1
|
Meka Farid Babu, A.R. S, Benerji G.V.. 3-Nitrotyrosine (NT) levels in serum and its association with insulin resistance in patients with type 2 diabetes mellitus: Biomarker role of NT in the assessment of oxidative stress mediated impending vascular complications in nephropathy. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i4.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction and Aim: 3-Nitrotyrosine (NT) has been recognized as a marker of oxidative stress in diabetes mellitus. NT has also been studied in diverse metabolic conditions. The aim of our study was oriented towards the role of NT as a predictor of oxidative stress mediated impending nephropathy in diabetes mellitus and that with reference to albuminuria.
Materials and Methods: A total of 150 type 2 diabetics in the age group 35 - 50 years were enrolled as three groups, comprising 50 each, based on albuminuria. 50 healthy age and gender matched subjects constituted the control group. Serum NT and Insulin were assessed by ELISA. HbA1c was quantitated by immunoturbidimetric method and microalbumin was assessed by turbilatex method. Routine biochemistry was enabled through ERBA EM-200 fully automated analyzer. Stringent quality control was affected. The study was begun following approval accorded by the competent committees.
Results: NT levels were positively correlated with albumin-creatinine ratio and insulin resistance. NT could be used as a predictor of impending vascular complications in diabetic nephropathy.
Conclusion: NT levels could act as a predictor of oxidative stress mediated diabetic nephropathy in the light of albuminuria.
Collapse
|
2
|
Wu L, Sowers JR, Zhang Y, Ren J. OUP accepted manuscript. Cardiovasc Res 2022; 119:691-709. [PMID: 35576480 DOI: 10.1093/cvr/cvac080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) arise from a complex interplay among genomic, proteomic, and metabolomic abnormalities. Emerging evidence has recently consolidated the presence of robust DNA damage in a variety of cardiovascular disorders. DNA damage triggers a series of cellular responses termed DNA damage response (DDR) including detection of DNA lesions, cell cycle arrest, DNA repair, cellular senescence, and apoptosis, in all organ systems including hearts and vasculature. Although transient DDR in response to temporary DNA damage can be beneficial for cardiovascular function, persistent activation of DDR promotes the onset and development of CVDs. Moreover, therapeutic interventions that target DNA damage and DDR have the potential to attenuate cardiovascular dysfunction and improve disease outcome. In this review, we will discuss molecular mechanisms of DNA damage and repair in the onset and development of CVDs, and explore how DDR in specific cardiac cell types contributes to CVDs. Moreover, we will highlight the latest advances regarding the potential therapeutic strategies targeting DNA damage signalling in CVDs.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, MO 65212, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
4
|
Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Cardiovasc Toxicol 2019; 18:493-506. [PMID: 29968072 DOI: 10.1007/s12012-018-9462-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Poly(ADP-ribosyl)ation is an immediate cellular repair response to DNA damage and is catalyzed primarily by poly(ADP-ribose)polymerase-1 (PARP1), which is the most abundant of the 18 different PARP isoforms and accounts for more than 90% of the catalytic activity of PARP in the cell nucleus. Upon detection of a DNA strand break, PARP1 binds to the DNA, cleaves nicotinamide adenine dinucleotide between nicotinamide and ribose and then modifies the DNA nuclear acceptor proteins by formation of a bond between the protein and the ADP-ribose residue. This generates ribosyl-ribosyl linkages that act as a signal for other DNA-repairing enzymes and DNA base repair. Extensive DNA breakage in cells results in excessive activation of PARP with resultant depletion of the cellular stores of nicotinamide adenine dinucleotide (NAD+) which slows the rate of glycolysis, mitochondrial electron transport, and ultimately ATP formation in these cells. This paper focuses on PARP in DNA repair in atherosclerosis, acute myocardial infarction/reperfusion injury, and congestive heart failure and the role of PARP inhibitors in combating the effects of excessive PARP activation in these diseases. Free oxygen radicals and nitrogen radicals in arteries contribute to disruption of the vascular endothelial glycocalyx, which increase the permeability of the endothelium to inflammatory cells and also low-density lipoproteins and the accumulation of lipid in the vascular intima. Mild inflammation and DNA damage within vascular cells promote PARP1 activation and DNA repair. Moderate DNA damage induces caspase-dependent PARP cleavage and vascular cell apoptosis. Severe DNA damage due to vascular inflammation causes excessive activation of PARP1. This causes endothelial cell depletion of NAD+ and ATP, downregulation of atheroprotective SIRT1, necrotic cell death, and ultimately atherosclerotic plaque disruption. Inhibition of PARP decreases vascular endothelial cell adhesion P-selectin and ICAM-1 molecules, inflammatory cells, pro-death caspase-3, and c-Jun N-terminal kinase (JNK) activation and upregulates prosurvival extracellular signal-regulated kinases and AKT, which decrease vascular cell apoptosis and necrosis and limit atherosclerosis and plaque disruption. In myocardial infarction with coronary occlusion then reperfusion, which occurs with coronary angioplasty or thrombolytic therapy, reperfusion injury occurs in as many as 31% of patients and is caused by inflammatory cells, free oxygen and nitrogen radicals, the rapid transcriptional activation of inflammatory cytokines, and the activation of PARP1. Inhibition of PARP attenuates neutrophil infiltration and inflammatory cytokine expression in the reperfused myocardium and preserves myocardial NAD+ and ATP. In addition, PARP inhibition increases the activation of myocyte survival enzymes protein kinase B (Akt) and protein kinase C epsilon (PKCε), and decreases the activity of myocardial ventricular remodeling enzymes PKCα/β, PKCζ/λ, and PKCδ. As a consequence, cardiomyocyte and vascular endothelial cell necrosis is decreased and myocardial contractility is preserved. In heart failure and circulatory shock in animal models, PARP inhibition significantly attenuates decreases in left ventricular systolic pressure, ventricular contractility and relaxation, stroke volume, and increases survival by limiting or preventing upregulation of adhesion molecules, proinflammatory cytokines, myocardial mononuclear cell infiltration, and PKCα/β and PKC λ/ζ. In this manner, PARP inhibition partially restores the myocardial concentrations of NAD+, limits ventricular remodeling and fibrosis, and prevents significant decreases in myocardial contractility. Based primarily on investigations in preclinical models of atherosclerosis, myocardial infarction, and heart failure, PARP inhibition appears to be beneficial in limiting or inhibiting cardiovascular dysfunction. These studies indicate that investigations of acute and chronic PARP inhibition are warranted in patients with atherosclerotic coronary artery disease.
Collapse
|
5
|
Veres G, Schmidt H, Hegedűs P, Korkmaz-Icöz S, Radovits T, Loganathan S, Brlecic P, Li S, Karck M, Szabó G. Is internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. J Thorac Cardiovasc Surg 2018; 156:1460-1469. [DOI: 10.1016/j.jtcvs.2018.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
|
6
|
Korkmaz-Icöz S, Radovits T, Loganathan S, Li S, Ruppert M, Benke K, Brlecic P, Szabó C, Karck M, Szabó G. Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase. Eur J Cardiothorac Surg 2018; 51:829-835. [PMID: 28204209 DOI: 10.1093/ejcts/ezw426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Heart transplantation is the standard treatment in end-stage heart failure and at shortage of cardiac allografts is its major limiting factor. Striving to optimize the use of this limited resource, the aspect that long distance procurement may increase the available donor pool must be taken into consideration. As poly(ADP-ribose)polymerase (PARP)-activation has been identified as a key pathway of reperfusion injury, we assessed the hypothesis that its inhibition would allow an extension of cold preservation time and protect the graft against ischaemia/reperfusion injury. METHODS Hearts from donor rats were explanted, stored in a preservation solution (Custodiol) at 4 °C for 4 h or 8 h, and heterotopically transplanted. A vehicle or the PARP-inhibitor, INO-1001 (5 mg/kg), was administered during the reperfusion period. We evaluated post-transplant graft function with a Millar micromanometer at different left-ventricular volumes. Additionally, in organ bath experiments the effect of PARP-inhibition on endothelium-dependent and -independent vasorelaxation was evaluated after long-term cold ischaemic storage/warm reperfusion. RESULTS PARP-inhibition resulted in a better systolic functional recovery of grafts submitted to 4 h and 8 h ischaemia. Furthermore, INO-1001 decreased the left-ventricular end-diastolic pressure after 8 h of ischaemia. Coronary blood flow was significantly higher after PARP-inhibition in comparison to controls. Endothelium-dependent vasorelaxation was significantly better in the INO-1001-groups than in the vehicle-treated transplant groups. After 24-h hypothermic storage, treatment of aortic ring with INO-1001 during reoxygenation significantly improved endothelial dysfunction. CONCLUSIONS By inhibiting the PARP activation, INO-1001 can protect the graft and endothelium from the injury that is caused by prolonged cold myocardial ischaemia/reperfusion, thereby improving post-transplant graft function.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Anesthesiology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Shiliang Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Paige Brlecic
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Lucatelli P, Fanelli F, Cirelli C, Sacconi B, Anzidei M, Montisci R, Sanfilippo R, Tamponi E, Catalano C, Saba L. Carotid endarterectomy versus stenting: Does the flow really change? An Echo-Color-Doppler analysis. Int J Cardiovasc Imaging 2015; 31:773-81. [PMID: 25697722 DOI: 10.1007/s10554-015-0623-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/16/2015] [Indexed: 11/26/2022]
Abstract
To assess potential hemodynamic differences after carotid endarterectomy (CEA) and carotid artery stenting (CAS) and their eventual impact on clinical management. Between July 2012 and October 2013 two groups of 30 patients each referred for CEA or CAS were prospectively enrolled in two tertiary hospital care centers. Pre-procedural imaging assessment of carotid artery disease was performed with Echo-Color-Doppler (ECD) and computed tomography angiography (CTA). ECD was repeated within 24 h and 1, 6 and 12 months after surgical/endovascular procedures. Peak systolic velocity (PSV) and end diastolic velocity (EDV) were assessed at two standard sites: common carotid artery (CCA) and distal internal carotid artery (ICA). Twenty-four hours ECD findings highly differ between the two populations. CCA PSV in the CEA and CAS groups was respectively 44.88 ± 9.16 and 69.20 ± 20.04 cm/s (p = 0.002); CCA EDV was 16.11 ± 2.29 and 19.13 ± 6.42 cm/s (p = 0.065); ICA PSV was 46.11 ± 7.9 and 94.02 ± 57.7 cm/s (p = 0.0012); ICA EDV was 20.22 ± 4.33 and 30.47 ± 18.33 cm/s (p = 0.025). One month, 6 months and 1 year findings confirmed the different trend in the two cohorts; in particular, at 1 year: CCA PSV was 50.94 ± 12.44 and 60.59 ± 26.84 cm/s (p = 0.181); CCA EDV was 17.11 ± 3.46 and 19 ± 16.35 cm/s (p = 0.634); ICA PSV was 51.66 ± 10.1 and 70.86 ± 20.64 cm/s (p = 0.014); ICA EDV was 25.05 ± 8.65 and 32.66 ± 13 cm/s (p = 0.0609). ECD follow-up of patients undergone CEA or CAS may play a critical role in the clinical management. Strict surveillance of blood flow velocities allows reducing false positive re-stenosis diagnosis and choosing the best anti-aggregation therapies. Within the first month CEA patients benefit from a lower risk condition in comparison with CAS patients, due to a significantly faster PSV drop; moreover, long-term CCA PSV after CEA could be used as a surrogate marker of neointima formation.
Collapse
MESH Headings
- Aged
- Angioplasty/adverse effects
- Angioplasty/instrumentation
- Blood Flow Velocity
- Carotid Artery, Common/diagnostic imaging
- Carotid Artery, Common/physiopathology
- Carotid Artery, Common/surgery
- Carotid Artery, Internal/diagnostic imaging
- Carotid Artery, Internal/physiopathology
- Carotid Artery, Internal/surgery
- Carotid Stenosis/diagnostic imaging
- Carotid Stenosis/physiopathology
- Carotid Stenosis/surgery
- Carotid Stenosis/therapy
- Endarterectomy, Carotid/adverse effects
- Female
- Humans
- Italy
- Male
- Middle Aged
- Predictive Value of Tests
- Prospective Studies
- Recurrence
- Regional Blood Flow
- Severity of Illness Index
- Stents
- Tertiary Care Centers
- Time Factors
- Tomography, X-Ray Computed
- Treatment Outcome
- Ultrasonography, Doppler, Color
- Vascular Patency
Collapse
Affiliation(s)
- Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xu S, Bai P, Little PJ, Liu P. Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev 2013; 34:644-75. [PMID: 24002940 DOI: 10.1002/med.21300] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribosyl)ation reactions, carried out by poly(ADP-ribose) polymerases (PARPs/ARTDs), are reversible posttranslational modifications impacting on numerous cellular processes (e.g., DNA repair, transcription, metabolism, or immune functions). PARP1 (EC 2.4.2.30), the founding member of PARPs, is particularly important for drug development for its role in DNA repair, cell death, and transcription of proinflammatory genes. Recent studies have established a novel concept that PARP1 is critically involved in the formation and destabilization of atherosclerotic plaques in experimental animal models and in humans. Reduction of PARP1 activity by pharmacological or molecular approaches attenuates atherosclerotic plaque development and enhances plaque stability as well as promotes the regression of pre-established atherosclerotic plaques. Mechanistically, PARP1 inhibition significantly reduces monocyte differentiation, macrophage recruitment, Sirtuin 1 (SIRT1) inactivation, endothelial dysfunction, neointima formation, foam cell death, and inflammatory responses within plaques, all of which are central to the pathogenesis of atherosclerosis. This article presents an overview of the multiple roles and underlying mechanisms of PARP1 activation (poly(ADP-ribose) accumulation) in atherosclerosis and emphasizes the therapeutic potential of PARP1 inhibition in preventing or reversing atherosclerosis and its cardiovascular clinical sequalae.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | | | | | | |
Collapse
|
9
|
Liu W, Fan Z, Han Y, Zhang D, Li J, Wang H. Intranuclear localization of apoptosis-inducing factor and endonuclease G involves in peroxynitrite-induced apoptosis of spiral ganglion neurons. Neurol Res 2012; 34:915-22. [PMID: 23006905 DOI: 10.1179/1743132812y.0000000098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present study was designed to determine whether or not the caspase-independent apoptotic pathway participated in the cellular death of spiral ganglion neurons (SGNs) after exposure to peroxynitrite (ONOO(-)), with particular attention given to the intranuclear translocation of mitochondrial apoptosis-inducing factor (AIF) and endonuclease G (Endo G) in this process. METHODS The rat SGNs were isolated and primary cultured in vitro and were exposed to ONOO(-) with pre-treatment of pan-caspase inhibitor. Morphological changes of SGNs were observed by acridine orange cytochemistry staining, and apoptosis was examined by flow cytometry. The translocation of mitochondrial AIF and Endo G was detected by immunocytochemistry and Western blot. The protein expressions of Bcl-2 family in SGNs exposed to ONOO(-) were determined by Western blot. RESULTS Treatment of SGNs with ONOO(-) resulted in the occurrence of caspase-independent apoptosis as evidenced by acridine orange staining and flow cytometry analysis. The immunocytochemical analysis showed that AIF and Endo G labeling were marked in neuronal nuclei, while the Western blot demonstrated the intranuclear localization of AIF and Endo G in SGNs treated with ONOO(-). Western blot analysis demonstrated that ONOO(-) increased the Bax expression while reducing Bcl-2 expression, which was not prevented by pre-treatment with caspase inhibitor. CONCLUSION These data indicate that ONOO(-) can trigger caspase-independent apoptosis in SGNs associated with mitochondrial AIF and Endo G intranuclear localization.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
10
|
Peroxynitrite and Nitroxidative Stress: Detection Probes and Micro-Sensors. A Case of a Nanostructured Catalytic Film. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1083.ch011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
11
|
Mechanistic aspects of inducible nitric oxide synthase-induced lung injury in burn trauma. Burns 2011; 37:638-45. [PMID: 21334141 DOI: 10.1016/j.burns.2010.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/02/2010] [Accepted: 12/11/2010] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Although the beneficial effects of inducible nitric oxide synthase (iNOS) inhibition in acute lung injury secondary to cutaneous burn and smoke inhalation were previously demonstrated, the mechanistic aspects are not completely understood. The objective of the present study is to describe the mechanism(s) underlying these favourable effects. We hypothesised that iNOS inhibition prevents formation of excessive reactive nitrogen species and attenuates the activation of poly(ADP) (poly(adenosine diphosphate)) ribose polymerase, thus mitigating the severity of acute lung injury in sheep subjected to combined burn and smoke inhalation. METHODS Adult ewes were chronically instrumented for a 24-h study and allocated to groups: sham: not injured, not treated, n = 6; control: injured, not treated, n = 6; and BBS-2: injured treated with iNOS dimerisation inhibitor BBS-2, n = 6. Control and BBS-2 groups received 40% total body surface area 3rd-degree cutaneous burn and cotton smoke insufflation into the lungs under isoflurane anaesthesia. RESULTS Treatment with iNOS inhibitor BBS-2 significantly improved pulmonary gas exchange (partial pressure of oxygen in the blood/fraction of inspired oxygen (PaO₂/FiO₂) 409 ± 43 mmHg vs. 233 ± 50 mmHg in controls, p < 0.05) and reduced airway pressures (peak pressure 20 ± 1 cm H₂O vs. 28 ± 2 cm H₂O in controls, p < 0.05) and lung water content (lung wet-to-dry ratio 4.1 ± 0.3 vs. 5.2 ± 0.2 in controls, p < 0.05) 24h after the burn and smoke injury. BBS-2 significantly reduced the increases in lung lymph nitrite/nitrate (10 ± 3 μM vs. 26 ± 6 μM in controls, p < 0.05) and 3-nitrotyrosine (109 ± 11 (densitometry value) vs. 151 ± 18 in controls, p < 0.05). Burn/smoke-induced increases in lung tissue nitrite/nitrate, poly(ADP)ribose polymerase, nuclear factor-κB (NF-κB) activity, myeloperoxidase activity and malondialdehyde formation and interleukin (IL)-8 expression were also attenuated with BBS-2. CONCLUSIONS The results provide strong evidence that BBS-2 ameliorated acute lung injury by inhibiting the inducible nitric oxide synthase/reactive nitrogen species/poly(ADP-ribose) polymerase (iNOS/RNS/PARP) pathway.
Collapse
|
12
|
Therapeutic injection of PARP inhibitor INO-1001 preserves cardiac function in porcine myocardial ischemia and reperfusion without reducing infarct size. Shock 2010; 33:507-12. [PMID: 20395771 DOI: 10.1097/shk.0b013e3181c4fb08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pharmacological protection from myocardial reperfusion injury, despite plenty of approaches, has still not been realized in humans. We studied the putative infarct size (IS)-sparing capacity of poly(ADP-ribose)polymerase inhibitor, INO-1001, and focused on cardiac functional recovery during reperfusion. Male farm-bred Landrace pigs were subjected to 1-h left anterior descending coronary artery occlusion followed by 3 h of reperfusion (control). Infarct size was determined by triphenyltetrazolium chloride/Evans blue staining. Plasma markers of myocardial injury (troponin T, creatine kinase, lactate dehydrogenase) were determined upon protocol completion. Cardiac function was continuously assessed via pulmonary and femoral artery catheters. INO-1001 (1 mg/kg) was administered upon reperfusion in the treatment group. As a positive control, untreated pigs were subjected to ischemic preconditioning (10-min left anterior descending coronary artery occlusion followed by 15-min reperfusion before the intervention). Ischemic preconditioning reduced myocardial damage reflected by a smaller IS and lower plasma markers of myocardial injury. INO-1001 did not reduce IS but significantly improved functional recovery (increased stroke volume, cardiac index, and mixed venous oxygen saturation) during reperfusion compared with vehicle-treated control and ischemic preconditioning. Although we could not confirm the IS-sparing capacities of poly(ADP-ribose)polymerase inhibitor, INO-1001, the drug holds the potential of hemodynamic improvement during reperfusion.
Collapse
|
13
|
Combined superoxide dismutase mimetic and peroxynitrite scavenger protects against neointima formation after endarterectomy in association with decreased proliferation and nitro-oxidative stress. Eur J Vasc Endovasc Surg 2010; 40:168-75. [PMID: 20434373 DOI: 10.1016/j.ejvs.2010.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/24/2010] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Reactive oxygen and nitrogen species (e.g., peroxynitrite) may trigger neointima formation leading to restenosis. In a rat carotid endarterectomy (CEA) model, we investigated the effects of the manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), a superoxide dismutase (SOD) mimetic and peroxynitrite scavenger on neointima formation. METHODS CEA was performed in male Sprague-Dawley rats. Animals received either vehicle (control group; n=15) or 15 mg kg(-1) day(-1) MnTBAP intraperitoneally for 3 weeks (treatment group; n=13). Four groups of carotids were analysed: the left, uninjured carotids (sham) and the right, injured carotids (control CEA) from the control group, the right, injured carotids from the treatment group (CEA+MnTBAP) and an additional group of carotids that were harvested 1h following endarterectomy. The analysis of carotid arteries was performed by histology, immunohistochemistry and real-time polymerase chain reaction (PCR). Plasma malondialdehyde (MDA) levels were measured by lipid hydroperoxidase assay. RESULTS Stenosis rate (10.5+/-8.1% vs. 45.4+/-28.3%), the percentage of proliferating cell nuclear antigen-positive cells (13.4+/-7.1% vs. 23.3+/-11.0%) and nitrotyrosine immunoreactivity (5.8+/-1.9 vs. 8.0+/-2.0) were significantly reduced in the vascular wall of the CEA+MnTBAP group compared with control CEA group. Ratio of Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL)-positive nuclei was significantly lower after antioxidant therapy (41.7+/-26.7% vs. 64.9+/-18.5%). Plasma MDA levels increased after endarterectomy (11.7+/-4.8 vs. 4.1+/-2.0 micromol l(-1)) and reduced in the treatment group (3.2+/-2.1 micromol l(-1)). No significant gene regulation after MnTBAP treatment could be noted. CONCLUSIONS MnTBAP decreased neointima formation, which was associated with reduced vascular smooth muscle cell proliferation and attenuated local and systemic nitro-oxidative stress.
Collapse
|
14
|
Trebak M, Ginnan R, Singer HA, Jourd'heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 2010; 12:657-74. [PMID: 19719386 PMCID: PMC2861541 DOI: 10.1089/ars.2009.2842] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signaling cascades initiated or regulated by calcium (Ca(2+)), reactive oxygen (ROS), and nitrogen (RNS) species are essential to diverse physiological and pathological processes in vascular smooth muscle. Stimuli-induced changes in intracellular Ca(2+) regulate the activity of primary ROS and RNS, producing enzymes including NADPH oxidases (Nox) and nitric oxide synthases (NOS). At the same time, alteration in intracellular ROS and RNS production reciprocates through redox-based post-translational modifications altering Ca(2+) signaling networks. These may include Ca(2+) pumps such as sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase (SERCA), voltage-gated channels, transient receptor potential canonical (TRPC), melastatin2 (TRPM2), and ankyrin1 (TRPA1) channels, store operated Ca(2+) channels such as Orai1/stromal interaction molecule 1 (STIM1), and Ca(2+) effectors such as Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In this review, we summarize and highlight current experimental evidence supporting the idea that cross-talk between Ca(2+) and ROS/RNS may represent a well-integrated signaling network in vascular smooth muscle.
Collapse
Affiliation(s)
- Mohamed Trebak
- Center for Cardiovascular Sciences, Albany Medical College, New York, USA
| | | | | | | |
Collapse
|
15
|
Saunders FD, Westphal M, Enkhbaatar P, Wang J, Pazdrak K, Nakano Y, Hamahata A, Jonkam CC, Lange M, Connelly RL, Kulp GA, Cox RA, Hawkins HK, Schmalstieg FC, Horvath E, Szabo C, Traber LD, Whorton E, Herndon DN, Traber DL. Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 298:L427-36. [PMID: 19965980 DOI: 10.1152/ajplung.00147.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. The combination injury was associated with twofold increased activity of neuronal nitric oxide synthase and oxidative/nitrosative stress, as indicated by significant increases in plasma nitrate/nitrite concentrations, 3-nitrotyrosine (an indicator of peroxynitrite formation), and malondialdehyde lung tissue content. The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury.
Collapse
Affiliation(s)
- Fiona D Saunders
- Investigational Intensive Care Unit, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Karotis-Endarterektomie in der Ratte. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2009. [DOI: 10.1007/s00398-009-0727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Hirschberg K, Radovits T, Loganathan S, Entz L, Beller CJ, Gross ML, Sandner P, Karck M, Szabó G. Selective phosphodiesterase-5 inhibition reduces neointimal hyperplasia in rat carotid arteries after surgical endarterectomy. J Thorac Cardiovasc Surg 2009; 137:1508-14. [PMID: 19464472 DOI: 10.1016/j.jtcvs.2008.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/16/2008] [Accepted: 10/13/2008] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Long-term results of surgical vessel reconstruction are compromised by restenosis caused by neointimal hyperplasia. Recent studies suggest that reduced cyclic guanosine monophosphate signaling is associated with neointima formation. In a rat model of endarterectomy, we investigated the effect of pharmacologic inhibition of cyclic guanosine monophosphate degradation on neointima formation by using the selective phosphodiesterase-5 inhibitor vardenafil. METHODS Carotid endarterectomy was performed in male Sprague-Dawley rats by means of incision of the right common carotid artery with removal of intima. Four groups were studied: unoperated control rats (n = 4), sham-operated rats (n = 9), control rats with endarterectomy (n = 9), or endarterectomized rats treated with vardenafil (10 mg/kg/day) postoperatively (n = 9). After 3 weeks, vessel compartment areas were measured by means of conventional microscopy with hematoxylin and eosin staining. Immunohistochemical analysis was performed to confirm neointima formation and the local cyclic guanosine monophosphate content. Plasma levels of cyclic guanosine monophosphate were determined by means of enzyme immunoassay. Student's t test was used for statistical evaluation. RESULTS Immunohistochemical analysis demonstrated intensive staining for transforming growth factor beta1 and alpha-smooth muscle actin in the control neointima. Vardenafil significantly reduced the stenosis grade (24.64% +/- 7.46% vs 54.12% +/- 10.30% in the control group, P < .05) and expression of transforming growth factor beta1, as well as alpha-smooth muscle actin, in the neointima. The immunohistochemical score for cyclic guanosine monophosphate was higher in the treated neointima (4.80 +/- 0.76 vs 2.84 +/- 0.40 in the control group, P < .05), and increased plasma cyclic guanosine monophosphate levels were found by means of enzyme immunoassay as well (84.65 +/- 12.77 pmol/mL vs 43.50 +/- 3.30 pmol/mL in the control group, P < .05). CONCLUSIONS Treatment with vardenafil can be considered a new possibility to prevent neointimal hyperplasia after endarterectomy.
Collapse
Affiliation(s)
- Kristóf Hirschberg
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
OBJECTIVE Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. DESIGN Prospective, randomized, controlled, experimental animals study. SETTING Investigational intensive care unit at university hospital. SUBJECTS Adult female sheep. INTERVENTIONS Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40 degrees C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 microg/kg/hr. Sham and control groups received same amount of saline. MEASUREMENTS AND MAIN RESULTS Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of injured sheep with neuronal nitric oxide synthase inhibitor attenuated all the observed pulmonary pathophysiology. CONCLUSIONS The results provide definitive evidence that inhibition of neuronal nitric oxide synthase-derived excessive nitric oxide may be a novel and beneficial treatment strategy for pulmonary pathology in burn victims with smoke inhalation injury.
Collapse
|
19
|
Yau L, Molnar P, Moon MC, Buhay S, Werner JP, Molnar K, Saward L, Del Rizzo D, Zahradka P. Meta-iodobenzylguanidine, an inhibitor of arginine-dependent mono(ADP-ribosyl)ation, prevents neointimal hyperplasia. J Pharmacol Exp Ther 2008; 326:717-24. [PMID: 18523160 DOI: 10.1124/jpet.108.137513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The association of ADP-ribosylation with cell proliferation and ischemia-reperfusion injury suggests that it may be a suitable target for therapeutic control of revascularization-induced injury. The purpose of this study was to investigate the inhibitory actions of ADP-ribosylation inhibitors on restenosis. In organ culture, the poly(ADP-ribose) polymerase (PARP) inhibitor 3,4-dihydro-5-methylisoquinolinone (PD128763) was unable to prevent neointimal hyperplasia, whereas the arginine-dependent mono(ADP-ribosyl)transferase (ART) inhibitor meta-iodobenzylguanidine (MIBG) was highly effective (EC(50) 21 microM). Treatment with 3-aminobenzamide (3AB), a less potent ART inhibitor, also produced a significant reduction in neointimal hyperplasia. Single doses (25 mM) of MIBG and 3AB were also applied within a fibrin coagulum directly to the adventitial surface of the porcine femoral artery after balloon catheter injury in vivo. MIBG reduced the neointimal index, measured 14 days after angioplasty, by 82%, whereas 3AB was ineffective. However, when extended to 45 days, the neointimal index was not significantly decreased by MIBG treatment relative to control. Assessment of MIBG release from the fibrin glue showed that the bulk of the compound was eluted within 3 days, suggesting that the vehicle was not suitable for long-term delivery. On the other hand, direct infusion of MIBG into vessels was able to reduce neointimal hyperplasia over 14 days in organ culture. These data support the conclusion that the cellular retention characteristics of MIBG contribute significantly to the efficacy of this compound. Based on these results, ART, but not PARP, may be a credible target for therapeutic treatment of restenosis.
Collapse
Affiliation(s)
- Lorraine Yau
- University of Manitoba and St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hamahata A, Enkhbaatar P, Kraft ER, Lange M, Leonard SW, Traber MG, Cox RA, Schmalstieg FC, Hawkins HK, Whorton EB, Horvath EM, Szabo C, Traber LD, Herndon DN, Traber DL. gamma-Tocopherol nebulization by a lipid aerosolization device improves pulmonary function in sheep with burn and smoke inhalation injury. Free Radic Biol Med 2008; 45:425-33. [PMID: 18503777 PMCID: PMC2555991 DOI: 10.1016/j.freeradbiomed.2008.04.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 11/22/2022]
Abstract
Fire accident victims who sustain both thermal injury to skin and smoke inhalation have gross evidence of systemic and pulmonary oxidant damage and acute lung injury. We hypothesized that gamma-tocopherol (gT), a reactive O(2) and N(2) scavenger, when delivered into the airway, would attenuate lung injury induced by burn and smoke inhalation. Acute lung injury was induced in chronically prepared, anesthetized sheep by 40% total burn surface area, third-degree skin burn and smoke insufflation (48 breaths of cotton smoke, <40 degrees C). The study groups were: (1) Sham (not injured, flaxseed oil (FO)-nebulized, n=6); (2) SA-neb (injured, saline-nebulized, n=6); (3) FO-neb (injured, FO-nebulized, n=6); and (4) gT+FO-neb (injured, gT and FO-nebulized, n=6). Nebulization was started 1 h postinjury, and 24 ml of FO with or without gT (51 mg/ml) was delivered into airways over 47 h using our newly developed lipid aerosolization device (droplet size: 2.5-5 microm). The burn- and smoke inhalation-induced pathological changes seen in the saline group were attenuated by FO nebulization; gT addition further improved pulmonary function. Pulmonary gT delivery along with a FO source may be a novel effective treatment strategy in management of patients with acute lung injury.
Collapse
Affiliation(s)
| | | | - Edward R. Kraft
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthias Lange
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott W. Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Robert A. Cox
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Hal K. Hawkins
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | - Csaba Szabo
- University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | - Daniel L. Traber
- University of Texas Medical Branch, Galveston, TX 77555, USA
- * Corresponding author. Fax: +(409) 772-6409., E-mail address: (D.L. Traber)
| |
Collapse
|
21
|
Nitrotyrosine promotes human aortic smooth muscle cell migration through oxidative stress and ERK1/2 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1576-84. [PMID: 18460343 DOI: 10.1016/j.bbamcr.2008.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 12/13/2022]
Abstract
Nitrotyrosine is a new biomarker of atherosclerosis and inflammation. The objective of this study was to determine the direct effects of free nitrotyrosine on human aortic smooth muscle cell (AoSMC) migration and molecular mechanisms. By a modified Boyden chamber assay, nitrotyrosine significantly increased AoSMC migration in a concentration-dependent manner. For example, nitrotyrosine at 300 nM increased AoSMC migration up to 152% compared with l-tyrosine-treated control cells (P<0.01). Cell wound healing assay confirmed this effect. Nitrotyrosine significantly increased the expression of some key cell migration-related molecules including PDGF receptor-B, matrix metalloproteinase 2 (MMP2) and integrins alphaV and beta3 at both mRNA and protein levels in AoSMC (P<0.01). In addition, nitrotyrosine increased reactive oxygen species (ROS) production in AoSMC by staining with fluorescent dye DCFHDA. Furthermore, nitrotyrosine induced transient phosphorylation of ERK2 by Bio-Plex luminex immunoassay and western blot analysis. AoSMC were able to uptake nitrotyrosine. Antioxidants including seleno-l-methionine and superoxide dismutase mimetic (MnTBAP) as well as ERK1/2 inhibitor PD98059 effectively blocked the promoting effect of nitrotyrosine on AoSMC migration and the mRNA expression of above cell migration-related molecules. Thus, nitrotyrosine directly increases AoSMC migration in vitro and the expression of migration-related molecules through overproduction of ROS and activation of ERK1/2 pathway. Nitrotyrosine may contribute to cardiovascular pathogenesis.
Collapse
|
22
|
Liao SJ, Lin L, Zeng JS, Huang RX, Channon KM, Chen AF. Endothelium-targeted transgenic GTP-cyclohydrolase I overexpression inhibits neointima formation in mouse carotid artery. Clin Exp Pharmacol Physiol 2007; 34:1260-6. [PMID: 17973864 DOI: 10.1111/j.1440-1681.2007.04719.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Tetrahydrobiopterin (BH(4)) is an essential cofactor that maintains the normal function of endothelial nitric oxide (NO) synthase. Restenosis is a key complication after transluminal angioplasty. Guanosine 5'-triphosphate-cyclohydrolase I (GTPCH) is the first rate-limiting enzyme for de novo BH(4) synthesis. However, the role of GTPCH in restenosis is not fully understood. The present study tested the hypothesis that endothelial-targeted GTPCH overexpression retards neointimal formation, a hallmark of restenosis, in mouse carotid artery. 2. Transluminal wire injury was induced in the left carotid arteries of adult male wild-type C57BL/6 (WT) and endothelial GTPCH transgenic (Tg-GCH) mice. Re-endothelialization was confirmed with in vivo Evans blue staining. Endothelium-dependent and -independent relaxations were measured using isometric tension recording. Morphological analysis was performed 2 and 4 weeks after carotid injury to assess neointimal formation. Fluorescence-based high-performance liquid chromatography (HPLC) was used to determine GTPCH activity and BH(4) levels. Basal NO release following carotid injury was assessed by N(G)-nitro-L-arginine methyl ester-induced vascular contraction. 3. The endothelium was completely removed upon transluminal wire injury and full re-endothelialization was achieved at Day 10. Endothelium-dependent relaxation was impaired 10 days and 4 weeks after carotid injury, whereas endothelium-independent relaxation remained unaffected. Morphological analysis revealed that the endothelial-specific overexpression of GTPCH reduced neointimal formation and medial hypertrophy 2 and 4 weeks after carotid injury. Both arterial GTPCH enzyme activity and BH(4) levels were significantly elevated in Tg-GCH mice compared with WT mice and basal NO release of the injured carotid artery tended to increase in Tg-GCH mice. 4. These findings suggest that the endothelial overexpression of GTPCH increased endothelial BH(4) synthesis and played a preventive role in neointimal formation induced by endothelium denudation.
Collapse
Affiliation(s)
- Song-Jie Liao
- Department of Pharmacology and Neurology, Neuroscience Program and Molecular Biology Program, Michigan State University, East Lansing, MI 48824-1317, USA
| | | | | | | | | | | |
Collapse
|
23
|
Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6:662-80. [PMID: 17667957 DOI: 10.1038/nrd2222] [Citation(s) in RCA: 1679] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, University Heights, Newark, New Jersey 07103-2714, USA.
| | | | | |
Collapse
|
24
|
Oumouna-Benachour K, Hans CP, Suzuki Y, Naura A, Datta R, Belmadani S, Fallon K, Woods C, Boulares AH. Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-kappaB nuclear translocation, and foam cell death. Circulation 2007; 115:2442-50. [PMID: 17438151 DOI: 10.1161/circulationaha.106.668756] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) was suggested to play a role in endothelial dysfunction that is associated with a number of cardiovascular diseases. We hypothesized that PARP may play an important role in atherogenesis and that its inhibition may attenuate atherosclerotic plaque development in an experimental model of atherosclerosis. METHODS AND RESULTS Using a mouse (apolipoprotein E [ApoE](-/-)) model of high-fat diet-induced atherosclerosis, we demonstrate an association between cell death and oxidative stress-associated DNA damage and PARP activation within atherosclerotic plaques. PARP inhibition by thieno[2,3-c]isoquinolin-5-one reduced plaque number and size and altered structural composition of plaques in these animals without affecting sera lipid contents. These results were corroborated genetically with the use of ApoE(-/-) mice that are heterozygous for PARP-1. PARP inhibition promoted an increase in collagen content, potentially through an increase in tissue inhibitor of metalloproteinase-2, and transmigration of smooth muscle cells to intima of atherosclerotic plaques as well as a decrease in monocyte chemotactic protein-1 production, all of which are markers of plaque stability. In PARP-1(-/-) macrophages, monocyte chemotactic protein-1 expression was severely inhibited because of a defective nuclear factor-kappaB nuclear translocation in response to lipopolysaccharide. Furthermore, PARP-1 gene deletion not only conferred protection to foam cells against H2O2-induced death but also switched the mode of death from necrosis to apoptosis. CONCLUSIONS Our results suggest that PARP inhibition interferes with plaque development and may promote plaque stability, possibly through a reduction in inflammatory factors and cellular changes related to plaque dynamics. PARP inhibition may prove beneficial for the treatment of atherosclerosis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Aortic Diseases/drug therapy
- Aortic Diseases/enzymology
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apoptosis
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Cholesterol/blood
- Collagen/biosynthesis
- Crosses, Genetic
- Diet, Atherogenic
- Drug Evaluation, Preclinical
- Foam Cells/pathology
- Gene Expression Regulation/drug effects
- Genotype
- Hydrogen Peroxide/pharmacology
- Hypercholesterolemia/blood
- Hypercholesterolemia/complications
- Hypercholesterolemia/genetics
- Hypertriglyceridemia/blood
- Hypertriglyceridemia/complications
- Hypertriglyceridemia/genetics
- Isoquinolines/pharmacology
- Isoquinolines/therapeutic use
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Necrosis
- Oxidative Stress
- Poly Adenosine Diphosphate Ribose/physiology
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/physiology
- Specific Pathogen-Free Organisms
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Tissue Inhibitor of Metalloproteinase-2/metabolism
- Triglycerides/blood
Collapse
Affiliation(s)
- Karine Oumouna-Benachour
- Louisiana State University Health Sciences Center, Department of Pharmacology, 1901 Perdido St, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Radovits T, Seres L, Gero D, Berger I, Szabó C, Karck M, Szabó G. Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp Gerontol 2007; 42:676-85. [PMID: 17383839 PMCID: PMC2684519 DOI: 10.1016/j.exger.2007.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/15/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Overproduction of reactive oxygen species in aging tissues has been implicated in the pathogenesis of aging-associated cardiovascular dysfunction. Oxidant-induced DNA-damage activates the poly(ADP-ribose) polymerase (PARP) pathway, leading to tissue injury. In this study we investigated the acute effects of the PARP inhibitor INO-1001 on aging-associated cardiac and endothelial dysfunction. Using a pressure-volume conductance catheter, left ventricular pressure-volume analysis of young and aging rats was performed before and after a single injection of INO-1001. Endothelium-dependent and -independent vasorelaxation of isolated aortic rings were investigated by using acetylcholine and sodium nitroprusside. Aging animals showed a marked reduction of myocardial contractility and endothelium-dependent relaxant responsiveness of aortic rings. Single dose INO-1001-treatment resulted in acute improvement in their cardiac and endothelial function. Immunohistochemistry for nitrotyrosine and poly(ADP-ribose) confirmed enhanced nitro-oxidative stress and PARP-activation in aging animals. Acute treatment with INO-1001 decreased PARP-activation, but did not affect nitrotyrosine-immunoreactivity. Our results demonstrate that the aging-associated chronic cardiovascular dysfunction can be improved, at least, short term, by a single treatment course with a PARP-inhibitor, supporting the role of the nitro-oxidative stress -- PARP -- pathway in the age-related functional decline of the cardiovascular system. Pharmacological inhibition of PARP may represent a novel therapeutic utility to improve aging-associated cardiovascular dysfunction.
Collapse
Affiliation(s)
- Tamás Radovits
- Department of Cardiac Surgery, University of Heidelberg, INF 326 OG 2, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. CARDIOVASCULAR DRUG REVIEWS 2007; 25:235-260. [PMID: 17919258 PMCID: PMC2225457 DOI: 10.1111/j.1527-3466.2007.00018.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests that the reactive oxygen and nitrogen species are generated in cardiomyocytes and endothelial cells during myocardial ischemia/reperfusion injury, various forms of heart failure or cardiomyopathies, circulatory shock, cardiovascular aging, diabetic complications, myocardial hypertrophy, atherosclerosis, and vascular remodeling following injury. These reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation, on the one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to the functional impairment or death of the endothelial cells and cardiomyocytes. On the other hand, PARP activation modulates important inflammatory pathways, and PARP-1 activity can also be modulated by several endogenous factors such as various kinases, purines, vitamin D, thyroid hormones, polyamines, and estrogens, just to mention a few. Recent studies have demonstrated that pharmacological inhibition of PARP provides significant benefits in animal models of cardiovascular disorders, and novel PARP inhibitors have entered clinical development for various cardiovascular indications. Because PARP inhibitors can enhance the effect of anticancer drugs and decrease angiogenesis, their therapeutic potential is also being explored for cancer treatment. This review discusses the therapeutic effects of PARP inhibitors in myocardial ischemia/reperfusion injury, various forms of heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, diabetic cardiovascular complications, myocardial hypertrophy, atherosclerosis, vascular remodeling following injury, angiogenesis, and also summarizes our knowledge obtained from the use of PARP-1 knockout mice in the various preclinical models of cardiovascular diseases.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health, NIAAA, Bethesda MD 20892-9413, USA.
| | | |
Collapse
|
27
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|