1
|
Qiao M, Li Y, Yan S, Zhang RJ, Dong H. Modulation of arterial wall remodeling by mechanical stress: Focus on abdominal aortic aneurysm. Vasc Med 2025; 30:238-249. [PMID: 39895313 DOI: 10.1177/1358863x241309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The rupture of an abdominal aortic aneurysm (AAA) poses a significant threat, with a high mortality rate, and the mechanical stability of the arterial wall determines both its growth and potential for rupture. Owing to extracellular matrix (ECM) degradation, wall-resident cells are subjected to an aberrant mechanical stress environment. In response to stress, the cellular mechanical signaling pathway is activated, initiating the remodeling of the arterial wall to restore stability. A decline in mechanical signal responsiveness, coupled with inadequate remodeling, significantly contributes to the AAA's progressive expansion and eventual rupture. In this review, we summarize the main stresses experienced by the arterial wall, emphasizing the critical role of the ECM in withstanding stress and the importance of stress-exposed cells in maintaining mechanical stability. Furthermore, we will discuss the application of biomechanical analyses as a predictive tool for assessing AAA stability.
Collapse
Affiliation(s)
- Maolin Qiao
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Yaling Li
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Sheng Yan
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Rui Jing Zhang
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Honglin Dong
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Hirad A, Fakhouri FS, Raterman B, Lakony R, Wang M, Gonring D, Kedwai B, Kolipaka A, Mix D. Feasibility of measuring magnetic resonance elastography-derived stiffness in human thoracic aorta and aortic dissection phantoms. J Vasc Surg Cases Innov Tech 2025; 11:101697. [PMID: 39816441 PMCID: PMC11732680 DOI: 10.1016/j.jvscit.2024.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025] Open
Abstract
Type B aortic dissection (TBAD) represents a serious medical emergency with up to a 50% associated 5-year mortality caused by thoracic aorta, dissection-associated aneurysmal (DAA) degeneration, and rupture. Unfortunately, conventional size-related diagnostic methods cannot distinguish high-risk DAAs that benefit from surgical intervention from stable DAAs. Our goal is to use DAA stiffness measured with magnetic resonance elastography (MRE) as a biomarker to distinguish high-risk DAAs from stable DAAs. This is a feasibility study using MRE to (1) fabricate human-like geometries TBAD phantoms with different stiffnesses, (2) measure stiffness in TBAD phantoms with rheometry, and (3) demonstrate the first successful application of MRE to the thoracic aorta of a human volunteer. AD phantoms with heterogenous wall stiffness demonstrated the correlation between MRE-derived stiffness and rheometric measured stiffness. A pilot scan was performed in a healthy volunteer to test the technique's feasibility in the thoracic aorta.
Collapse
Affiliation(s)
- Adnan Hirad
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Faisal S. Fakhouri
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Brian Raterman
- Department of Radiology, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Ronald Lakony
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Maxwell Wang
- Division of Vascular Surgery, Loma Linda University Health Medical Center, Loma Linda, CA
| | - Dakota Gonring
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Baqir Kedwai
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Doran Mix
- Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| |
Collapse
|
3
|
Dong H, Haraldsson H, Leach J, Zhou A, Ballweber M, Zhu C, Xuan Y, Wang Z, Hope M, Epstein FH, Ge L, Saloner D, Tseng E, Mitsouras D. In Vivo Quantification of Ascending Thoracic Aortic Aneurysm Wall Stretch Using MRI: Relationship to Repair Threshold Diameter and Ex Vivo Wall Failure Behavior. J Biomech Eng 2024; 146:121009. [PMID: 39225677 DOI: 10.1115/1.4066430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/04/2024] [Indexed: 09/04/2024]
Abstract
Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Moreover, aTAA wall stretch between surgical and nonsurgical patients was investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. Electrocardiogram-gated DENSE imaging was performed to measure systole-diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-hold DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five harvested specimens. in vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (1.75±1.44% versus 5.28±1.92%, respectively, P = 0.0004). There was no correlation between stretch and maximum aTAA diameter (P = 0.56). The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to nonsurgical candidates (0.993±0.011 versus 1.017±0.016, respectively, P = 0.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P = 0.017 and P = 0.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P = 0.013 and P = 0.040, respectively). Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Joseph Leach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Ang Zhou
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Megan Ballweber
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Yue Xuan
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Zhongjie Wang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Michael Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Liang Ge
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Elaine Tseng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| |
Collapse
|
4
|
Brückner A, Brandtner A, Rieck S, Matthey M, Geisen C, Fels B, Stei M, Kusche-Vihrog K, Fleischmann BK, Wenzel D. Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE -/- mice. Angiogenesis 2024; 27:719-738. [PMID: 38965173 PMCID: PMC11564227 DOI: 10.1007/s10456-024-09933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified "Häutchen method" for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE-/- model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
Collapse
Affiliation(s)
- Alexander Brückner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Adrian Brandtner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Caroline Geisen
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Benedikt Fels
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Bernd K Fleischmann
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
5
|
Zhang S, Tamargo RJ, Bergmann J, Gottschalk A, Steppan J. The relationship between intraoperative surrogates of vascular stiffness, cerebral aneurysms, and surgical outcomes. J Stroke Cerebrovasc Dis 2024; 33:108003. [PMID: 39251046 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Increased arterial stiffness has been linked to aneurysm formation in the systemic and cerebral circulations, though the role played by arterial stiffness in the cerebral vasculature continues to be refined. This study assesses whether intraoperative surrogates of arterial stiffness differ between patients with cerebral aneurysms and controls, and the extend that these indices relate to outcomes following open surgical treatment. METHODS We evaluated patients in a prospectively maintained database who underwent cerebral aneurysm surgery, and compared them to controls without cerebral aneurysms. Arterial stiffness was estimated using the intraoperative ambulatory arterial stiffness index (AASI) and average pulse pressure (PP). RESULTS We analyzed 214 cerebral aneurysm patients and 234 controls. Patients in the aneurysm group were predominantly female and had a higher incidence of hypertension, diabetes mellitus, and vascular disease. They also demonstrate elevated AASI and average PP. When stratified by the occurrence of subarachnoid hemorrhage (SAH) or unfavorable neurological outcome, the AASI and average PP were not highly associated with the occurrence of SAH but were highly associated with unfavorable neurological outcomes. After multivariable analysis, both the AASI and average PP were no longer associated with unfavorable neurological outcomes, however elevated age, strongly linked with arterial stiffness, became a key predictive variable. CONCLUSION Readily obtained intraoperative surrogates of arterial stiffening demonstrates its presence in those with cerebral aneurysm disease and the extent that it does it may meaningfully direct their clinical course. However, multivariable analysis demonstrates limitations of using arterial stiffness measures to predict clinical outcomes.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rafael J Tamargo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jules Bergmann
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Allan Gottschalk
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Co M, Raterman B, Klamer B, Kolipaka A, Walter B. Nucleus pulposus structure and function assessed in shear using magnetic resonance elastography, quantitative MRI, and rheometry. JOR Spine 2024; 7:e1335. [PMID: 38741919 PMCID: PMC11089841 DOI: 10.1002/jsp2.1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background In vivo quantification of the structure-function relationship of the intervertebral disc (IVD) via quantitative MRI has the potential to aid objective stratification of disease and evaluation of restorative therapies. Magnetic resonance elastography (MRE) is an imaging technique that assesses tissue shear properties and combined with quantitative MRI metrics reflective of composition can inform structure-function of the IVD. The objectives of this study were to (1) compare MRE- and rheometry-derived shear modulus in agarose gels and nucleus pulposus (NP) tissue and (2) correlate MRE and rheological measures of NP tissue with composition and quantitative MRI. Method MRE and MRI assessment (i.e., T1ρ and T2 mapping) of agarose samples (2%, 3%, and 4% (w/v); n = 3-4/%) and of bovine caudal IVDs after equilibrium dialysis in 5% or 25% PEG (n = 13/PEG%) was conducted. Subsequently, agarose and NP tissue underwent torsional mechanical testing consisting of a frequency sweep from 1 to 100 Hz at a rotational strain of 0.05%. NP tissue was additionally evaluated under creep and stress relaxation conditions. Linear mixed-effects models and univariate regression analyses evaluated the effects of testing method, %agarose or %PEG, and frequency, as well as correlations between parameters. Results MRE- and rheometry-derived shear moduli were greater at 100 Hz than at 80 Hz in all agarose and NP tissue samples. Additionally, all samples with lower water content had higher complex shear moduli. There was a significant correlation between MRE- and rheometry-derived modulus values for homogenous agarose samples. T1ρ and T2 relaxation times for agarose and tissue were negatively correlated with complex shear modulus derived from both techniques. For NP tissue, shear modulus was positively correlated with GAG/wet-weight and negatively correlated with %water content. Conclusion This work demonstrates that MRE can assess hydration-induced changes in IVD shear properties and further highlights the structure-function relationship between composition and shear mechanical behaviors of NP tissue.
Collapse
Affiliation(s)
- Megan Co
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Brian Raterman
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Brett Klamer
- Department of Biomedical Informatics, Center for BiostatisticsThe Ohio State UniversityColumbusOhioUSA
| | - Arunark Kolipaka
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Benjamin Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopaedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
7
|
Lee YJ, Aghayev A, Azene EM, Bhatti S, Ewell JC, Hedgire SS, Kendi AT, Kim ESH, Kirsch DS, Nagpal P, Pillai AK, Ripley B, Tannenbaum A, Thiessen MEW, Thomas R, Woolsey S, Steigner ML. ACR Appropriateness Criteria® Screening for Abdominal Aortic Aneurysm. J Am Coll Radiol 2024; 21:S286-S291. [PMID: 38823950 DOI: 10.1016/j.jacr.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 06/03/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a significant vascular disease found in 4% to 8% of the screening population. If ruptured, its mortality rate is between 75% and 90%, and it accounts for up to 5% of sudden deaths in the United States. Therefore, screening of AAA while asymptomatic has been a crucial portion of preventive health care worldwide. Ultrasound of the abdominal aorta is the primary imaging modality for screening of AAA recommended for asymptomatic adults regardless of their family history or smoking history. Alternatively, duplex ultrasound and CT abdomen and pelvis without contrast may be appropriate for screening. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Yoo Jin Lee
- University of California, San Francisco, San Francisco, California.
| | - Ayaz Aghayev
- Panel Chair, Brigham & Women's Hospital, Boston, Massachusetts
| | | | - Salman Bhatti
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Society for Cardiovascular Magnetic Resonance
| | - Joshua C Ewell
- Rutgers, New Jersey Medical School, Newark, New Jersey; Committee on Emergency Radiology-GSER
| | - Sandeep S Hedgire
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A Tuba Kendi
- Mayo Clinic, Rochester, Minnesota; Commission on Nuclear Medicine and Molecular Imaging
| | - Esther S H Kim
- Atrium Health, Sanger Heart and Vascular Institute, Charlotte, North Carolina; American Society of Echocardiography
| | | | - Prashant Nagpal
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Anil K Pillai
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Beth Ripley
- VA Puget Sound Health Care System and University of Washington, Seattle, Washington
| | | | - Molly E W Thiessen
- Denver Health Medical Center, Denver, Colorado and University of Colorado School of Medicine, Aurora, Colorado; American College of Emergency Physicians
| | - Richard Thomas
- Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Sarah Woolsey
- Association for Utah Community Health, Salt Lake City, Utah; American Academy of Family Physicians
| | | |
Collapse
|
8
|
Lindenberger M, Ziegler M, Bjarnegård N, Ebbers T, Dyverfeldt P. Regional and Global Aortic Pulse Wave Velocity in Patients with Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 2024; 67:506-513. [PMID: 37777048 DOI: 10.1016/j.ejvs.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is commonly defined as localised aortic dilatation with a diameter > 30 mm. The pathophysiology of AAA includes chronic inflammation and enzymatic degradation of elastin, possibly increasing aortic wall stiffness and pulse wave velocity (PWV). Whether aortic stiffness is more prominent in the abdominal aorta at the aneurysm site is not elucidated. The aim of this study was to evaluate global and regional aortic PWV in patients with AAA. METHODS Experimental study of local PWV in the thoracic descending and abdominal aorta in patients with AAA and matched controls. The study cohort comprised 25 patients with an AAA > 30 mm (range 36 - 70 mm, all male, age range 65 - 76 years) and 27 age and sex matched controls free of AAA. PWV was measured with applanation tonometry (carotid-femoral PWV, cfPWV) as well as a 4D flow MRI technique, assessing regional aortic PWV. Blood pressure and anthropometrics were measured. RESULTS Global aortic PWV was greater in men with an AAA than controls, both by MRI (AAA 8.9 ± 2.4 m/s vs. controls 7.1 ± 1.5 m/s; p = .007) and cfPWV (AAA 11.0 ± 2.1 m/s vs. controls 9.3 ± 2.3 m/s; p = .007). Regionally, PWV was greater in the abdominal aorta in the AAA group (AAA 7.0 ± 1.8 m/s vs. controls 5.8 ± 1.0 m/s; p = .022), but similar in the thoracic descending aorta (AAA 8.7 ± 3.2 m/s vs. controls 8.2 ± 2.4 m/s; p = .59). Furthermore, PWV was positively associated with indices of central adiposity both in men with AAA and controls. CONCLUSION PWV is higher in men with AAA compared with matched controls in the abdominal but not the thoracic descending aorta. Furthermore, aortic stiffness was linked with central fat deposition. It remains to be seen whether there is a causal link between AAA and increased regional aortic stiffness.
Collapse
Affiliation(s)
- Marcus Lindenberger
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Magnus Ziegler
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| | - Niclas Bjarnegård
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Centre for Medical Image Science and Visualisation (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Castelein J, Pamplona C, Armstrong Junior R, Vidal dos Santos M, Sack I, Dierckx R, Moers C, Borra R. Effects of kidney perfusion on renal stiffness and tissue fluidity measured with tomoelastography in an MRI-compatible ex vivo model. Front Bioeng Biotechnol 2023; 11:1236949. [PMID: 38026891 PMCID: PMC10665518 DOI: 10.3389/fbioe.2023.1236949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Stiffness plays a vital role in diagnosing renal fibrosis. However, perfusion influences renal stiffness in various chronic kidney diseases. Therefore, we aimed to characterize the effect of tissue perfusion on renal stiffness and tissue fluidity measured by tomoelastography based on multifrequency magnetic resonance elastography in an ex vivo model. Five porcine kidneys were perfused ex vivo in an MRI-compatible normothermic machine perfusion setup with adjusted blood pressure in the 50/10-160/120 mmHg range. Simultaneously, renal cortical and medullary stiffness and fluidity were obtained by tomoelastography. For the cortex, a statistically significant (p < 0.001) strong positive correlation was observed between both perfusion parameters (blood pressure and resulting flow) and stiffness (r = 0.95, 0.91), as well as fluidity (r = 0.96, 0.92). For the medulla, such significant (p < 0.001) correlations were solely observed between the perfusion parameters and stiffness (r = 0.88, 0.71). Our findings demonstrate a strong perfusion dependency of renal stiffness and fluidity in an ex vivo setup. Moreover, changes in perfusion are rapidly followed by changes in renal mechanical properties-highlighting the sensitivity of tomoelastography to fluid pressure and the potential need for correcting mechanics-derived imaging biomarkers when addressing solid structures in renal tissue.
Collapse
Affiliation(s)
- Johannes Castelein
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
- Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolina Pamplona
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | | | | | - Ingolf Sack
- Department of Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Rudi Dierckx
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Cyril Moers
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Ronald Borra
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Maas EJ, Nievergeld AHM, Fonken JHC, Thirugnanasambandam M, van Sambeek MRHM, Lopata RGP. 3D-Ultrasound Based Mechanical and Geometrical Analysis of Abdominal Aortic Aneurysms and Relationship to Growth. Ann Biomed Eng 2023; 51:2554-2565. [PMID: 37410199 PMCID: PMC10598132 DOI: 10.1007/s10439-023-03301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
The heterogeneity of progression of abdominal aortic aneurysms (AAAs) is not well understood. This study investigates which geometrical and mechanical factors, determined using time-resolved 3D ultrasound (3D + t US), correlate with increased growth of the aneurysm. The AAA diameter, volume, wall curvature, distensibility, and compliance in the maximal diameter region were determined automatically from 3D + t echograms of 167 patients. Due to limitations in the field-of-view and visibility of aortic pulsation, measurements of the volume, compliance of a 60 mm long region and the distensibility were possible for 78, 67, and 122 patients, respectively. Validation of the geometrical parameters with CT showed high similarity, with a median similarity index of 0.92 and root-mean-square error (RMSE) of diameters of 3.5 mm. Investigation of Spearman correlation between parameters showed that the elasticity of the aneurysms decreases slightly with diameter (p = 0.034) and decreases significantly with mean arterial pressure (p < 0.0001). The growth of a AAA is significantly related to its diameter, volume, compliance, and surface curvature (p < 0.002). Investigation of a linear growth model showed that compliance is the best predictor for upcoming AAA growth (RMSE 1.70 mm/year). To conclude, mechanical and geometrical parameters of the maximally dilated region of AAAs can automatically and accurately be determined from 3D + t echograms. With this, a prediction can be made about the upcoming AAA growth. This is a step towards more patient-specific characterization of AAAs, leading to better predictability of the progression of the disease and, eventually, improved clinical decision making about the treatment of AAAs.
Collapse
Affiliation(s)
- Esther Jorien Maas
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Arjet Helena Margaretha Nievergeld
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Judith Helena Cornelia Fonken
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mirunalini Thirugnanasambandam
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc Rodolph Henricus Maria van Sambeek
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | |
Collapse
|
11
|
Aalbregt E, Rijken L, Nederveen A, van Ooij P, Yeung KK, Jongkind V. Quantitative Magnetic Resonance Imaging to Assess Progression and Rupture Risk of Aortic Aneurysms: A Scoping Review. J Endovasc Ther 2023:15266028231204830. [PMID: 37853734 DOI: 10.1177/15266028231204830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
PURPOSE In current practice, the diameter of an aortic aneurysm is utilized to estimate the rupture risk and decide upon timing of elective repair, although it is known to be imprecise and not patient-specific. Quantitative magnetic resonance imaging (MRI) enables the visualization of several biomarkers that provide information about processes within the aneurysm and may therefore facilitate patient-specific risk stratification. We performed a scoping review of the literature on quantitative MRI techniques to assess aortic aneurysm progression and rupture risk, summarized these findings, and identified knowledge gaps. METHODS Literature concerning primary research was of interest and the medical databases PubMed, Scopus, Embase, and Cochrane were systematically searched. This study used the PRISMA protocol extension for scoping reviews. Articles published between January 2010 and February 2023 involving animals and/or humans were included. Data were extracted by 2 authors using a predefined charting method. RESULTS A total of 1641 articles were identified, of which 21 were included in the scoping review. Quantitative MRI-derived biomarkers were categorized into hemodynamic (8 studies), wall (5 studies) and molecular biomarkers (8 studies). Fifteen studies included patients and/or healthy human subjects. Animal models were investigated in the other 6 studies. A cross-sectional study design was the most common, whereas 5 animal studies had a longitudinal component and 2 studies including patients had a prospective design. A promising hemodynamic biomarker is wall shear stress (WSS), which is estimated based on 4D-flow MRI. Molecular biomarkers enable the assessment of inflammatory and wall deterioration processes. The ADAMTS4-specific molecular magnetic resonance (MR) probe showed potential to predict abdominal aortic aneurysm (AAA) formation and rupture in a murine model. Wall biomarkers assessed using dynamic contrast-enhanced (DCE) MRI showed great potential for assessing AAA progression independent of the maximum diameter. CONCLUSION This scoping review provides an overview of quantitative MRI techniques studied and the biomarkers derived from them to assess aortic aneurysm progression and rupture risk. Longitudinal studies are needed to validate the causal relationships between the identified biomarkers and aneurysm growth, rupture, or repair. In the future, quantitative MRI could play an important role in the personalized risk assessment of aortic aneurysm rupture. CLINICAL IMPACT The currently used maximum aneurysm diameter fails to accurately assess the multifactorial pathology of an aortic aneurysm and precisely predicts rupture in a patient-specific manner. Quantitative magnetic resonance imaging (MRI) enables the detection of various quantitative parameters involved in aneurysm progression and subsequent rupture. This scoping review provides an overview of the studied quantitative MRI techniques, the biomarkers derived from them, and recommendations for future research needed for the implementation of these biomarkers. Ultimately, quantitative MRI could facilitate personalized risk assessment for patients with aortic aneurysms, thereby reducing untimely repairs and improving rupture prevention.
Collapse
Affiliation(s)
- Eva Aalbregt
- Department of Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Lotte Rijken
- Department of Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Vincent Jongkind
- Department of Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Zottola ZR, Kong DS, Medhekar AN, Frye LE, Hao SB, Gonring DW, Hirad AA, Stoner MC, Richards MS, Mix DS. Intermediate pressure-normalized principal wall strain values are associated with increased abdominal aortic aneurysmal growth rates. Front Cardiovasc Med 2023; 10:1232844. [PMID: 37719977 PMCID: PMC10501562 DOI: 10.3389/fcvm.2023.1232844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Current abdominal aortic aneurysm (AAA) assessment relies on analysis of AAA diameter and growth rate. However, evidence demonstrates that AAA pathology varies among patients and morphometric analysis alone is insufficient to precisely predict individual rupture risk. Biomechanical parameters, such as pressure-normalized AAA principal wall strain (ε ρ + ¯ /PP, %/mmHg), can provide useful information for AAA assessment. Therefore, this study utilized a previously validated ultrasound elastography (USE) technique to correlate ε ρ + ¯ /PP with the current AAA assessment methods of maximal diameter and growth rate. Methods Our USE algorithm utilizes a finite element mesh, overlaid a 2D cross-sectional view of the user-defined AAA wall, at the location of maximum diameter, to track two-dimensional, frame-to-frame displacements over a full cardiac cycle, using a custom image registration algorithm to produce ε ρ + ¯ /PP. This metric was compared between patients with healthy aortas and AAAs (≥3 cm) and compared between small and large AAAs (≥5 cm). AAAs were then separated into terciles based on ε ρ + ¯ /PP values to further assess differences in our metric across maximal diameter and prospective growth rate. Non-parametric tests of hypotheses were used to assess statistical significance as appropriate. Results USE analysis was conducted on 129 patients, 16 healthy aortas and 113 AAAs, of which 86 were classified as small AAAs and 27 as large. Non-aneurysmal aortas showed higher ε ρ + ¯ /PP compared to AAAs (0.044 ± 0.015 vs. 0.034 ± 0.017%/mmHg, p = 0.01) indicating AAA walls to be stiffer. Small and large AAAs showed no difference in ε ρ + ¯ /PP. When divided into terciles based on ε ρ + ¯ /PP cutoffs of 0.0251 and 0.038%/mmHg, there was no difference in AAA diameter. There was a statistically significant difference in prospective growth rate between the intermediate tercile and the outer two terciles (1.46 ± 2.48 vs. 3.59 ± 3.83 vs. 1.78 ± 1.64 mm/yr, p = 0.014). Discussion There was no correlation between AAA diameter and ε ρ + ¯ /PP, indicating biomechanical markers of AAA pathology are likely independent of diameter. AAAs in the intermediate tercile of ε ρ + ¯ /PP values were found to have nearly double the growth rates than the highest or lowest tercile, indicating an intermediate range of ε ρ + ¯ /PP values for which patients are at risk for increased AAA expansion, likely necessitating more frequent imaging follow-up.
Collapse
Affiliation(s)
- Zachary R. Zottola
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel S. Kong
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Ankit N. Medhekar
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Lauren E. Frye
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Scarlett B. Hao
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Dakota W. Gonring
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Adnan A. Hirad
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C. Stoner
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S. Richards
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
13
|
Kim T, Tjahjadi NS, He X, van Herwaarden JA, Patel HJ, Burris NS, Figueroa CA. Three-Dimensional Characterization of Aortic Root Motion by Vascular Deformation Mapping. J Clin Med 2023; 12:4471. [PMID: 37445507 DOI: 10.3390/jcm12134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
The aorta is in constant motion due to the combination of cyclic loading and unloading with its mechanical coupling to the contractile left ventricle (LV) myocardium. This aortic root motion has been proposed as a marker for aortic disease progression. Aortic root motion extraction techniques have been mostly based on 2D image analysis and have thus lacked a rigorous description of the different components of aortic root motion (e.g., axial versus in-plane). In this study, we utilized a novel technique termed vascular deformation mapping (VDM(D)) to extract 3D aortic root motion from dynamic computed tomography angiography images. Aortic root displacement (axial and in-plane), area ratio and distensibility, axial tilt, aortic rotation, and LV/Ao angles were extracted and compared for four different subject groups: non-aneurysmal, TAA, Marfan, and repair. The repair group showed smaller aortic root displacement, aortic rotation, and distensibility than the other groups. The repair group was also the only group that showed a larger relative in-plane displacement than relative axial displacement. The Marfan group showed the largest heterogeneity in aortic root displacement, distensibility, and age. The non-aneurysmal group showed a negative correlation between age and distensibility, consistent with previous studies. Our results revealed a strong positive correlation between LV/Ao angle and relative axial displacement and a strong negative correlation between LV/Ao angle and relative in-plane displacement. VDM(D)-derived 3D aortic root motion can be used in future studies to define improved boundary conditions for aortic wall stress analysis.
Collapse
Affiliation(s)
- Taeouk Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nic S Tjahjadi
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuehuan He
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - J A van Herwaarden
- Department of Vascular Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas S Burris
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Contrella BN, Khaja MS, Majdalany BS, Kim CY, Kalva SP, Beck AW, Browne WF, Clough RE, Ferencik M, Fleischman F, Gunn AJ, Hickey SM, Kandathil A, Kim KM, Monroe EJ, Ochoa Chaar CI, Scheidt MJ, Smolock AR, Steenburg SD, Waite K, Pinchot JW, Steigner ML. ACR Appropriateness Criteria® Thoracoabdominal Aortic Aneurysm or Dissection: Treatment Planning and Follow-Up. J Am Coll Radiol 2023; 20:S265-S284. [PMID: 37236748 DOI: 10.1016/j.jacr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
As the incidence of thoracoabdominal aortic pathology (aneurysm and dissection) rises and the complexity of endovascular and surgical treatment options increases, imaging follow-up of patients remains crucial. Patients with thoracoabdominal aortic pathology without intervention should be monitored carefully for changes in aortic size or morphology that could portend rupture or other complication. Patients who are post endovascular or open surgical aortic repair should undergo follow-up imaging to evaluate for complications, endoleak, or recurrent pathology. Considering the quality of diagnostic data, CT angiography and MR angiography are the preferred imaging modalities for follow-up of thoracoabdominal aortic pathology for most patients. The extent of thoracoabdominal aortic pathology and its potential complications involve multiple regions of the body requiring imaging of the chest, abdomen, and pelvis in most patients. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | | | - Bill S Majdalany
- Panel Chair, University of Vermont Medical Center, Burlington, Vermont
| | - Charles Y Kim
- Panel Chair, Duke University Medical Center, Durham, North Carolina
| | - Sanjeeva P Kalva
- Panel Vice-Chair, Massachusetts General Hospital, Boston, Massachusetts
| | - Adam W Beck
- University of Alabama at Birmingham Medical Center, Birmingham, Alabama; Society for Vascular Surgery
| | | | - Rachel E Clough
- St Thomas' Hospital, King's College, School of Biomedical Engineering and Imaging Science, London, United Kingdom; Society for Cardiovascular Magnetic Resonance
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Society of Cardiovascular Computed Tomography
| | - Fernando Fleischman
- Keck School of Medicine of USC, Los Angeles, California; American Association for Thoracic Surgery
| | - Andrew J Gunn
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Sean M Hickey
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; American College of Emergency Physicians
| | - Asha Kandathil
- UT Southwestern Medical Center, Dallas, Texas; Commission on Nuclear Medicine and Molecular Imaging
| | - Karen M Kim
- University of Michigan, Ann Arbor, Michigan; The Society of Thoracic Surgeons
| | | | | | | | - Amanda R Smolock
- Froedtert & The Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Scott D Steenburg
- Indiana University School of Medicine and Indiana University Health, Indianapolis, Indiana; Committee on Emergency Radiology-GSER
| | - Kathleen Waite
- Duke University Medical Center, Durham, North Carolina, Primary care physician
| | - Jason W Pinchot
- Specialty Chair, University of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
15
|
Dong H, Raterman B, White RD, Starr J, Vaccaro P, Haurani M, Go M, Eisner M, Brock G, Kolipaka A. MR Elastography of Abdominal Aortic Aneurysms: Relationship to Aneurysm Events. Radiology 2022; 304:721-729. [PMID: 35638926 PMCID: PMC9434816 DOI: 10.1148/radiol.212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 11/11/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) diameter remains the standard clinical parameter to predict growth and rupture. Studies suggest that using solely AAA diameter for risk stratification is insufficient. Purpose To evaluate the use of aortic MR elastography (MRE)-derived AAA stiffness and stiffness ratio at baseline to identify the potential for future aneurysm rupture or need for surgical repair. Materials and Methods Between August 2013 and March 2019, 72 participants with AAA and 56 healthy participants were enrolled in this prospective study. MRE examinations were performed to estimate AAA stiffness and the stiffness ratio between AAA and its adjacent remote normal aorta. Two Cox proportional hazards models were used to assess AAA stiffness and stiffness ratio for predicting aneurysmal events (subsequent repair, rupture, or diameter >5.0 cm). Log-rank tests were performed to determine a critical stiffness ratio suggesting high-risk AAAs. Baseline AAA stiffness and stiffness ratio were studied using Wilcoxon rank-sum tests between participants with and without aneurysmal events. Spearman correlation was used to investigate the relationship between stiffness and other potential imaging markers. Results Seventy-two participants with AAA (mean age, 71 years ± 9 [SD]; 56 men and 16 women) and 56 healthy participants (mean age, 42 years ± 16; 27 men and 29 women) were evaluated. In healthy participants, aortic stiffness positively correlated with age (ρ = 0.44; P < .001). AAA stiffness (event group [n = 21], 50.3 kPa ± 26.5 [SD]; no-event group [n = 21], 86.9 kPa ± 52.6; P = .01) and the stiffness ratio (event group, 0.7 ± 0.4; no-event group, 2.0 ± 1.4; P < .001) were lower in the event group than the no-event group at a mean follow-up of 449 days. AAA stiffness did not correlate with diameter in the event group (ρ = -0.06; P = .68) or the no-event group (ρ = -0.13; P = .32). AAA stiffness was inversely correlated with intraluminal thrombus area (ρ = -0.50; P = .01). Conclusion Lower abdominal aortic aneurysm stiffness and stiffness ratio measured with use of MR elastography was associated with aneurysmal events at a 15-month follow-up. © RSNA, 2022 See also the editorial by Sakuma in this issue.
Collapse
Affiliation(s)
- Huiming Dong
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Brian Raterman
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Richard D. White
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Jean Starr
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Patrick Vaccaro
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Mounir Haurani
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Michael Go
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Mariah Eisner
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Guy Brock
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Arunark Kolipaka
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| |
Collapse
|
16
|
Zottola ZR, Gonring DW, Wang ML, Hirad AA, Richards MS, Stoner MC, Mix DS. Changes in Intra-operative Aortic Strain as Detected by Ultrasound Elastography in Patients Following Abdominal Endovascular Aneurysm Repair. J Vasc Surg Cases Innov Tech 2022; 8:762-769. [DOI: 10.1016/j.jvscit.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022] Open
|
17
|
Holewijn S, Vermeulen JJM, van Helvert M, van de Velde L, Reijnen MMPJ. Validation of Central Pressure Estimation in Patients with an Aortic Aneurysm Before and After Endovascular Repair. Cardiovasc Eng Technol 2022; 13:265-278. [DOI: https:/doi.org/10.1007/s13239-021-00574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/10/2021] [Indexed: 11/30/2023]
|
18
|
Hossack M, Fisher R, Torella F, Madine J, Field M, Akhtar R. Micromechanical and Ultrastructural Properties of Abdominal Aortic Aneurysms. Artery Res 2022. [DOI: 10.1007/s44200-022-00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AbstractAbdominal aortic aneurysms are a common condition of uncertain pathogenesis that can rupture if left untreated. Current recommended thresholds for planned repair are empirical and based entirely on diameter. It has been observed that some aneurysms rupture before reaching the threshold for repair whilst other larger aneurysms do not rupture. It is likely that geometry is not the only factor influencing rupture risk. Biomechanical indices aiming to improve and personalise rupture risk prediction require, amongst other things, knowledge of the material properties of the tissue and realistic constitutive models. These depend on the composition and organisation of the vessel wall which has been shown to undergo drastic changes with aneurysmal degeneration, with loss of elastin, smooth muscle cells, and an accumulation of isotropically arranged collagen. Most aneurysms are lined with intraluminal thrombus, which has an uncertain effect on the underlying vessel wall, with some authors demonstrating a reduction in wall stress and others a reduction in wall strength. The majority of studies investigating biomechanical properties of ex vivo abdominal aortic aneurysm tissues have used low-resolution techniques, such as tensile testing, able to measure the global material properties at the macroscale. High-resolution engineering techniques such as nanoindentation and atomic force microscopy have been modified for use in soft biological tissues and applied to vascular tissues with promising results. These techniques have the potential to advance the understanding and improve the management of abdominal aortic aneurysmal disease.
Collapse
|
19
|
Mangarova DB, Bertalan G, Jordan J, Brangsch J, Kader A, Möckel J, Adams LC, Sack I, Taupitz M, Hamm B, Braun J, Makowski MR. Microscopic multifrequency magnetic resonance elastography of ex vivo abdominal aortic aneurysms for extracellular matrix imaging in a mouse model. Acta Biomater 2022; 140:389-397. [PMID: 34818577 DOI: 10.1016/j.actbio.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
An abdominal aortic aneurysm (AAA) is a permanent dilatation of the abdominal aorta, usually accompanied by thrombus formation. The current clinical imaging modalities cannot reliably visualize the thrombus composition. Remodeling of the extracellular matrix (ECM) during AAA development leads to stiffness changes, providing a potential imaging marker. 14 apolipoprotein E-deficient mice underwent surgery for angiotensin II-loaded osmotic minipump implantation. 4 weeks post-op, 5 animals developed an AAA. The aneurysm was imaged ex vivo by microscopic multifrequency magnetic resonance elastography (µMMRE) with an in-plane resolution of 40 microns. Experiments were performed on a 7-Tesla preclinical magnetic resonance imaging scanner with drive frequencies between 1000 Hz and 1400 Hz. Shear wave speed (SWS) maps indicating stiffness were computed based on tomoelastography multifrequency inversion. As control, the aortas of 5 C57BL/6J mice were examined with the same imaging protocol. The regional variation of SWS in the thrombus ranging from 0.44 ± 0.07 to 1.20 ± 0.31 m/s was correlated fairly strong with regional histology-quantified ECM accumulation (R2 = 0.79). Our results suggest that stiffness changes in aneurysmal thrombus reflect ECM remodeling, which is critical for AAA risk assessment. In the future, µMMRE could be used for a mechanics-based clinical characterization of AAAs in patients. STATEMENT OF SIGNIFICANCE: To our knowledge, this is the first study mapping the stiffness of abdominal aortic aneurysms with microscopic resolution of 40 µm. Our work revealed that stiffness critically changes due to extracellular matrix (ECM) remodeling in the aneurysmal thrombus. We were able to image various levels of ECM remodeling in the aneurysm reflected in distinct shear wave speed patterns with a strong correlation to regional histology-quantified ECM accumulation. The generated results are significant for the application of microscopic multifrequency magnetic resonance elastography for quantification of pathological remodeling of the ECM and may be of great interest for detailed characterization of AAAs in patients.
Collapse
Affiliation(s)
- Dilyana B Mangarova
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, Berlin 4163, Germany.
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Avan Kader
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin 14195, Germany.
| | - Jana Möckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Lisa C Adams
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Institute for Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, Berlin 12200, Germany.
| | - Marcus R Makowski
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany.
| |
Collapse
|
20
|
Holewijn S, Vermeulen JJM, van Helvert M, van de Velde L, Reijnen MMPJ. Validation of Central Pressure Estimation in Patients with an Aortic Aneurysm Before and After Endovascular Repair. Cardiovasc Eng Technol 2021; 13:265-278. [PMID: 34585343 DOI: 10.1007/s13239-021-00574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study was to investigate if non-invasive central pressure estimations are accurate in patients with an abdominal aortic aneurysm, before and after endovascular repair. Secondary evaluation was if measurement-accuracy was dependent on anatomical characteristics. METHODS Procedural invasive and non-invasive pressure-measurements were performed simultaneously both before and after endovascular repair in 20 patients with an infrarenal abdominal aortic aneurysm. Invasive catheter measurements were performed in the abdominal aorta. A tonometric device was used to perform non-invasive pressure-wave-analysis at the radial artery. A generalized transfer-function was used to generate an ascending aortic waveform for both measurements, allowing for direct comparison. RESULTS Pre-treatment the mean differences between methods were - 5.5 mmHg (p = .904), - 11.8 (p < .001), and - 7.2 mmHg (p = .124) for central systolic, diastolic, and mean pressure, respectively. The accuracy was dependent of aneurysm sac volume and intraluminal thrombus volume. Post-treatment limits of agreement were smaller for all pressure parameters compared to pre-treatment. The mean differences were 6.5 mmHg (p = .007), - 6.4 (p < .020), and 1.6 mmHg (p = .370) for central systolic, diastolic, and mean pressure, respectively. CONCLUSION In untreated AAA's the accuracy of non-invasive central pressure estimation was acceptable (mean difference between 5 and 10 mmHg) when compared to invasive pressures, but dependent of AAA characteristics. After EVAR the accuracy of central pressure estimation improved (reduction of 75% of the mean difference between pre and post measurements) TRIAL REGISTRATION NUMBER: NCT03469388; 3-5-2018.
Collapse
Affiliation(s)
- S Holewijn
- Vascular Center, Department of Surgery, Rijnstate, P.O. Box 9555, 6800 TA, Arnhem, The Netherlands.
| | - J J M Vermeulen
- Vascular Center, Department of Surgery, Rijnstate, P.O. Box 9555, 6800 TA, Arnhem, The Netherlands.,Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M van Helvert
- Vascular Center, Department of Surgery, Rijnstate, P.O. Box 9555, 6800 TA, Arnhem, The Netherlands.,MultiModality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - L van de Velde
- Vascular Center, Department of Surgery, Rijnstate, P.O. Box 9555, 6800 TA, Arnhem, The Netherlands.,MultiModality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - M M P J Reijnen
- Vascular Center, Department of Surgery, Rijnstate, P.O. Box 9555, 6800 TA, Arnhem, The Netherlands.,MultiModality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
21
|
Sarafidis P, Martens S, Saratzis A, Kadian-Dodov D, Murray PT, Shanahan CM, Hamdan AD, Engelman DT, Teichgräber U, Herzog CA, Cheung M, Jadoul M, Winkelmayer WC, Reinecke H, Johansen K. Diseases of the Aorta and Kidney Disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Cardiovasc Res 2021; 118:2582-2595. [PMID: 34469520 PMCID: PMC9491875 DOI: 10.1093/cvr/cvab287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is an independent risk factor for the development of abdominal aortic aneurysm (AAA), as well as for cardiovascular and renal events and all-cause mortality following surgery for AAA or thoracic aortic dissection. In addition, the incidence of acute kidney injury (AKI) after any aortic surgery is particularly high, and this AKI per se is independently associated with future cardiovascular events and mortality. On the other hand, both development of AKI after surgery and the long-term evolution of kidney function differ significantly depending on the type of AAA intervention (open surgery vs. the various subtypes of endovascular repair). Current knowledge regarding AAA in the general population may not be always applicable to CKD patients, as they have a high prevalence of co-morbid conditions and an elevated risk for periprocedural complications. This summary of a Kidney Disease: Improving Global Outcomes Controversies Conference group discussion reviews the epidemiology, pathophysiology, diagnosis, and treatment of Diseases of the Aorta in CKD and identifies knowledge gaps, areas of controversy, and priorities for future research.
Collapse
Affiliation(s)
- Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sven Martens
- Department of Cardiothoracic Surgery - Division of Cardiac Surgery, Münster, University Hospital, Universitätsklinikum, Münster, Germany
| | - Athanasios Saratzis
- Department of Vascular Surgery, Leicester University Hospital and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick T Murray
- Department of Nephrology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Allen D Hamdan
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel T Engelman
- Heart, Vascular & Critical Care Services Baystate Medical Center, and University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Ulf Teichgräber
- Department of Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Charles A Herzog
- Division of Cardiology, Department of Medicine, Hennepin County Medical Center and University of Minnesota, Minneapolis, MN, USA.,Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | | | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Holger Reinecke
- Department of Cardiology I: Coronary and peripheral vessel disease, heart failure; Münster University Hospital, Universitätsklinikum, Münster, Germany
| | - Kirsten Johansen
- Division of Nephrology, Hennepin County Medical Center and University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
22
|
Dong H, Ahmad R, Miller R, Kolipaka A. MR elastography inversion by compressive recovery. Phys Med Biol 2021; 66. [PMID: 34261056 DOI: 10.1088/1361-6560/ac145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022]
Abstract
Direct inversion (DI) derives tissue shear modulus by inverting the Helmholtz equation. However, conventional DI is sensitive to data quality due to the ill-posed nature of Helmholtz inversion and thus providing reliable stiffness estimation can be challenging. This becomes more problematic in the case of estimating shear stiffness of the lung in which the low tissue density and short T2* result in considerably low signal-to-noise ratio during lung MRE. In the present study, we propose to perform MRE inversion by compressive recovery (MICRo). Such a technique aims to improve the numerical stability and the robustness to data noise of Helmholtz inversion by using prior knowledge on data noise and transform sparsity of the stiffness map. The developed inversion strategy was first validated in simulated phantoms with known stiffness. Next, MICRo was compared to the standard clinical multi-modal DI (MMDI) method forin vivoliver MRE in healthy subjects and patients with different stages of liver fibrosis. After establishing the accuracy of MICRo, we demonstrated the robustness of the proposed technique against data noise in lung MRE with healthy subjects. In simulated phantoms with single-directional or multi-directional waves, MICRo outperformed DI with Romano filter or Savitsky and Golay filter, especially when the stiffness and/or noise level was high. In hepatic MRE application, agreement was observed between MICRo and MMDI. Measuringin vivolung stiffness, MICRo demonstrated its advantages over filtered DI by yielding stable stiffness estimation at both residual volume and total lung capacity. These preliminary results demonstrate the potential value of the proposed technique and also warrant further investigation in a larger clinical population.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United states of America.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United states of America
| | - Rizwan Ahmad
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United states of America
| | - Renee Miller
- Department of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United states of America.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United states of America.,Internal Medicine-Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United states of America
| |
Collapse
|
23
|
Machine Learning-Based Pulse Wave Analysis for Early Detection of Abdominal Aortic Aneurysms Using In Silico Pulse Waves. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is usually asymptomatic until rupture, which is associated with extremely high mortality. Consequently, the early detection of AAAs is of paramount importance in reducing mortality; however, most AAAs are detected by medical imaging only incidentally. The aim of this study was to investigate the feasibility of machine learning-based pulse wave (PW) analysis for the early detection of AAAs using a database of in silico PWs. PWs in the large systemic arteries were simulated using one-dimensional blood flow modelling. A database of in silico PWs representative of subjects (aged 55, 65 and 75 years) with different AAA sizes was created by varying the AAA-related parameters with major impacts on PWs—identified by parameter sensitivity analysis—in an existing database of in silico PWs representative of subjects without AAAs. Then, a machine learning architecture for AAA detection was trained and tested using the new in silico PW database. The parameter sensitivity analysis revealed that the AAA maximum diameter and stiffness of the large systemic arteries were the dominant AAA-related biophysical properties considerably influencing the PWs. However, AAA detection by PW indexes was compromised by other non-AAA related cardiovascular parameters. The proposed machine learning model produced a sensitivity of 86.8 % and a specificity of 86.3 % in early detection of AAA from the photoplethysmogram PW signal measured in the digital artery with added random noise. The number of false positive and negative results increased with increasing age and decreasing AAA size, respectively. These findings suggest that machine learning-based PW analysis is a promising approach for AAA screening using PW signals acquired by wearable devices.
Collapse
|
24
|
In Vivo Aortic Magnetic Resonance Elastography in Abdominal Aortic Aneurysm: A Validation in an Animal Model. Invest Radiol 2021; 55:463-472. [PMID: 32520516 DOI: 10.1097/rli.0000000000000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Using maximum diameter of an abdominal aortic aneurysm (AAA) alone for management can lead to delayed interventions or unnecessary urgent repairs. Abdominal aortic aneurysm stiffness plays an important role in its expansion and rupture. In vivo aortic magnetic resonance elastography (MRE) was developed to spatially measure AAA stiffness in previous pilot studies and has not been thoroughly validated and evaluated for its potential clinical value. This study aims to evaluate noninvasive in vivo aortic MRE-derived stiffness in an AAA porcine model and investigate the relationships between MRE-derived AAA stiffness and (1) histopathology, (2) uniaxial tensile test, and (3) burst testing for assessing MRE's potential in evaluating AAA rupture risk. MATERIALS AND METHODS Abdominal aortic aneurysm was induced in 31 Yorkshire pigs (n = 226 stiffness measurements). Animals were randomly divided into 3 cohorts: 2-week, 4-week, and 4-week-burst. Aortic MRE was sequentially performed. Histopathologic analyses were performed to quantify elastin, collagen, and mineral densities. Uniaxial tensile test and burst testing were conducted to measure peak stress and burst pressure for assessing the ultimate wall strength. RESULTS Magnetic resonance elastography-derived AAA stiffness was significantly higher than the normal aorta. Significant reduction in elastin and collagen densities as well as increased mineralization was observed in AAAs. Uniaxial tensile test and burst testing revealed reduced ultimate wall strength. Magnetic resonance elastography-derived aortic stiffness correlated to elastin density (ρ = -0.68; P < 0.0001; n = 60) and mineralization (ρ = 0.59; P < 0.0001; n = 60). Inverse correlations were observed between aortic stiffness and peak stress (ρ = -0.32; P = 0.0495; n = 38) as well as burst pressure (ρ = -0.55; P = 0.0116; n = 20). CONCLUSIONS Noninvasive in vivo aortic MRE successfully detected aortic wall stiffening, confirming the extracellular matrix remodeling observed in the histopathologic analyses. These mural changes diminished wall strength. Inverse correlation between MRE-derived aortic stiffness and aortic wall strength suggests that MRE-derived stiffness can be a potential biomarker for clinically assessing AAA wall status and rupture potential.
Collapse
|
25
|
Dong H, Jin N, Kannengiesser S, Raterman B, White RD, Kolipaka A. Magnetic resonance elastography for estimating in vivo stiffness of the abdominal aorta using cardiac-gated spin-echo echo-planar imaging: a feasibility study. NMR IN BIOMEDICINE 2021; 34:e4420. [PMID: 33021342 DOI: 10.1002/nbm.4420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Magnetic resonance elastography (MRE)-derived aortic stiffness is a potential biomarker for multiple cardiovascular diseases. Currently, gradient-recalled echo (GRE) MRE is a widely accepted technique to estimate aortic stiffness. However, multi-slice GRE MRE requires multiple breath-holds (BHs), which can be challenging for patients who cannot consistently hold their breath. The aim of this study was to investigate the feasibility of a multi-slice spin-echo echo-planar imaging (SE-EPI) MRE sequence for quantifying in vivo aortic stiffness using a free-breathing (FB) protocol and a single-BH protocol. METHOD On Scanner 1, 25 healthy subjects participated in the validation of FB SE-EPI against FB GRE. On Scanner 2, another 15 healthy subjects were recruited to compare FB SE-EPI with single-BH SE-EPI. Among all volunteers, five participants were studied on both scanners to investigate the inter-scanner reproducibility of FB SE-EPI aortic MRE. Bland-Altman analysis, Lin's concordance correlation coefficient (LCCC) and coefficient of variation (COV) were evaluated. The phase-difference signal-to-noise ratios (PD SNR) were compared. RESULTS Aortic MRE using FB SE-EPI and FB GRE yielded similar stiffnesses (paired t-test, P = 0.19), with LCCC = 0.97. The FB SE-EPI measurements were reproducible (intra-scanner LCCC = 0.96) and highly repeatable (LCCC = 0.99). The FB SE-EPI MRE was also reproducible across different scanners (inter-scanner LCCC = 0.96). Single-BH SE-EPI scans yielded similar stiffness to FB SE-EPI scans (LCCC = 0.99) and demonstrated a low COV of 2.67% across five repeated measurements. CONCLUSION Multi-slice SE-EPI aortic MRE using an FB protocol or a single-BH protocol is reproducible and repeatable with advantage over multi-slice FB GRE in reducing acquisition time. Additionally, FB SE-EPI MRE provides a potential alternative to BH scans for patients who have challenges in holding their breath.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ning Jin
- Siemens Medical Solution, Columbus, Ohio, USA
| | | | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
26
|
MR Elastography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Chakshu NK, Sazonov I, Nithiarasu P. Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis. Biomech Model Mechanobiol 2020; 20:449-465. [PMID: 33064221 PMCID: PMC7979679 DOI: 10.1007/s10237-020-01393-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
An exponential rise in patient data provides an excellent opportunity to improve the existing health care infrastructure. In the present work, a method to enable cardiovascular digital twin is proposed using inverse analysis. Conventionally, accurate analytical solutions for inverse analysis in linear problems have been proposed and used. However, these methods fail or are not efficient for nonlinear systems, such as blood flow in the cardiovascular system (systemic circulation) that involves high degree of nonlinearity. To address this, a methodology for inverse analysis using recurrent neural network for the cardiovascular system is proposed in this work, using a virtual patient database. Blood pressure waveforms in various vessels of the body are inversely calculated with the help of long short-term memory (LSTM) cells by inputting pressure waveforms from three non-invasively accessible blood vessels (carotid, femoral and brachial arteries). The inverse analysis system built this way is applied to the detection of abdominal aortic aneurysm (AAA) and its severity using neural networks.
Collapse
Affiliation(s)
- Neeraj Kavan Chakshu
- Biomedical Engineering Group, Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Igor Sazonov
- Biomedical Engineering Group, Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Perumal Nithiarasu
- Biomedical Engineering Group, Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
28
|
Assessment of Upper Extremity Venous Compliance in Patients With Abdominal Aortic Aneurysms. Eur J Vasc Endovasc Surg 2020; 60:739-746. [PMID: 32778487 DOI: 10.1016/j.ejvs.2020.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is associated with morphological and functional changes in both aneurysmal and non-aneurysmal arteries. However, it remains uncertain whether similar changes also exist in the venous vasculature. The aim of this study was to evaluate global venous function in patients with AAA and controls. METHODS This experimental study comprised 31 men with AAA (mean ± standard deviation age 70.0 ± 2.8 years) and 29 male controls (aged 70.6 ± 3.4 years). Venous occlusion plethysmography (VOP) was used to evaluate arm venous compliance at venous pressures between 10 and 60 mmHg in steps of 5 mmHg. Compensatory mobilisation of venous capacitance blood (capacitance response) was measured with a volumetric technique during experimental hypovolaemia induced by lower body negative pressure (LBNP). RESULTS The VOP induced pressure-volume curve was significantly less steep in patients with AAA (interaction, p < .001), indicating lower venous compliance. Accordingly, the corresponding pressure-compliance curves displayed reduced venous compliance at lower venous pressures in patients with AAA vs. controls (interaction, p < .001; AAA vs. control, p = .018). After adjusting for arterial hypertension, diabetes mellitus, hyperlipidaemia, chronic obstructive pulmonary disease, and smoking, VOP detected differences in venous compliance remained significant at low venous pressures, that is, at 10 mmHg (p = .008), 15 mmHg (p = .013), and 20 mmHg (p = .026). Mean venous compliance was negatively correlated with aortic diameter (r = -.332, p = .010). Mobilisation of venous capacitance response during LBNP was reduced by approximately 25% in patients with AAA (p = .030), and the redistribution of venous blood during LBNP was negatively correlated with aortic diameter (r = -.417, p = .007). CONCLUSION Men with AAA demonstrated reduced venous compliance and, as a result, a lesser capacity to mobilise peripheral venous blood to the central circulation during hypovolaemic stress. These findings imply that the AAA disease may be accompanied by functional changes in the venous vascular wall.
Collapse
|
29
|
Abstract
Objective Receptor interacting proteins kinase 1 and 3 (RIPK1 and RIPK3) have been shown to play essential roles in the pathogenesis of abdominal aortic aneurysms (AAAs) by mediating necroptosis and inflammation. We previously discovered a small molecular inhibitor GSK2593074A (GSK’074) that binds to both RIPK1 and RIPK3 with high affinity and prevents AAA formation in mice. In this study, we evaluated whether GSK’074 can attenuate progression of existing AAA in the calcium phosphate model. Methods C57BL6/J mice were subjected to the calcium phosphate model of aortic aneurysm generation. Mice were treated with either GSK’074 (4.65 mg/kg/day) or dimethylsulfoxide (DMSO) controls starting 7 days after aneurysm induction. Aneurysm growth was monitored via ultrasound imaging every 7 days until harvest on day 28. Harvested aortas were examined via immunohistochemistry. The impact of GSK’074 on vascular smooth muscle cells and macrophages were evaluated via flow cytometry and transwell migration assay. Results At the onset of treatment, mice in both the control (DMSO) and GSK’074 groups showed similar degree of aneurysmal expansion. The weekly ultrasound imaging showed a steady aneurysm growth in DMSO-treated mice. The aneurysm growth was attenuated by GSK’074 treatment. At humane killing, GSK’074-treated mice had significantly reduced progression in aortic diameter from baseline as compared with the DMSO-treated mice (83.2% ± 13.1% [standard error of the mean] vs 157.2% ± 32.0% [standard error of the mean]; P < .01). In addition, the GSK’074-treated group demonstrated reduced macrophages (F4/80, CD206, MHCII), less gelatinase activity, a higher level of smooth muscle cell-specific myosin heavy chain, and better organized elastin fibers within the aortic walls compared with DMSO controls. In vitro, GSK’074 inhibited necroptosis in mouse aortic smooth muscle cells; whereas, it was able to prevent macrophage migration without affecting Il1b and Tnf expression. Conclusions GSK’074 is able to attenuate aneurysm progression in the calcium phosphate model. The ability to inhibit both vascular smooth muscle cell necroptosis and macrophage migration makes GSK’074 an attractive drug candidate for pharmaceutical treatment of aortic aneurysms. Previous clinical trials evaluating pharmaceutical treatments in blocking aneurysm progression have failed. However, most agents used in those trials focused on inhibiting only one mechanism that contributes to aneurysm pathogenesis. In this study, we found GSK’074 is able to attenuate aneurysm progression in the calcium phosphate model by inhibiting both vascular smooth muscle cell necroptosis and macrophage migration, which are both key processes in the pathogenesis of aneurysm progression. The ability of GSK’0474 to inhibit multiple key pathologic mechanisms makes it an attractive therapeutic candidate for aneurysm progression.
Collapse
|
30
|
López-Linares K, García I, García A, Cortes C, Piella G, Macía I, Noailly J, González Ballester MA. Image-Based 3D Characterization of Abdominal Aortic Aneurysm Deformation After Endovascular Aneurysm Repair. Front Bioeng Biotechnol 2019; 7:267. [PMID: 31737613 PMCID: PMC6838223 DOI: 10.3389/fbioe.2019.00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a focal dilation of the abdominal aorta, that if not treated, tends to grow and may rupture. The most common treatment for AAAs is the endovascular aneurysm repair (EVAR), which requires that patients undergo Computed Tomography Angiography (CTA)-based post-operative lifelong surveillance due to the possible appearance of complications. These complications may again lead to AAA dilation and rupture. However, there is a lack of advanced quantitative image-analysis tools to support the clinicians in the follow-up. Currently, the approach is to evaluate AAA diameter changes along time to infer the progress of the patient and the post-operative risk of AAA rupture. An increased AAA diameter is usually associated with a higher rupture risk, but there are some small AAAs that rupture, whereas other larger aneurysms remain stable. This means that the diameter-based rupture risk assessment is not suitable for all the cases, and there is increasing evidence that the biomechanical behavior of the AAA may provide additional valuable information regarding the progression of the disease and the risk of rupture. Hence, we propose a promising methodology for post-operative CTA time-series registration and subsequent aneurysm biomechanical strain analysis. From these strains, quantitative image-based descriptors are extracted using a principal component analysis of the tensile and compressive strain fields. Evaluated on 22 patients, our approach yields a mean area under the curve of 88.6% when correlating the strain-based quantitative descriptors with the long-term patient prognosis. This suggests that the strain information directly extracted from the CTA images is able to capture the biomechanical behavior of the aneurysm without relying on finite element modeling and simulation. Furthermore, the extracted descriptors set the basis for possible future imaging biomarkers that may be used in clinical practice. Apart from the diameter, these biomarkers may be used to assess patient prognosis and to enable informed decision making after an EVAR intervention, especially in difficult uncertain cases.
Collapse
Affiliation(s)
- Karen López-Linares
- Vicomtech Foundation, San Sebastián, Spain.,Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, Spain.,BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Inmaculada García
- Vicomtech Foundation, San Sebastián, Spain.,Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ainhoa García
- Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Donostia University Hospital, San Sebastián, Spain
| | - Camilo Cortes
- Vicomtech Foundation, San Sebastián, Spain.,Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Gemma Piella
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Iván Macía
- Vicomtech Foundation, San Sebastián, Spain.,Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Jérôme Noailly
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel A González Ballester
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
31
|
Meekel JP, Mattei G, Costache VS, Balm R, Blankensteijn JD, Yeung KK. A multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas. Acta Biomater 2019; 96:345-353. [PMID: 31306785 DOI: 10.1016/j.actbio.2019.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysms (AAA) are common and potentially life-threatening aortic dilatations, due to the effect of hemodynamic changes on the aortic wall. Previous research has shown a potential pathophysiological role for increased macroscopic aneurysmal wall stiffness; however, not investigating micromechanical stiffness. We aimed to compile a new protocol to examine micromechanical live aortic stiffness (elastic moduli), correlated to histological findings with quantitative immunofluorescence (QIF). Live AAA biopsies (n = 7) and non-dilated aortas (controls; n = 3) were sectioned. Local elastic moduli of aortic intima, media and adventitia were analysed in the direction towards the lumen and vice versa with nanoindentation. Smooth muscle cells (SMC), collagen and fibroblasts were examined using QIF. Nanoindentation of AAA vs. controls demonstrated a 4-fold decrease in elastic moduli (p = 0.022) for layers combined and a 26-fold decrease (p = 0.017) for media-to-intima direction. QIF of AAA vs. controls revealed a 4-, 3- and 6-fold decrease of SMC, collagen and fibroblasts, respectively (p = 0.036). Correlations were found between bidirectional intima and media measurements (ρ = 0.661, p = 0.038) and all QIF analyses (ρ = 0.857-0.905, p = 0.002-0.007). We present a novel protocol to analyse microscopic elastic moduli in live aortic tissues using nanoindentation. Hence, our preliminary findings of decreased elastic moduli and altered wall composition warrant further microscopic stiffness investigation to potentially clarify AAA pathophysiology and to explore potential treatment by wall strengthening. STATEMENT OF SIGNIFICANCE: Although extensive research on the pathophysiology of dilated abdominal aortas (aneurysms) has been performed, the exact underlying pathways are still largely unclear. Previously, the macroscopic stiffness of the pathologic and healthy aortic wall has been studied. This study however, for the first time, studied the microscopic stiffness changes in live tissue of dilated and non-dilated abdominal aortas. This new protocol provides a device to analyse the alterations on cellular level within their microenvironment, whereas previous studies studied the aorta as a whole. Outcomes of these measurements might help to better understand the underlying origin of the incidence and progression of aneurysms and other aortic diseases.
Collapse
Affiliation(s)
- Jorn P Meekel
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam, The Netherlands; Department of Physiology, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Giorgio Mattei
- Optics11 B.V., Amsterdam, The Netherlands; Biophotonics & Medical Imaging and LaserLaB, VU University Amsterdam, Amsterdam, The Netherlands; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Victor S Costache
- Department of Cardiovascular Surgery, Polisano Medlife Hospital, University "L. Blaga" Sibiu, Sibiu, Romania
| | - Ron Balm
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location Amsterdam Medical Center, Amsterdam, the Netherlands
| | - Jan D Blankensteijn
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak K Yeung
- Department of Vascular Surgery, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam, The Netherlands; Department of Physiology, Amsterdam University Medical Centers, Location VU Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Fakhouri F, Dong H, Kolipaka A. Magnetic resonance elastography of the lungs: A repeatability and reproducibility study. NMR IN BIOMEDICINE 2019; 32:e4102. [PMID: 31087728 DOI: 10.1002/nbm.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 05/17/2023]
Abstract
Lung diseases are one of the leading causes of death worldwide, from which four million people die annually. Lung diseases are associated with changes in the mechanical properties of the lungs. Several studies have shown the feasibility of using magnetic resonance elastography (MRE) to quantify the lungs' shear stiffness. The aim of this study is to investigate the reproducibility and repeatability of lung MRE, and its shear stiffness measurements, obtained using a modified spin echo-echo planar imaging (SE-EPI) MRE sequence. In this study, 21 healthy volunteers were scanned twice by repositioning the volunteers to image right lung both at residual volume (RV) and total lung capacity (TLC) to assess the reproducibility of lung shear stiffness measurements. Additionally, 19 out of the 21 volunteers were scanned immediately without moving the volunteers to test the repeatability of the modified SE-EPI MRE sequence. A paired t-test was performed to determine the significant difference between stiffness measurements obtained at RV and TLC. Concordance correlation and Bland-Altman's analysis were performed to determine the reproducibility and repeatability of the SE-EPI MRE-derived shear stiffness measurements. The SE-EPI MRE sequence is highly repeatable with a concordance correlation coefficient (CCC) of 0.95 at RV and 0.96 at TLC. Similarly, the stiffness measurements obtained across all volunteers were highly reproducible with a CCC of 0.95 at RV and 0.92 at TLC. The mean shear stiffness of the lung at RV was 0.93 ± 0.22 kPa and at TLC was 1.41 ± 0.41 kPa. TLC showed a significantly higher mean shear stiffness (P = 0.0004) compared with RV. Lung MRE stiffness measurements obtained using the SE-EPI sequence were reproducible and repeatable, both at RV and TLC. Lung shear stiffness changes across respiratory cycle with significantly higher stiffness at TLC than RV.
Collapse
Affiliation(s)
- Faisal Fakhouri
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Huiming Dong
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
33
|
Attarian S, Xiao S, Chung T, da Silva ES, Raghavan ML. Investigation of the observed rupture lines in abdominal aortic aneurysms using crack propagation simulations. J Biomech Eng 2019; 141:2735557. [PMID: 31150536 DOI: 10.1115/1.4043940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To use crack propagation simulation to study the rupture site characteristics in ruptured abdominal aortic aneurysms (AAA). METHODS Rupture lines were precisely documented in four ruptured AAA harvested whole from cadavers. Wall thickness and material parameters were experimentally determined. Using subject-specific 3D geometry and subject-specific finite elastic model parameters, crack propagation simulations were conducted based on basic fracture mechanics principles to investigate if and how localized weak spots may have led to the observed rupture lines. RESULTS AND CONCLUSION When an initial crack was imposed at the site of peak wall stress, the propagated path did not match the observed rupture line. This indicates that in this study population, the peak wall stress was unlikely to have caused the observed rupture. When cracks were initiated at random locations in the AAA along random orientations for random initial lengths, the orientation of the resulting propagated rupture line was consistently longitudinal. This suggests that the AAA morphology predisposes the AAA to rupture longitudinally, which is consistent with observations. It was found that, in this study population, rupture may have initiated at short segments of less than about 1 cm that then propagated to form the observed rupture lines. This suggests that ex vivo experimental and in vivo elastography studies should seek a spatial resolution (approx. 1 cm) to reliably identify weak spots in AAA. The small study population and lack of a reliable failure model for AAA tissue make these findings preliminary.
Collapse
Affiliation(s)
- Siamak Attarian
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - Shaoping Xiao
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Timothy Chung
- Department of Surgery, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | | | - Madhavan L Raghavan
- Professor, Biomedical Engineering, University of Iowa, Iowa City, IA, USA 52242
| |
Collapse
|
34
|
Tomoelastography Paired With T2* Magnetic Resonance Imaging Detects Lupus Nephritis With Normal Renal Function. Invest Radiol 2019; 54:89-97. [DOI: 10.1097/rli.0000000000000511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Khan S, Fakhouri F, Majeed W, Kolipaka A. Cardiovascular magnetic resonance elastography: A review. NMR IN BIOMEDICINE 2018; 31:e3853. [PMID: 29193358 PMCID: PMC5975119 DOI: 10.1002/nbm.3853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 05/19/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. These cardiovascular diseases are associated with mechanical changes in the myocardium and aorta. It is known that stiffness is altered in many diseases, including the spectrum of ischemia, diastolic dysfunction, hypertension and hypertrophic cardiomyopathy. In addition, the stiffness of the aortic wall is altered in multiple diseases, including hypertension, coronary artery disease and aortic aneurysm formation. For example, in diastolic dysfunction in which the ejection fraction is preserved, stiffness can potentially be an important biomarker. Similarly, in aortic aneurysms, stiffness can provide valuable information with regard to rupture potential. A number of studies have addressed invasive and non-invasive approaches to test and measure the mechanical properties of the myocardium and aorta. One of the non-invasive approaches is magnetic resonance elastography (MRE). MRE is a phase-contrast magnetic resonance imaging technique that measures tissue stiffness non-invasively. This review article highlights the technical details and application of MRE in the quantification of myocardial and aortic stiffness in different disease states.
Collapse
Affiliation(s)
- Saad Khan
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Faisal Fakhouri
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Waqas Majeed
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Abstract
The mechanical properties of soft tissues are closely associated with a variety of diseases. This motivates the development of elastography techniques in which tissue mechanical properties are quantitatively estimated through imaging. Magnetic resonance elastography (MRE) is a noninvasive phase-contrast MR technique wherein shear modulus of soft tissue can be spatially and temporally estimated. MRE has recently received significant attention due to its capability in noninvasively estimating tissue mechanical properties, which can offer considerable diagnostic potential. In this work, recent technology advances of MRE, its future clinical applications, and the related limitations will be discussed.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard D. White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
37
|
Ebersole C, Ahmad R, Rich AV, Potter LC, Dong H, Kolipaka A. A bayesian method for accelerated magnetic resonance elastography of the liver. Magn Reson Med 2018; 80:1178-1188. [PMID: 29334131 PMCID: PMC5980673 DOI: 10.1002/mrm.27083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
Abstract
Purpose Magnetic resonance elastography (MRE) is a noninvasive tool for quantifying soft tissue stiffness. MRE has been adopted as a clinical method for staging liver fibrosis. The application of liver MRE, however, requires multiple lengthy breath holds. We propose a new data acquisition and processing method to reduce MRE scan time. Theory and Methods A Bayesian image reconstruction method that utilizes transform sparsity and magnitude consistency across different phase offsets to recover images from highly undersampled data is proposed. The method is validated using retrospectively downsampled phantom data and prospectively downsampled in vivo data (n=86). Results The proposed technique allows accurate quantification of mean liver stiffness up to an acceleration factor of R=6, enabling acquisition of a slice in 4.3 seconds. Bland Altman analysis indicates that the proposed technique (R=6) has a bias of −0.04 kPa and limits of agreement of –0.36 to +0.28 kPa when compared to traditional GRAPPA reconstruction (R=1.4). Conclusion By exploiting transform sparsity and magnitude consistency, accurate quantification of mean stiffness in the liver can be obtained at acceleration rate of up to R=6. This potentially enables collection of three to four liver slices, as per clinical protocol, within a single breath hold.
Collapse
Affiliation(s)
- Christopher Ebersole
- Department of Electrical and Computer Engineering, The Ohio State University
- Department of Radiology, The Ohio State University
| | - Rizwan Ahmad
- Department of Biomedical Engineering, The Ohio State University
| | - Adam V. Rich
- Department of Electrical and Computer Engineering, The Ohio State University
| | - Lee C. Potter
- Department of Electrical and Computer Engineering, The Ohio State University
| | - Huiming Dong
- Department of Radiology, The Ohio State University
- Department of Biomedical Engineering, The Ohio State University
| | - Arunark Kolipaka
- Department of Electrical and Computer Engineering, The Ohio State University
- Department of Radiology, The Ohio State University
- Department of Biomedical Engineering, The Ohio State University
| |
Collapse
|
38
|
van Disseldorp EMJ, Petterson NJ, van de Vosse FN, van Sambeek MRHM, Lopata RGP. Quantification of aortic stiffness and wall stress in healthy volunteers and abdominal aortic aneurysm patients using time-resolved 3D ultrasound: a comparison study. Eur Heart J Cardiovasc Imaging 2018; 20:185-191. [DOI: 10.1093/ehjci/jey051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 01/29/2023] Open
Affiliation(s)
- Emiel M J van Disseldorp
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, The Netherlands
- Department of Surgery, Catharina Hospital Eindhoven, ZA Eindhoven, The Netherlands
| | - Niels J Petterson
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, The Netherlands
| | - Marc R H M van Sambeek
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, The Netherlands
- Department of Surgery, Catharina Hospital Eindhoven, ZA Eindhoven, The Netherlands
| | - Richard G P Lopata
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, The Netherlands
| |
Collapse
|
39
|
Hawley JR, Kalra P, Mo X, Raterman B, Yee LD, Kolipaka A. Quantification of breast stiffness using MR elastography at 3 Tesla with a soft sternal driver: A reproducibility study. J Magn Reson Imaging 2017; 45:1379-1384. [PMID: 27779802 PMCID: PMC5395339 DOI: 10.1002/jmri.25511] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Previous studies of breast MR elastography (MRE) evaluated the technique at magnetic field strengths of 1.5 Tesla (T) with the breast in contact with the driver. The aim of this study is to evaluate breast stiffness measurements and their reproducibility using a soft sternal driver at 3T and compare the results with qualitative measures of breast density. MATERIALS AND METHODS Twenty-two healthy volunteers each underwent two separate breast MRE scans in a 3T MRI. MRE vibrations were introduced into the breasts at 60 Hz using a soft sternal driver and axial slices were collected using a gradient echo MRE sequence. Mean stiffness measurements were calculated for each volunteer as well as a measure of reproducibility using concordance correlation between scans. Mean stiffness values for each volunteer were assessed and related to amounts of fibroglandular tissue (i.e., breast lobules, ducts, and fibrous connective tissue). RESULTS The stiffness values were reproducible with a significant P-value < 0.0001 between two scans with concordance correlation of 0.87 and 0.91 for center slice and grouping all slices, respectively. Volunteers with dense breasts (i.e., higher grades of fibroglandular tissue) had mean stiffness values of 0.96 kPa (center slice) and 0.92 kPa (all slices) while those without dense breasts had mean stiffness values of 0.85 kPa (center slice) and 0.83 kPa (all slices) (P ≤ 0.05). CONCLUSION Breast MRE is a reproducible technique at 3T using a soft sternal driver. Dense breasts had significantly higher stiffness measurements compared with nondense breasts. LEVEL OF EVIDENCE 2 J. MAGN. RESON. IMAGING 2017;45:1379-1384.
Collapse
Affiliation(s)
- Jeffrey R. Hawley
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Prateek Kalra
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Xiaokui Mo
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Lisa D. Yee
- Department of Surgical Oncology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| |
Collapse
|
40
|
Sazonov I, Khir AW, Hacham WS, Boileau E, Carson JM, van Loon R, Ferguson C, Nithiarasu P. A novel method for non-invasively detecting the severity and location of aortic aneurysms. Biomech Model Mechanobiol 2017; 16:1225-1242. [PMID: 28220320 PMCID: PMC5511604 DOI: 10.1007/s10237-017-0884-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstrates the methods’ ability to detect the location and severity of an aortic aneurysm through the analysis of flow waveforms in clinically accessible locations. Therefore, the proposed methodology shows a high potential for non-invasive aneurysm detectors/monitors.
Collapse
Affiliation(s)
- Igor Sazonov
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK.
| | - Ashraf W Khir
- Brunel University London, Uxbridge, London, B8 3PH, UK
| | - Wisam S Hacham
- Brunel University London, Uxbridge, London, B8 3PH, UK.,Al-Khwarizmi College of Engineering, Baghdad University, Baghdad, Iraq
| | - Etienne Boileau
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Jason M Carson
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Raoul van Loon
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Colin Ferguson
- Department of Vascular Surgery ABMUHB, Morriston Hospital, Swansea, SA6 6NL, UK
| | - Perumal Nithiarasu
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| |
Collapse
|
41
|
Dong H, Mazumder R, Illapani VSP, Mo X, White RD, Kolipaka A. In vivo quantification of aortic stiffness using MR elastography in hypertensive porcine model. Magn Reson Med 2017; 78:2315-2321. [PMID: 28164361 DOI: 10.1002/mrm.26601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE Aortic stiffness plays an important role in evaluating and predicting the progression of systemic arterial hypertension (SAH). The aim of this study is to determine the stiffness of aortic wall using MR elastography (MRE) in a hypertensive porcine model and compare it against invasive aortic pressure measurements. METHODS Renal wrapping surgery was performed on eight pigs to induce SAH. Aortic MRE was performed at baseline and 2 months postsurgery using a retrospectively pulse-gated gradient-echo MRE sequence on a 1.5 tesla scanner. Mechanical waves of 70 Hz were introduced into the aorta. Invasive central aortic pressure measurements were obtained prior to each scan to calculate mean arterial pressure (MAP). MRE data were analyzed to obtain effective aortic stiffness. Spearman's rank correlation analysis was performed to assess the relationship between MAP and MRE-derived aortic stiffness. RESULTS Significant increase in effective aortic stiffness was observed between baseline and 2 months postsurgery measurements (paired t test; P = 0.004). The average MAP, determined by pooling all animals, was 65.24 ± 9.42 mm Hg at baseline and 92.57 ± 11.80 mm Hg 2 months postsurgery with P < 0.0001. Moderate linear correlation was observed between MAP and effective aortic stiffness (ρ = 0.52; P = 0.046). CONCLUSION This study demonstrated that, in a SAH porcine model, MRE-derived aortic stiffness increased with increase in MAP. Magn Reson Med 78:2315-2321, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ria Mazumder
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Engineering, Widener University, Chester, Pennsylvania, USA
| | - Venkata Sita Priyanka Illapani
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|