gal
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Laboratory of Experimental Medicine, c/o Department of Physiology, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Florian Alonso
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Laboratory of Experimental Medicine, c/o Department of Physiology, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jacques-Antoine Haefliger
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Laboratory of Experimental Medicine, c/o Department of Physiology, Bugnon 7a, 1005 Lausanne, Switzerland
| |
Collapse
|
8
|
Tang M, Fang J. TNF‑α regulates apoptosis of human vascular smooth muscle cells through gap junctions. Mol Med Rep 2017; 15:1407-1411. [PMID: 28075455 DOI: 10.3892/mmr.2017.6106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
Inflammatory cytokines are released by immune cells and are able to induce vascular smooth muscle cells (VSMCs) to undergo apoptosis, causing atherosclerotic plaque rupture. Changes in the expression levels of connexins (Cxs) have been demonstrated in VSMCs to be involved in the pathogenesis of atherosclerotic progression. The present study examined the effect of tumor necrosis factor‑α (TNF‑α) on Cx43 expression levels and apoptosis in human VSMCs. Overexpression of Cx43 plasmids notably stimulated VSMC proliferation. TNF‑α directly inhibited Cx43 expression levels in a dose‑ and time‑dependent manner in VSMCs, however this was blocked by c‑Jun N‑terminal kinase inhibitor. TNF‑α also increased caspase‑3 activity and apoptosis of VSMCs through the inhibition of Cx43. These data suggested that TNF‑α induced the apoptosis of VMSCs and prompted the destabilization of atherosclerotic plaques by downregulating Cx43.
Collapse
Affiliation(s)
- Mei Tang
- Infusion Preparation Center of Pharmacy Department, Xianning Central Hospital & The First Clinical Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jun Fang
- Division of Nephrology, Department of Internal Medicine, Xianning Central Hospital & The First Clinical Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
9
|
Ek Vitorín JF, Pontifex TK, Burt JM. Determinants of Cx43 Channel Gating and Permeation: The Amino Terminus. Biophys J 2016; 110:127-40. [PMID: 26745416 DOI: 10.1016/j.bpj.2015.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/11/2015] [Accepted: 10/30/2015] [Indexed: 11/30/2022] Open
Abstract
Separate connexin domains partake in proposed gating mechanisms of gap junction channels. The amino-terminus (NT) domains, which contribute to voltage sensing, may line the channel's cytoplasmic-facing funnel surface, stabilize the channel's overall structure through interactions with the transmembrane domains and each other, and integrate to form a compound particle to gate the channel closed. Interactions of the carboxyl-terminus (CT) and cytoplasmic loop (CL) domains underlie voltage- and low pH-triggered channel closure. To elucidate potential cooperation of these gating mechanisms, we replaced the Cx43NT with the Cx37NT (chimera Cx43(∗)NT37), leaving the remainder of the Cx43 sequence, including the CT and CL, unchanged. Compared to wild-type Cx43 (Cx43WT), Cx43(∗)NT37 junctions exhibited several functional alterations: extreme resistance to halothane- and acidification-induced uncoupling, absence of voltage-dependent fast inactivation, longer channel open times, larger unitary channel conductances, low junctional dye permeability/permselectivity, and an overall cation selectivity more typical of Cx37WT than Cx43WT junctions. Together, these results suggest a cohesive model of channel function wherein: 1) channel conductance and size selectivity are largely determined by pore diameter, whereas charge selectivity results from the NT domains, and 2) transition between fully open and (multiple) closed states involves global changes in structure of the pore-forming domains transduced by interactions of the pore-forming domains with either the NT, CT, or both, with the NT domains forming the gate of the completely closed channel.
Collapse
Affiliation(s)
| | - Tasha K Pontifex
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Longchamp A, Allagnat F, Alonso F, Kuppler C, Dubuis C, Ozaki CK, Mitchell JR, Berceli S, Corpataux JM, Déglise S, Haefliger JA. Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia. PLoS One 2015; 10:e0138847. [PMID: 26398895 PMCID: PMC4580578 DOI: 10.1371/journal.pone.0138847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Florent Allagnat
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Florian Alonso
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Christopher Kuppler
- Malcom Randall Veterans Affairs Medical Center and the Division of Vascular and Endovascular Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Céline Dubuis
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Charles-Keith Ozaki
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Scott Berceli
- Malcom Randall Veterans Affairs Medical Center and the Division of Vascular and Endovascular Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
| | - Jacques-Antoine Haefliger
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Laboratory of Experimental Medicine, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
11
|
HAN XIAOJIAN, HE DAN, XU LIANGJING, CHEN MIN, WANG YIQI, FENG JIUGENG, WEI MINJUN, HONG TAO, JIANG LIPING. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells. Int J Mol Med 2015; 36:1361-8. [DOI: 10.3892/ijmm.2015.2346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
|
12
|
Joddar B, Firstenberg MS, Reen RK, Varadharaj S, Khan M, Childers RC, Zweier JL, Gooch KJ. Arterial levels of oxygen stimulate intimal hyperplasia in human saphenous veins via a ROS-dependent mechanism. PLoS One 2015; 10:e0120301. [PMID: 25799140 PMCID: PMC4370681 DOI: 10.1371/journal.pone.0120301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
Saphenous veins used as arterial grafts are exposed to arterial levels of oxygen partial pressure (pO2), which are much greater than what they experience in their native environment. The object of this study is to determine the impact of exposing human saphenous veins to arterial pO2. Saphenous veins and left internal mammary arteries from consenting patients undergoing coronary artery bypass grafting were cultured ex vivo for 2 weeks in the presence of arterial or venous pO2 using an established organ culture model. Saphenous veins cultured with arterial pO2 developed intimal hyperplasia as evidenced by 2.8-fold greater intimal area and 5.8-fold increase in cell proliferation compared to those freshly isolated. Saphenous veins cultured at venous pO2 or internal mammary arteries cultured at arterial pO2 did not develop intimal hyperplasia. Intimal hyperplasia was accompanied by two markers of elevated reactive oxygen species (ROS): increased dihydroethidium associated fluorescence (4-fold, p<0.05) and increased levels of the lipid peroxidation product, 4-hydroxynonenal (10-fold, p<0.05). A functional role of the increased ROS saphenous veins exposed to arterial pO2 is suggested by the observation that chronic exposure to tiron, a ROS scavenger, during the two-week culture period, blocked intimal hyperplasia. Electron paramagnetic resonance based oximetry revealed that the pO2 in the wall of the vessel tracked that of the atmosphere with a ~30 mmHg offset, thus the cells in the vessel wall were directly exposed to variations in pO2. Monolayer cultures of smooth muscle cells isolated from saphenous veins exhibited increased proliferation when exposed to arterial pO2 relative to those cultured at venous pO2. This increased proliferation was blocked by tiron. Taken together, these data suggest that exposure of human SV to arterial pO2 stimulates IH via a ROS-dependent pathway.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Biomedical Engineering at The Ohio State University, Columbus, OH 43210, United States of America
- Davis Heart & Lung Research Institute at The Ohio State University, Columbus, OH 43210, United States of America
| | - Michael S. Firstenberg
- Division of Cardiothoracic Surgery at The Ohio State University, Columbus, OH 43210, United States of America
| | - Rashmeet K. Reen
- Department of Biomedical Engineering at The Ohio State University, Columbus, OH 43210, United States of America
- Davis Heart & Lung Research Institute at The Ohio State University, Columbus, OH 43210, United States of America
| | - Saradhadevi Varadharaj
- Davis Heart & Lung Research Institute at The Ohio State University, Columbus, OH 43210, United States of America
| | - Mahmood Khan
- Davis Heart & Lung Research Institute at The Ohio State University, Columbus, OH 43210, United States of America
- Department of Emergency Medicine at The Ohio State University, Columbus, OH 43210, United States of America
| | - Rachel C. Childers
- Department of Biomedical Engineering at The Ohio State University, Columbus, OH 43210, United States of America
- Davis Heart & Lung Research Institute at The Ohio State University, Columbus, OH 43210, United States of America
| | - Jay L. Zweier
- Davis Heart & Lung Research Institute at The Ohio State University, Columbus, OH 43210, United States of America
| | - Keith J. Gooch
- Department of Biomedical Engineering at The Ohio State University, Columbus, OH 43210, United States of America
- Davis Heart & Lung Research Institute at The Ohio State University, Columbus, OH 43210, United States of America
- * E-mail:
| |
Collapse
|
13
|
Longchamp A, Allagnat F, Berard X, Alonso F, Haefliger JA, Deglise S, Corpataux JM. Procedure for human saphenous veins ex vivo perfusion and external reinforcement. J Vis Exp 2014:e52079. [PMID: 25350681 DOI: 10.3791/52079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Surgery, Brigham and Women's Hospital/Harvard Medical School;
| | - Florent Allagnat
- Laboratory of Experimental Medicine, Department of Medicine, CHUV University Hospital
| | - Xavier Berard
- Department of Vascular Surgery, Pellegrin Hospital, University of Bordeaux
| | - Florian Alonso
- Laboratory of Experimental Medicine, Department of Medicine, CHUV University Hospital
| | | | - Sébastien Deglise
- Department of Thoracic and Vascular Surgery, CHUV University Hospital
| | | |
Collapse
|
14
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
15
|
Dubuis C, May L, Alonso F, Luca L, Mylonaki I, Meda P, Delie F, Jordan O, Déglise S, Corpataux JM, Saucy F, Haefliger JA. Atorvastatin-loaded hydrogel affects the smooth muscle cells of human veins. J Pharmacol Exp Ther 2013; 347:574-81. [PMID: 24071735 DOI: 10.1124/jpet.113.208769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intimal hyperplasia (IH) is the major cause of stenosis of vein grafts. Drugs such as statins prevent stenosis, but their systemic administration has limited effects. We developed a hyaluronic acid hydrogel matrix, which ensures a controlled release of atorvastatin (ATV) at the site of injury. The release kinetics demonstrated that 100% of ATV was released over 10 hours, independent of the loading concentration of the hydrogel. We investigated the effects of such a delivery on primary vascular smooth muscle cells isolated from human veins. ATV decreased the proliferation, migration, and passage of human smooth muscle cells (HSMCs) across a matrix barrier in a similar dose-dependent (5-10 µM) and time-dependent manner (24-72 hours), whether the drug was directly added to the culture medium or released from the hydrogel. Expression analysis of genes known to be involved in the development of IH demonstrated that the transcripts of both the gap junction protein connexin43 (Cx43) and plasminogen activator inhibitor-1 (PAI-1) were decreased after a 24-48-hour exposure to the hydrogel loaded with ATV, whereas the transcripts of the heme oxygenase (HO-1) and the inhibitor of tissue plasminogen activator were increased. At the protein level, Cx43, PAI-1, and metalloproteinase-9 expression were decreased, whereas HO-1 was upregulated in the presence of ATV. The data demonstrate that ATV released from a hydrogel has effects on HSMCs similar to the drug being freely dissolved in the environment.
Collapse
Affiliation(s)
- Céline Dubuis
- Department of Thoracic and Vascular Surgery, University Hospital, Laboratory of Experimental Medicine, Lausanne, Switzerland (C.D., L.M., F.A., S.D., J.-M.C., F.S., J.-A.H.); School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland (L.L., I.M., F.D., O.J.); and Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland (P.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gan HL, Zhang JQ, Bo P, Wang SX, Lu CS. Statins Decrease Adverse Outcomes in Coronary Artery Bypass for Extensive Coronary Artery Disease as well as Left Main Coronary Stenosis. Cardiovasc Ther 2010; 28:70-9. [DOI: 10.1111/j.1755-5922.2009.00098.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Cyclic stretch downregulates arterial vascular connexin43 protein expression: an ex vivo study. Biomech Model Mechanobiol 2009; 9:203-11. [DOI: 10.1007/s10237-009-0171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
|
18
|
Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:69-118. [PMID: 19815177 PMCID: PMC2878191 DOI: 10.1016/s1937-6448(09)78002-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell-type-independent and cell-type-specific transcription factors, posttranslational modifications, and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this chapter in the physiological and pathophysiological context of vessel function.
Collapse
Affiliation(s)
- Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Brant Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
19
|
Jacot JG, Wong JY. Endothelial injury induces vascular smooth muscle cell proliferation in highly localized regions of a direct contact co-culture system. Cell Biochem Biophys 2008; 52:37-46. [PMID: 18766304 PMCID: PMC2770599 DOI: 10.1007/s12013-008-9023-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/16/2008] [Accepted: 07/29/2008] [Indexed: 11/28/2022]
Abstract
Though previous studies have indicated a relationship between the proliferation of endothelial cells and vascular smooth muscle cells (VSMCs) in co-culture, the results have been contradictory and the signaling mechanism poorly understood. In this transmembrane co-culture study, VSMCs and endothelial cells were grown to confluence on opposite sides of a microporous membrane to mimic the intima/media border of vessels. The endothelial layer was injured, and then cultured for 3 days, resulting in partial re-endothelialization. VSMC proliferation across from the injured/partially recovered endothelial region was significantly higher than across from the de-endothelialized region (a sevenfold increase) and the uninjured region (a threefold increase). ELISA indicated that PDGF, which was undetectable in uninjured co-culture and homotypic controls, increased after injury and the addition of a piperazinyl-quinazoline carboxamide PDGF receptor inhibitor blocked VSMC proliferation across from the injured/partially recovered region. We conclude that co-culture signaling initiated by endothelial cell injury locally stimulates VSMC proliferation and that this signaling could be mediated by PDGF-BB.
Collapse
MESH Headings
- Animals
- Becaplermin
- Cattle
- Cell Proliferation/drug effects
- Cells, Cultured
- Coculture Techniques/instrumentation
- Coculture Techniques/methods
- Diffusion Chambers, Culture
- Dose-Response Relationship, Drug
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/physiology
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Fatty Acids, Monounsaturated/pharmacology
- Gap Junctions/drug effects
- Gap Junctions/physiology
- Graft Occlusion, Vascular/physiopathology
- Models, Cardiovascular
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Piperazines/pharmacology
- Platelet-Derived Growth Factor/physiology
- Proto-Oncogene Proteins c-sis
- Quinazolines/pharmacology
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jeffrey G. Jacot
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston MA 02215, USA
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston MA 02215, USA
| |
Collapse
|
20
|
Abstract
Activin is a pleiotropic growth factor with a broad pattern of tissue distribution that includes reproductive tissues. Although direct actions of activin have been described in gonadal and uterine tissues, actions in the myometrium have not been defined. In this study we have characterized the responsiveness of uterine tissue and myometrial cell lines to activin-A. Uterine tissue and two myometrial cell lines, PHM1 (pregnant human myometrial 1) and hTERT HM (telomerase reverse transcriptase-infected human myometrial) respond to activin-A as measured by phosphorylation of Smad-2. Those cell lines express a full complement of activin receptors, as well as activin beta(A) subunit and follistatin. Activin inhibited proliferation of PHM1 and human telomerase reverse transcriptase-infected human myometrial cell line cells, with more extensive growth inhibition observed in PHM1s. In PHM1s, activin-A decreased oxytocin receptor and HoxA-10 mRNA expression but did not alter total progesterone receptor, cyclooxygenase-2 (Cox-2), and connexin 43 mRNA expression levels. Furthermore, treatment of PHM1 myometrial cells with activin-A attenuated oxytocin and thromboxaneA2 induced intracellular Ca(2+) accumulation. In conclusion, myometrial cells are activin sensitive, and activin-A can regulate myometrial cell functions.
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
21
|
Jia G, Cheng G, Gangahar DM, Agrawal DK. Involvement of connexin 43 in angiotensin II-induced migration and proliferation of saphenous vein smooth muscle cells via the MAPK-AP-1 signaling pathway. J Mol Cell Cardiol 2008; 44:882-90. [PMID: 18405916 PMCID: PMC2765202 DOI: 10.1016/j.yjmcc.2008.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/03/2008] [Accepted: 03/04/2008] [Indexed: 11/28/2022]
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) lead to intimal thickening and influence the long-term patency of venous graft post coronary arterial bypass graft. There is increasing evidence that connexins are involved in the development of intimal hyperplasia and restenosis. We assessed connexin 43 (Cx43) expression and its role in angiotensin II-induced proliferation and migration of smooth muscle cells and the signal pathways involved in human saphenous vein bypass conduits. Angiotensin II significantly increased gap junctional intercellular communication and induced the expression of Cx43 in human saphenous vein SMCs in a dose- and time-dependent manner through angiotensin II type 1 receptor. The effect of angiotensin II was blocked by siRNA of ERK 1/2, p38 MAPK and JNK, respectively. Overexpression of Cx43 markedly increased the proliferation of saphenous vein SMCs. However, siRNA for Cx43 inhibited angiotensin II-induced proliferation, cyclin E expression and migration of human saphenous vein SMCs. In dual-luciferase reporter assay, angiotensin II markedly activated AP-1 transcription factor, which was significantly attenuated by a dominant-negative AP-1 (A-Fos) with subsequent inhibition of angiotensin II-induced transcriptional expression of Cx43. These data demonstrate the role of Cx43 in the proliferation and migration of human saphenous vein SMCs and angiotensin II-induced Cx43 expression via mitogen-activated protein kinases (MAPK)-AP-1 signaling pathway.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE
- Department of Internal Medicine, Creighton University School of Medicine, Omaha, NE
| | - Gang Cheng
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE
- Department of Internal Medicine, Creighton University School of Medicine, Omaha, NE
| | | | - Devendra K. Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE
- Department of Internal Medicine, Creighton University School of Medicine, Omaha, NE
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE
| |
Collapse
|
22
|
Dagli MLZ, Hernandez-Blazquez FJ. Roles of Gap Junctions and Connexins in Non-Neoplastic Pathological Processes in which Cell Proliferation Is Involved. J Membr Biol 2007; 218:79-91. [PMID: 17653785 DOI: 10.1007/s00232-007-9045-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Accepted: 05/15/2007] [Indexed: 11/26/2022]
Abstract
Cell proliferation is an important process for reproduction, growth and renewal of living cells and occurs in several situations during life. Cell proliferation is present in all the steps of carcinogenesis, initiation, promotion and progression. Gap junctions are the only specialization of cell membranes that allows communication between adjacent cells. They are known to contribute to tissue homeostasis and are composed of transmembrane proteins called "connexins." These junctions are also known to be involved in cell proliferation control. The roles of gap junctions and connexins in cell proliferation are complex and still under investigation. Since pioneer studies by Loewenstein, it is known that neoplastic cells lack communicating junctions. They do not communicate with their neighbors or with non-neoplastic cells from the surrounding area. There are many studies and review articles dedicated to neoplastic tissues. The aim of this review is to present evidence on the roles of gap junctions and connexins in non-neoplastic processes in which cell proliferation is involved.
Collapse
Affiliation(s)
- Maria Lúcia Zaidan Dagli
- Laboratory of Experimental Oncology, Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Prof. Dr. Orlando Marques de Paiva 87, CEP 05508-900, São Paulo, Brazil.
| | | |
Collapse
|
23
|
Jia G, Mitra AK, Cheng G, Gangahar DM, Agrawal DK. Angiotensin II and IGF-1 regulate connexin43 expression via ERK and p38 signaling pathways in vascular smooth muscle cells of coronary artery bypass conduits. J Surg Res 2007; 142:137-42. [PMID: 17624368 DOI: 10.1016/j.jss.2006.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 11/15/2022]
Abstract
BACKGROUND Changes in connexin expression have been found in vascular smooth muscle cells (VSMCs) during the progression of atherosclerotic lesion and intimal hyperplasia. It is our hypothesis that increased connexin43 expression following stimulation of VSMCs with Ang II and IGF-1 contributes to more proliferation in saphenous vein (SV) than in the internal mammary artery (IMA). MATERIALS AND METHOD Using immunohistochemistry, Western blot, and reverse-transcription polymerase chain reaction, we assessed the effect of Ang II and IGF-1 stimulation on connexin43 expression and the signaling pathways involved in VSMCs of SV and IMA. RESULTS Immunostaining demonstrated strong expression of connexin43 in SV compared with IMA after stimulation with Ang II and IGF-1. Ang II up-regulated the expression of connexin43 in VSMCs of SV in a dose- and time-dependent manner. This was inhibited by p38 and ERK MAP kinase inhibitors, SB203580 and PD98059, respectively. In the VSMCs of IMA, the connexin43 expression was markedly low and maintained at a reduced level even after 3 h stimulation. IGF-1 dose-dependently induced mRNA expression of connexin43 in the VSMCs of SV, which was blocked by PD98059. However, in VSMCs of IMA there was no significant effect of IGF-1 on the connexin43 mRNA expression. CONCLUSION These data suggest that connexin43 expression can be influenced by Ang II and IGF-1 through ERK and p38 pathways and may contribute to the pathogenesis of vein graft disease following coronary artery bypass grafting.
Collapse
MESH Headings
- Aged
- Angiotensin II/physiology
- Cell Proliferation
- Cells, Cultured
- Connexin 43/metabolism
- Coronary Vessels/cytology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Flavonoids/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- Imidazoles/pharmacology
- Insulin-Like Growth Factor I/physiology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/physiology
- Vasoconstrictor Agents/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | |
Collapse
|
24
|
Shoja MM, Tubbs RS, Ansarin K. The role of myoendothelial gap junctions in the formation of arterial aneurysms: the hypothesis of "connexin 43:40 stoichiometry". Med Hypotheses 2007; 69:575-9. [PMID: 17374558 DOI: 10.1016/j.mehy.2007.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 10/24/2022]
Abstract
Heterocellular myoendothelial gap junctions (MEGJs) are essential in coordinating and regulating vasomotion. Little is known about their potential role in disease states. We discuss how alteration in the Cx 43:40 expression ratio at the level of MEGJs may begin a chain of reactions in the arterial wall resulting in an aneurysm formation. In this model, we assumed that aneurysm is a chronic arterial disease associated with medial degeneration and intimal hyperplasia. It also was assumed that MEGJs are composed of Cx43 and Cx40 in different stoichiometry and that the characteristic of a given junction is in the favor of its most abundantly expressed constituent. The hypothesis of Cx 43:40 stoichiometry indicates that impaired MEGJs may play a role in the pathogenesis of arterial aneurysms. Cx43 upregulation and Cx40 downregulation (increased Cx 43:40 stoichiometry) may induce a cascade of inflammatory, electrical, metabolic and proliferative derangements in the arterial wall, which finally lead to the matrix degradation, intimal hyperplasia, endothelial-medial dissociation and loss of endothelium-dependent hyperpolarizing currents, irregular vasomotion, impaired growth factor activation, and arterial sympathetic deprivation. The final consequence of these alterations is aneurysm formation.
Collapse
Affiliation(s)
- Mohammadali M Shoja
- Tuberculosis and Lung Diseases Research Center, Tabriz Medical University, Tabriz, Iran.
| | | | | |
Collapse
|
25
|
Allagnat F, Martin D, Condorelli DF, Waeber G, Haefliger JA. Glucose represses connexin36 in insulin-secreting cells. J Cell Sci 2005; 118:5335-44. [PMID: 16263767 DOI: 10.1242/jcs.02600] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gap-junction protein connexin36 (Cx36) contributes to control the functions of insulin-producing cells. In this study, we investigated whether the expression of Cx36 is regulated by glucose in insulin-producing cells. Glucose caused a significant reduction of Cx36 in insulin-secreting cell lines and freshly isolated pancreatic rat islets. This decrease appeared at the mRNA and the protein levels in a dose- and time-dependent manner. 2-Deoxyglucose partially reproduced the effect of glucose, whereas glucosamine, 3-O-methyl-D-glucose and leucine were ineffective. Moreover, KCl-induced depolarization of beta-cells had no effect on Cx36 expression, indicating that glucose metabolism and ATP production are not mandatory for glucose-induced Cx36 downregulation. Forskolin mimicked the repression of Cx36 by glucose. Glucose or forskolin effects on Cx36 expression were not suppressed by the L-type Ca(2+)-channel blocker nifedipine but were fully blunted by the cAMP-dependent protein kinase (PKA) inhibitor H89. A 4 kb fragment of the human Cx36 promoter was identified and sequenced. Reporter-gene activity driven by various Cx36 promoter fragments indicated that Cx36 repression requires the presence of a highly conserved cAMP responsive element (CRE). Electrophoretic-mobility-shift assays revealed that, in the presence of a high glucose concentration, the binding activity of the repressor CRE-modulator 1 (CREM-1) is enhanced. Taken together, these data provide evidence that glucose represses the expression of Cx36 through the cAMP-PKA pathway, which activates a member of the CRE binding protein family.
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Internal Medicine, Laboratory of Molecular Biology 19-135S, University Hospital, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|