1
|
Xie P, Liu H, Huo X, Chen J, Li Y, Huang Y, Yin Z. Nafamostat Mesylate Regulates Glycosylation to Alleviate Aristolochic Acid Induced Kidney Injury. Toxins (Basel) 2025; 17:145. [PMID: 40137918 PMCID: PMC11945414 DOI: 10.3390/toxins17030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Acute kidney injury (AKI) is a condition with a poor prognosis, exacerbated by the lack of effective therapeutic options and inadequately understood underlying mechanisms. Glycosylation, a post-translational modification of proteins, is essential for maintaining protein stability and function, and its dysregulation leads to protein misfolding and amyloid aggregation. Glycosylation dynamics are implicated in several pathologies, including inflammation, cancer, and AKI, highlighting the therapeutic potential of regulating glycosylation and preventing aggregation in AKI treatment. This study investigates the effect of nafamostat mesylate (NM) on protein glycosylation and amyloid aggregation in vivo. Using optical spectroscopy and other analytical techniques, we demonstrate that NM restores glycosylation levels and inhibits protein aggregation in aristolochic-acid-induced acute kidney injury. The mechanism likely involves enzymatic modulation that corrects hypoglycosylation and prevents amyloid aggregation, promoting proper protein folding and enhancing its stability. These findings suggest that NM may provide a novel therapeutic strategy for AKI and other glycosylation-related diseases, underscoring the potential for early intervention and treatment of these conditions.
Collapse
Affiliation(s)
- Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Drug Targeting and Drug Delivery System Key Laboratory of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (P.X.); (H.L.); (X.H.); (J.C.); (Y.L.)
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Huijun Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Drug Targeting and Drug Delivery System Key Laboratory of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (P.X.); (H.L.); (X.H.); (J.C.); (Y.L.)
| | - Xingli Huo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Drug Targeting and Drug Delivery System Key Laboratory of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (P.X.); (H.L.); (X.H.); (J.C.); (Y.L.)
| | - Junlong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Drug Targeting and Drug Delivery System Key Laboratory of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (P.X.); (H.L.); (X.H.); (J.C.); (Y.L.)
| | - Yu Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Drug Targeting and Drug Delivery System Key Laboratory of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (P.X.); (H.L.); (X.H.); (J.C.); (Y.L.)
| | - Yu Huang
- Haisco Pharmaceutical Group Co., Ltd., Chengdu 611130, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Drug Targeting and Drug Delivery System Key Laboratory of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (P.X.); (H.L.); (X.H.); (J.C.); (Y.L.)
| |
Collapse
|
2
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
3
|
Jia K, Shi P, Zhang L, Yan X, Xu J, Liao K. Trans-cinnamic acid alleviates high-fat diet-induced renal injury via JNK/ERK/P38 MAPK pathway. J Nutr Biochem 2025; 135:109769. [PMID: 39276944 DOI: 10.1016/j.jnutbio.2024.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Obesity-related chronic kidney disease (CKD) poses a significant risk to individuals' health and wellbeing, but the pathological mechanisms and treatment strategies are currently limited. Trans-cinnamic acid (CA) is a key active monomer found in cinnamon bark and is known for its diverse pharmacological activities. However, its effect on obesity-related renal injury remains unknown. In the current study, the in vitro and in vivo experiments were combined to investigate the beneficial effect of CA on renal injury induced by HFD or PA. We found that CA significantly reduced the obesity of zebrafish body and the accumulation of fat in kidney tissues. The histopathological changes and dysfunction induced by HFD were effectively mitigated by CA administration, as evidenced by the detection of Hematoxylin-Eosin straining, NAG activity, creatinine level, and expression of functional-related genes, respectively. Additionally, the in vitro and in vivo findings demonstrated that CA dramatically reduced the oxidative stress, inflammatory, and apoptosis in HFD-induced kidney tissues or PA-treated HEK293T and HK-2 cells. Finally, the results regarding ERK, JNK, and P38 proteins phosphorylation confirmed that CA may alleviate HFD-induced renal injury by inhibiting the phosphorylation of ERK, JNK, and P38 MAPK proteins. This theory was further supported by the results of co-treatment with anisomycin (a JNK activator) or lipopolysaccharide and CA in HEK293T cells. This study proves that CA alleviates the obesity-related CKD probably through inhibition of MAPK signaling pathway.
Collapse
Affiliation(s)
- Kun Jia
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
4
|
Cho KH, Bahuguna A, Kim JE, Lee Y, Lee SH, Jeon C, Kim CH. Beeswax Alcohol (BWA, Raydel ®) Improved Blood Oxidative Variables and Ameliorated Severe Damage of Zebrafish Kidneys, Testes, and Ovaries Impaired by 24-Week Consumption of a High-Cholesterol and High-Galactose Diet: A Comparative Analysis with Coenzyme Q 10. Pharmaceuticals (Basel) 2024; 18:17. [PMID: 39861080 PMCID: PMC11769329 DOI: 10.3390/ph18010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES The present study describes the comparative effect of 24-week supplementation of beeswax alcohol (BWA, Raydel®, 0.5% and 1.0%, wt/wt) and coenzyme Q10 (CoQ10, 0.5% and 1.0%, wt/wt) on plasma oxidative variables and the prevention of organ injury in adult zebrafish subjected to a high-cholesterol (HC, 4%, wt/wt) and -D-galactose (Gal, 30%, wt/wt) diet. METHODS Adult zebrafish were fed various HC+Gal diets enriched with either BWA or CoQ10. After 24 weeks of dietary intervention, blood and organs were harvested for subsequent biochemical and histological evaluations. RESULTS The HC+Gal-elevated plasma oxidative variables were reverted by the consumption of BWA, marked by the lowest plasma malondialdehyde (MDA) level and highest sulfhydryl content. The HC+Gal-impaired zebrafish swimming ability (staggering movement) was substantially recovered by BWA, manifested by a ~three-fold (p < 0.001) enhancement in swimming distance and speed. Also, the intake of BWA affected the morphology of HC+Gal-compromised kidney and induced histological changes by mitigating reactive oxygen species (ROS) production and cellular senescence, which was markedly more effective than the results seen in the CoQ10 group. Likewise, BWA proved effective in preventing HC+Gal-induced testis damage, apparent in the 48.3% (p < 0.05) higher spermatozoa and 26.3% (p < 0.01) reduced interstitial space between the seminiferous tubules. BWA substantially prevented HC+Gal-induced ovary damage by suppressing oxidative stress, lipid deposition and senescence, leading to the restoration of mature vitellogenic oocyte counts. CONCLUSION BWA demonstrated a greater ability than CoQ10 to enhance plasma antioxidant status, suppress ROS generation, delay organ aging and alleviate HC+Gal-induced adversity in zebrafish.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ashutosh Bahuguna
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ji-Eun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Yunki Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Sang Hyuk Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Cheolmin Jeon
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Ercanbrack WS, Dungan A, Gaul E, Ramirez M, J. DelVecchio A, Grass C, Wingert RA. Frataxin is essential for zebrafish embryogenesis and pronephros formation. Front Cell Dev Biol 2024; 12:1496244. [PMID: 39723241 PMCID: PMC11669007 DOI: 10.3389/fcell.2024.1496244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Background and objectives Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the frataxin gene (FXN) which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy. These occur due to the accumulation of reactive oxygen species (ROS) in the brain and the heart due to their high metabolic rates. Our research aims to understand how developmental processes and the kidney are impacted by a deficiency of FXN. Methods We utilized an antisense oligomer, or morpholino, to knockdown the frataxin gene (fxn) in zebrafish embryos. Knockdown was confirmed via RT-PCR, gel electrophoresis, and Sanger sequencing. To investigate phenotypes, we utilized several staining techniques including whole mount in situ hybridization, Alcian blue, and acridine orange, as well as dextran-FITC clearance assays. Results fxn deficient animals displayed otolith malformations, edema, and reduced survival. Alcian blue staining revealed craniofacial defects in fxn deficient animals, and gene expression studies showed that the pronephros, or embryonic kidney, had several morphological defects. We investigated the function of the pronephros through clearance assays and found that the renal function is disrupted in fxn deficient animals in addition to proximal tubule endocytosis. Utilizing acridine orange staining, we found that cell death is a partial contributor to these phenotypes. Discussion and conclusion This work provides new insights about how fxn deficiency impacts development and kidney morphogenesis. Additionally, this work establishes an additional model system to study FRDA.
Collapse
Affiliation(s)
- Wesley S. Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | | | | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
6
|
Horng JL, Hsiao BY, Lin WT, Lin TT, Chang CY, Lin LY. Investigation of verapamil-induced cardiorenal dysfunction and compensatory ion regulation in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109980. [PMID: 39038748 DOI: 10.1016/j.cbpc.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The purpose of the present study was to investigate the development of verapamil-induced cardiorenal failure and the response of epidermal ionocytes in zebrafish embryos to this syndrome. Zebrafish embryos were exposed to verapamil for 24 h at different developmental stages (48, 72, and 96 h post-fertilization). The exposure resulted in the generation of edema in the pericardial and yolk sac regions, with more-pronounced effects observed in later-stage embryos. Cardiac parameters showed a suppressed heart rate at all stages, with a more-significant effect appearing in later stages. Verapamil also affected cardiac parameters including the end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), and cardiac output (CO), indicating negative overall effects on cardiac performance. mRNA levels of heart failure markers (nppa and nppb genes) were upregulated in verapamil-exposed embryos at all stages. Renal function was impaired as FITC-dextran excretion was suppressed. A whole-embryo ion content analysis revealed significant increases in sodium and calcium contents in verapamil-exposed embryos. The density of epidermal ionocytes increased, and the apical membrane of ionocytes was enlarged, indicating upregulation of ion uptake. In addition, mRNA levels of several ion transporter genes (rhcg1, slc9a3, atp6v1a, atp2b1a, trpv6, and slc12a10.2) were significantly upregulated in verapamil-exposed embryos. In summary, prolonged exposure to verapamil can induce cardiorenal failure which triggers compensatory upregulation of ionocytes in zebrafish embryos.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Bu-Yuan Hsiao
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Ting Lin
- Affiliated Senior High School of National Taiwan Normal University, Taipei 10658, Taiwan
| | - Tzu-Ting Lin
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yen Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
7
|
Ott H, Bennewitz K, Zhang X, Prianichnikova M, Sticht C, Poschet G, Kroll J. Sodium thiosulfate treatment rescues hyperglycaemia-induced pronephros damage in zebrafish by upregulating nitric oxide signalling. J Physiol 2024. [PMID: 39264236 DOI: 10.1113/jp286398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Sodium thiosulfate (STS) is gaining increasing attention in research for its potential therapeutic applications across a spectrum of disease processes beyond its current uses. However, the precise mechanisms of action remain incompletely understood. We investigated the efficacy of STS in treating hyperglycaemia-induced pronephros damage in zebrafish to gain further insight into the underlying mechanisms. Hyperglycaemia was induced in zebrafish by suppressing the pdx1 transcription factor, which plays a crucial role in maintaining physiological pancreatic function. STS was administered by introducing it into the medium of zebrafish larvae. The pronephros structure was analysed at 48 h post-fertilization. Metabolomic profiling and RNA sequencing were conducted on groups exposed to various experimental conditions. Our findings reveal a downregulation of nitric oxide (NO) signalling in zebrafish with a knocked-down pdx1 gene, both metabolomically and transcriptionally. Notably, treatment with STS led to a compensatory upregulation of the NO signalling, ultimately resulting in the rescue of the pronephros structure. Our study provides compelling evidence that targeting NO metabolism by the administration of STS offers a promising strategy for addressing hyperglycaemia-induced organ damage. These findings underscore the potential of STS as a promising therapeutic agent for diabetic complications and warrant further investigation of its clinical applications. KEY POINTS: Sodium thiosulfate (STS) is increasingly drawing attention in research for its potential therapeutic applications across a spectrum of disease processes. Here, we demonstrate that STS treatment rescues hyperglycaemia-induced pronephros damage in zebrafish. We identified upregulation of nitric oxide signalling as the major driver behind STS-mediated rescue. Our data suggest that STS offers a promising strategy for addressing hyperglycaemia-induced organ damage, including diabetic nephropathy.
Collapse
Affiliation(s)
- Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xin Zhang
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mariia Prianichnikova
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Uribe-Montes LC, Sanabria-Camargo CA, Piñeros-Romero CC, Otálora-Tarazona S, Ávila-Jiménez E, Acosta-Virgüez E, Garavito-Aguilar ZV. Fibronectin and Hand2 influence tubulogenesis during pronephros development and mesonephros regeneration in zebrafish (Danio rerio). PLoS One 2024; 19:e0307390. [PMID: 39240899 PMCID: PMC11379296 DOI: 10.1371/journal.pone.0307390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 09/08/2024] Open
Abstract
Worldwide incidence of kidney diseases has been rising. Thus, recent research has focused on zebrafish, whose fast development and innate regeneration capacity allow identifying factors influencing renal processes. Among these poorly studied factors are extracellular matrix (ECM) proteins like Fibronectin (Fn) essential in various tissues but not yet evaluated in a renal context. We utilized early nat and han zebrafish mutant embryos and carrier adults to investigate Fn's role during kidney development and regeneration. The locus natter (nat) encodes Fn and the locus han encodes Hand2, which results in increased Fn deposition. Our results show that Fn impacts identity maintenance and morphogenesis during development and influences conditions for neonephrogenic cluster formation during regeneration. Histological analysis revealed disrupted pronephric structures and increased blood cell accumulation in Fn mutants. Despite normal expression of specification markers (pax2, ATPα1a.1), structural abnormalities were evident. Differences between wild-type and mutation-carriers suggest a haploinsufficiency scenario. These findings reveal a novel function for ECM in renal development and regeneration, with potential implications for understanding and treating kidney diseases.
Collapse
Affiliation(s)
- Lucia Carolina Uribe-Montes
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Camilo Alfonso Sanabria-Camargo
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Cristian Camilo Piñeros-Romero
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Sebastián Otálora-Tarazona
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Estefanía Ávila-Jiménez
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Edwin Acosta-Virgüez
- Departamento de Biología, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Zayra Viviana Garavito-Aguilar
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
9
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
10
|
van Megen WH, van Houtert TJ, Bos C, Peters DJM, de Baaij JHF, Hoenderop JGJ. Inhibition of pannexin-1 does not restore electrolyte balance in precystic Pkd1 knockout mice. Physiol Rep 2024; 12:e15956. [PMID: 38561249 PMCID: PMC10984814 DOI: 10.14814/phy2.15956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.
Collapse
Affiliation(s)
- Wouter H. van Megen
- Department of Medical BiosciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Teun J. van Houtert
- Department of Medical BiosciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Caro Bos
- Department of Medical BiosciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Dorien J. M. Peters
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Jeroen H. F. de Baaij
- Department of Medical BiosciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost G. J. Hoenderop
- Department of Medical BiosciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
11
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
12
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
13
|
Jia PP, Li Y, Zhang LC, Wu MF, Li TY, Pei DS. Metabolome evidence of CKDu risks after chronic exposure to simulated Sri Lanka drinking water in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116149. [PMID: 38412632 DOI: 10.1016/j.ecoenv.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/10/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
It is still a serious public health issue that chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka poses challenges in identification, prevention, and treatment. What environmental factors in drinking water cause kidney damage remains unclear. This study aimed to investigate the risks of various environmental factors that may induce CKDu, including water hardness, fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM). The research focused on comprehensive metabolome analysis, and correlation with transcriptomic and gut microbiota changes. Results revealed that chronic exposure led to kidney damage and pancreatic toxicity in adult zebrafish. Metabolomics profiling showed significant alterations in biochemical processes, with enriched metabolic pathways of oxidative phosphorylation, folate biosynthesis, arachidonic acid metabolism, FoxO signaling pathway, lysosome, pyruvate metabolism, and purine metabolism. The network analysis revealed significant changes in metabolites associated with renal function and diseases, including 20-Hydroxy-LTE4, PS(18:0/22:2(13Z,16Z)), Neuromedin N, 20-Oxo-Leukotriene E4, and phenol sulfate, which are involved in the fatty acyls and glycerophospholipids class. These metabolites were closely associated with the disrupted gut bacteria of g_ZOR0006, g_Pseudomonas, g_Tsukamurella, g_Cetobacterium, g_Flavobacterium, which belonged to dominant phyla of Firmicutes and Proteobacteria, etc., and differentially expressed genes (DEGs) such as egln3, ca2, jun, slc2a1b, and gls2b in zebrafish. Exploratory omics analyses revealed the shared significantly changed pathways in transcriptome and metabolome like calcium signaling and necroptosis, suggesting potential biomarkers for assessing kidney disease.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lan-Chen Zhang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Fei Wu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Schindler M, Siegerist F, Lange T, Simm S, Bach SM, Klawitter M, Gehrig J, Gul S, Endlich N. A Novel High-Content Screening Assay Identified Belinostat as Protective in a FSGS-Like Zebrafish Model. J Am Soc Nephrol 2023; 34:1977-1990. [PMID: 37752628 PMCID: PMC10703078 DOI: 10.1681/asn.0000000000000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND FSGS affects the complex three-dimensional morphology of podocytes, resulting in loss of filtration barrier function and the development of sclerotic lesions. Therapies to treat FSGS are limited, and podocyte-specific drugs are unavailable. To address the need for treatments to delay or stop FSGS progression, researchers are exploring the repurposing of drugs that have been approved by the US Food and Drug Administration (FDA) for other purposes. METHODS To identify drugs with potential to treat FSGS, we used a specific zebrafish screening strain to combine a high-content screening (HCS) approach with an in vivo model. This zebrafish screening strain expresses nitroreductase and the red fluorescent protein mCherry exclusively in podocytes (providing an indicator for podocyte depletion), as well as a circulating 78 kDa vitamin D-binding enhanced green fluorescent protein fusion protein (as a readout for proteinuria). To produce FSGS-like lesions in the zebrafish, we added 80 µ M metronidazole into the fish water. We used a specific screening microscope in conjunction with advanced image analysis methods to screen a library of 138 drugs and compounds (including some FDA-approved drugs) for podocyte-protective effects. Promising candidates were validated to be suitable for translational studies. RESULTS After establishing this novel in vivo HCS assay, we identified seven drugs or compounds that were protective in our FSGS-like model. Validation experiments confirmed that the FDA-approved drug belinostat was protective against larval FSGS. Similar pan-histone deacetylase inhibitors also showed potential to reproduce this effect. CONCLUSIONS Using an FSGS-like zebrafish model, we developed a novel in vivo HCS assay that identified belinostat and related pan-histone deacetylase inhibitors as potential candidates for treating FSGS.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Tim Lange
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Sophia-Marie Bach
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Marianne Klawitter
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Zeitler EM, Li Y, Schroder M, Falk RJ, Sumner S. Characterizing the metabolic response of the zebrafish kidney to overfeeding. Am J Physiol Renal Physiol 2023; 325:F491-F502. [PMID: 37589050 PMCID: PMC10639026 DOI: 10.1152/ajprenal.00113.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Obesity is a global epidemic and risk factor for the development of chronic kidney disease. Obesity induces systemic changes in metabolism, but how it affects kidney metabolism specifically is not known. Zebrafish have previously been shown to develop obesity-related kidney pathology and dysfunction when fed hypercaloric diets. To understand the direct effects of obesity on kidney metabolic function, we treated zebrafish for 8 wk with a control and an overfeeding diet. At the end of treatment, we assessed changes in kidney and fish weights and used electron microscopy to evaluate cell ultrastructure. We then performed an untargeted metabolomic analysis on the kidney tissue of fish using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry and used mummichog and gene set enrichment analysis to uncover differentially affected metabolic pathways. Kidney metabolomes differed significantly and consistently between the control and overfed diets. Among 9,593 features, we identified 235 that were significantly different (P < 0.05) between groups (125 upregulated in overfed diet, 110 downregulated). Pathway analysis demonstrated perturbations in glycolysis and fatty acid synthesis pathways, and analysis of specific metabolites points to perturbations in tryptophan metabolism. Our key findings show that diet-induced obesity leads to metabolic changes in the kidney tissue itself and implicates specific metabolic pathways, including glycolysis and tryptophan metabolism in the pathogenesis of obesity-related kidney disease, demonstrating the power of untargeted metabolomics to identify pathways of interest by directly interrogating kidney tissue.NEW & NOTEWORTHY Obesity causes systemic metabolic dysfunction, but how this affects kidney metabolism is less understood. This study used ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry to analyze the kidneys of overfed zebrafish. Metabolites in the kidneys of obese zebrafish revealed perturbations in metabolic pathways including glycolysis and tryptophan metabolism. These data suggest obesity alters metabolism within the kidney, which may play an important role in obesity-related kidney dysfunction.
Collapse
Affiliation(s)
- Evan M Zeitler
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Yuanyuan Li
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Madison Schroder
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ronald J Falk
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Susan Sumner
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
17
|
Subramanian S. Zebrafish as a model organism - can a fish mimic human? J Basic Clin Physiol Pharmacol 2023; 34:559-575. [PMID: 34662932 DOI: 10.1515/jbcpp-2021-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
From pre-historic era, all scientific discoveries have evolved around a concept - THINK BIG but for a change zebrafish as a model organism in research had managed to halt the entire medical community and made us realize that it's time to think small. From a barely imagined being in research few years ago to around 4,000 publications in just last year, zebrafish has definitely come a long way. Through these tiny fish, scientists have managed to find genes that caused human diseases and have also developed various specific models to know more about the pathology behind such diseases. This review will focus on zebrafish as a model organism from the time it was introduced to the most novel targets with particular emphasis on central nervous system (CNS) as it is rapidly evolving branch in zebrafish research these days. This review will try to shed light on the early stages of zebrafish as a model organism and will try to cover the journey of it developing as a successful model organism to map many diseases like diabetes, Alzheimer's and autism describing the rationale for using this specific model and briefly the techniques under each category and finally will summarize the pros and cons of the model with its expected future directions.
Collapse
|
18
|
Jia PP, Chandrajith R, Junaid M, Li TY, Li YZ, Wei XY, Liu L, Pei DS. Elucidating environmental factors and their combined effects on CKDu in Sri Lanka using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121967. [PMID: 37290634 DOI: 10.1016/j.envpol.2023.121967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease with uncertain etiology (CKDu) in Sri Lanka has attracted much attention as a global health issue. However, how environmental factors in local drinking water induce kidney damage in organisms is still elusive. We investigated multiple environmental factors including water hardness and fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM) to elucidate their toxic effects on CKDu risk in zebrafish. Acute exposure affected renal development and inhibited the fluorescence of Na, K-ATPase alpha1A4:GFP zebrafish kidney. Chronic exposure influenced the body weight of both genders of adult fish and induced kidney damage by histopathological analyses. Furthermore, the exposure significantly disturbed differential expression genes (DEGs), diversity and richness of gut microbiota, and critical metabolites related to renal functions. The transcriptomic analysis revealed that kidney-related DEGs were linked with renal cell carcinoma, proximal tubule bicarbonate reclamation, calcium signaling pathway, and HIF-1 signaling pathway. The significantly disrupted intestinal microbiota was closely related to the environmental factors and H&E score, which demonstrated the mechanisms of kidney risks. Notably, the Spearman correlation analysis indicated that the changed bacteria such as Pseudomonas, Paracoccus, and ZOR0006, etc were significantly connected to the DEGs and metabolites. Therefore, the assessment of multiple environmental factors provided new insights on "bio-markers" as potential therapies of the target signaling pathways, metabolites, and gut bacteria to monitor or protect residents from CKDu.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Rohana Chandrajith
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xing-Yi Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Nguyen TK, Petrikas M, Chambers BE, Wingert RA. Principles of Zebrafish Nephron Segment Development. J Dev Biol 2023; 11:jdb11010014. [PMID: 36976103 PMCID: PMC10052950 DOI: 10.3390/jdb11010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeline Petrikas
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
20
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
21
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
22
|
Wesselman HM, Gatz AE, Pfaff MR, Arceri L, Wingert RA. Estrogen Signaling Influences Nephron Segmentation of the Zebrafish Embryonic Kidney. Cells 2023; 12:666. [PMID: 36831333 PMCID: PMC9955091 DOI: 10.3390/cells12040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Despite significant advances in understanding nephron segment patterning, many questions remain about the underlying genes and signaling pathways that orchestrate renal progenitor cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library and developing zebrafish, which are a conserved vertebrate model and particularly conducive to large-scale screening approaches. 17β-estradiol (E2), which is the dominant form of estrogen in vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in the context of gonad development, but roles for E2 in nephron development were unknown. Here, we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an increase in the distal early segment and a decrease in the neighboring distal late. These changes were noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further, upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros and expand our fundamental understanding of hormone function during kidney organogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
23
|
Wesselman HM, Gatz AE, Wingert RA. Visualizing multiciliated cells in the zebrafish. Methods Cell Biol 2023; 175:129-161. [PMID: 36967138 DOI: 10.1016/bs.mcb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ciliated cells serve vital functions in the body ranging from mechano- and chemo-sensing to fluid propulsion. Specialized cells with bundles dozens to hundreds of motile cilia known as multiciliated cells (MCCs) are essential as well, where they direct fluid movement in locations such as the respiratory, central nervous and reproductive systems. Intriguingly, the appearance of MCCs has been noted in the kidney in several disease conditions, but knowledge about their contributions to the pathobiology of these states has remained a mystery. As the mechanisms contributing to ciliopathic diseases are not yet fully understood, animal models serve as valuable tools for studying cilia development and how alterations in ciliated cell function impacts disease progression. Like other vertebrates, the zebrafish, Danio rerio, has numerous ciliated tissues. Among these, the embryonic kidney (or pronephros) is comprised of both monociliated cells and MCCs and therefore provides a setting to investigate both ciliated cell fate choice and ciliogenesis. Considering the zebrafish nephron resembles the segmentation and function of human nephrons, the zebrafish provide a tractable model for studying conserved ciliogenesis pathways in vivo. In this chapter, we provide an overview of ciliated cells with a special focus on MCCs, and present a suite of methods that can be used to visualize ciliated cells and their features in the developing zebrafish. Further, these methods enable precise quantification of ciliated cell number and various cilia-related characteristics.
Collapse
|
24
|
Koun S, Park HJ, Jung SM, Cha JJ, Cha DR, Kang YS. Puromycin-induced kidney injury and subsequent regeneration in adult zebrafish. Anim Cells Syst (Seoul) 2023; 27:112-119. [PMID: 37089626 PMCID: PMC10120544 DOI: 10.1080/19768354.2023.2203211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Puromycin treatment can cause glomerular injury to the kidney, leading to proteinuria. However, the pathogenesis of acute kidney injury and subsequent regeneration after puromycin administration in animal models remain unclear. In this work, we examined the characteristics of kidney injury and subsequent regeneration following puromycin treatment in adult zebrafish. We intraperitoneally injected 100 μg of puromycin into zebrafish; sacrificed them at 1, 3, 5, 7, or 14 days post-injection (dpi); and examined the morphological, functional, and molecular changes in the kidney. Puromycin-treated zebrafish presented more rapid clearance of rhodamine dextran than control animals. Morphological changes were observed immediately after the puromycin injection (1-7 dpi) and had recovered by 14 dpi. The mRNA production of lhx1a, a renal progenitor marker, increased during recovery from kidney injury. Levels of NFκB, TNFα, Nampt, and p-ERK increased significantly during nephron injury and regeneration, and Sirt1, FOXO1, pax2, and wt1b showed an increasing tendency. However, TGF-β1 and smad5 production did not show any changes after puromycin treatment. This study provides evidence that puromycin-induced injury in adult zebrafish kidneys is a potential tool for evaluating the mechanism of nephron injury and subsequent regeneration.
Collapse
Affiliation(s)
- Soonil Koun
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
- Incheon Technopark Bioindustry Center, Incheon, Republic of Korea
| | - Hye-jin Park
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Su-min Jung
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jin Joo Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Young Sun Kang
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
- Young Sun Kang Department of nephrology, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do15355, South Korea
| |
Collapse
|
25
|
Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in Understanding the Genetic Mechanisms of Zebrafish Renal Multiciliated Cell Development. J Dev Biol 2022; 11:1. [PMID: 36648903 PMCID: PMC9844391 DOI: 10.3390/jdb11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Weaver NE, Healy A, Wingert RA. gldc Is Essential for Renal Progenitor Patterning during Kidney Development. Biomedicines 2022; 10:biomedicines10123220. [PMID: 36551976 PMCID: PMC9776136 DOI: 10.3390/biomedicines10123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The glycine cleavage system (GCS) is a complex located on the mitochondrial membrane that is responsible for regulating glycine levels and contributing one-carbon units to folate metabolism. Congenital mutations in GCS components, such as glycine decarboxylase (gldc), cause an elevation in glycine levels and the rare disease, nonketotic hyperglycinemia (NKH). NKH patients suffer from pleiotropic symptoms including seizures, lethargy, mental retardation, and early death. Therefore, it is imperative to fully elucidate the pathological effects of gldc dysfunction and glycine accumulation during development. Here, we describe a zebrafish model of gldc deficiency that recapitulates phenotypes seen in humans and mice. gldc deficient embryos displayed impaired fluid homeostasis suggesting renal abnormalities, as well as aberrant craniofacial morphology and neural development defects. Whole mount in situ hybridization (WISH) revealed that gldc transcripts were highly expressed in the embryonic kidney, as seen in mouse and human repository data, and that formation of several nephron segments was disrupted in gldc deficient embryos, including proximal and distal tubule populations. These kidney defects were caused by alterations in renal progenitor populations, revealing that the proper function of Gldc is essential for the patterning of this organ. Additionally, further analysis of the urogenital tract revealed altered collecting duct and cloaca morphology in gldc deficient embryos. Finally, to gain insight into the molecular mechanisms underlying these disruptions, we examined the effects of exogenous glycine treatment and observed analogous renal and cloacal defects. Taken together, these studies indicate for the first time that gldc function serves an essential role in regulating renal progenitor development by modulating glycine levels.
Collapse
|
27
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 DOI: 10.1101/2021.07.19.452884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
28
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 PMCID: PMC7614274 DOI: 10.1016/j.kint.2022.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
29
|
Lim S, Kang H, Kwon B, Lee JP, Lee J, Choi K. Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113842. [PMID: 35810668 DOI: 10.1016/j.ecoenv.2022.113842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Because of essential role in homeostasis of the body fluid and excretion of wastes, kidney damage can lead to severe impacts on health and survival of humans. For most chemicals, nephrotoxic potentials and associated mechanisms are unclear. Hence, fast and sensitive screening measures for nephrotoxic chemicals are required. In this study, the utility of zebrafish (Danio rerio) was evaluated for the investigation of chemical-induced kidney toxicity and associated modes of toxicity, based on the literature review. Zebrafish has a well-understood biology, and many overlapping physiological characteristics with mammals. One such characteristic is its kidneys, of which histology and functions are similar to those of mammals, although unique differences of zebrafish kidneys, such as kidney marrow, should be noted. Moreover, the zebrafish kidney is simpler in structure and easy to observe. For these advantages, zebrafish has been increasingly used as an experimental model for screening nephrotoxicity of chemicals and for understanding related mechanisms. Multiple endpoints of zebrafish model, from functional level, i.e., glomerular filtration, to transcriptional changes of key genes, have been assessed to identify chemical-induced kidney toxicities, and to elucidate underlying mechanisms. The most frequently studied mechanisms of chemical-induced nephrotoxicity in zebrafish include oxidative stress, inflammation, DNA damage, apoptosis, fibrosis, and cell death. To date, several pharmaceuticals, oxidizing agents, natural products, biocides, alcohols, and consumer chemicals have been demonstrated to exert different types of kidney toxicities in zebrafish. The present review shows that zebrafish model can be efficiently employed for quick and reliable assessment of kidney damage potentials of chemicals, and related toxic mechanisms. The toxicological information obtained from this model can be utilized for identification of nephrotoxic chemicals and hence for protection of public health.
Collapse
Affiliation(s)
- Soyoung Lim
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Bareum Kwon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
30
|
Analysis of the Expression of Neurotrophins and Their Receptors in Adult Zebrafish Kidney. Vet Sci 2022; 9:vetsci9060296. [PMID: 35737348 PMCID: PMC9227799 DOI: 10.3390/vetsci9060296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022] Open
Abstract
Neurotrophins and their receptors are involved in the development and maintenance of neuronal populations. Different reports have shown that all neurotrophin/receptor pathways can also play a role in several non-neuronal tissues in vertebrates, including the kidney. These signaling pathways are involved in different events to ensure the correct functioning of the kidney, such as growth, differentiation, and regulation of renal tubule transport. Previous studies in some fish species have identified the neurotrophins and receptors in the kidney. In this study, for the first time, we compare the expression profiles (mRNA and protein) of all neurotrophin/receptor pathways in the kidney of the adult zebrafish. We quantify the levels of mRNA by using qPCR and identify the expression pattern of each neurotrophin/receptor pathway by in situ hybridization. Next, we detect the proteins using Western blotting and immunohistochemistry. Our results show that among all neurotrophins analyzed, NT-3/TrkC is the most expressed in the glomerule and tubule and in the hematopoietic cells, similar to what has been reported in the mammalian kidney.
Collapse
|
31
|
Zeitler EM, Jennette JC, Flythe JE, Falk RJ, Poulton JS. High-calorie diet results in reversible obesity-related glomerulopathy in adult zebrafish regardless of dietary fat. Am J Physiol Renal Physiol 2022; 322:F527-F539. [PMID: 35224994 PMCID: PMC8977181 DOI: 10.1152/ajprenal.00018.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity is a risk factor for the development of kidney disease. The role of diet in this association remains undetermined, in part due to practical limitations in studying nutrition in humans. In particular, the relative importance of calorie excess versus dietary macronutrient content is poorly understood. For example, it is unknown if calorie restriction modulates obesity-related kidney pathology. To study the effects of diet-induced obesity in a novel animal model, we treated zebrafish for 8 wk with diets varied in both calorie and fat content. Kidneys were evaluated by light and electron microscopy. We evaluated glomerular filtration barrier function using a dextran permeability assay. We assessed the effect of diet on podocyte sensitivity to injury using an inducible podocyte injury model. We then tested the effect of calorie restriction on the defects caused by diet-induced obesity. Fish fed a high-calorie diet developed glomerulomegaly (mean: 1,211 vs. 1,010 µm2 in controls, P = 0.007), lower podocyte density, foot process effacement, glomerular basement membrane thickening, tubular enlargement (mean: 1,038 vs. 717 µm2 in controls, P < 0.0001), and ectopic lipid deposition. Glomerular filtration barrier dysfunction and increased susceptibility to podocyte injury were observed with high-calorie feeding regardless of dietary fat content. These pathological changes resolved with 4 wk of calorie restriction. Our findings suggest that calorie excess rather than dietary fat drives obesity-related kidney dysfunction and that inadequate podocyte proliferation in response to glomerular enlargement may cause podocyte dysfunction. We also demonstrate the value of zebrafish as a novel model for studying diet in obesity-related kidney disease.NEW & NOTEWORTHY Obesity is a risk factor for kidney disease. The role of diet in this association is difficult to study in humans. In this study, zebrafish fed a high-calorie diet, regardless of fat macronutrient composition, developed glomerulomegaly, foot process effacement, and filtration barrier dysfunction, recapitulating the changes seen in humans with obesity. Calorie restriction reversed the changes. This work suggests that macronutrient composition may be less important than total calories in the development of obesity-related kidney disease.
Collapse
Affiliation(s)
- Evan M Zeitler
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Charles Jennette
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Nephropathology Division, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E Flythe
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ronald J Falk
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S Poulton
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Wiggenhauser LM, Metzger L, Bennewitz K, Soleymani S, Boger M, Tabler CT, Hausser I, Sticht C, Wohlfart P, Volk N, Heidenreich E, Buettner M, Hammes HP, Kroll J. pdx1 Knockout Leads to a Diabetic Nephropathy- Like Phenotype in Zebrafish and Identifies Phosphatidylethanolamine as Metabolite Promoting Early Diabetic Kidney Damage. Diabetes 2022; 71:1073-1080. [PMID: 35100334 DOI: 10.2337/db21-0645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022]
Abstract
The pdx1-/- zebrafish mutant was recently established as a novel animal model of diabetic retinopathy. In this study, we investigate whether knockout of pdx1 also leads to diabetic kidney disease (DKD). pdx1-/- larvae exhibit several signs of early DKD, such as glomerular hypertrophy, impairments in the filtration barrier corresponding to microalbuminuria, and glomerular basement membrane (GBM) thickening. Adult pdx1-/- mutants show progressive GBM thickening in comparison with the larval state. Heterozygous pdx1 knockout also leads to glomerular hypertrophy as initial establishment of DKD similar to the pdx1-/- larvae. RNA sequencing of adult pdx1+/- kidneys uncovered regulations in multiple expected diabetic pathways related to podocyte disruption and hinting at early vascular dysregulation without obvious morphological alterations. Metabolome analysis and pharmacological intervention experiments revealed the contribution of phosphatidylethanolamine in the early establishment of kidney damage. In conclusion, this study identified the pdx1 mutant as a novel model for the study of DKD, showing signs of the early disease progression already in the larval stage and several selective features of later DKD in adult mutants.
Collapse
Affiliation(s)
- Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Metzger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Silas Soleymani
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph T Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingrid Hausser
- Electron Microscopy Lab, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Sticht
- Next-Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paulus Wohlfart
- Diabetes R&D, Insulin Biology Cluster, Sanofi Deutschland GmbH, Frankfurt, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Elena Heidenreich
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Michael Buettner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
33
|
Nishimura Y, Ishii T, Ando K, Yuge S, Nakajima H, Zhou W, Mochizuki N, Fukuhara S. Blood Flow Regulates Glomerular Capillary Formation in Zebrafish Pronephros. KIDNEY360 2022; 3:700-713. [PMID: 35721616 PMCID: PMC9136892 DOI: 10.34067/kid.0005962021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 06/15/2023]
Abstract
Background The renal glomerulus is a tuft of capillaries in Bowman's capsule and functions as a blood-filtration unit in the kidney. The unique glomerular capillary tuft structure is relatively conserved through vertebrate species. However, the morphogenetic mechanism governing glomerular capillary tuft formation remains elusive. Methods To clarify how glomerular capillaries develop, we analyzed glomerular capillary formation in the zebrafish pronephros by exploiting fluorescence-based bio-imaging technology. Results During glomerular capillary formation in the zebrafish pronephros, endothelial cells initially sprouted from the dorsal aorta and formed the capillaries surrounding the bilateral glomerular primordia in response to podocyte progenitor-derived vascular endothelial growth factor-A. After formation, blood flow immediately occurred in the glomerular primordia-associated capillaries, while in the absence of blood flow, they were transformed into sheet-like structures enveloping the glomerular primordia. Subsequently, blood flow induced formation of Bowman's space at the lateral sides of the bilateral glomerular primordia. Concomitantly, podocyte progenitors enveloped their surrounding capillaries while moving toward and coalescing at the midline. These capillaries then underwent extensive expansion and remodeling to establish a functional glomerular capillary tuft. However, stopping blood flow inhibited the remodeling of bilateral glomerular primordia, which therefore remained unvascularized but covered by the vascular sheets. Conclusions We delineated the morphogenetic processes governing glomerular capillary tuft formation in the zebrafish pronephros and demonstrated crucial roles of blood flow in its formation. Blood flow maintains tubular structures of the capillaries surrounding the glomerular primordia and promotes glomerular incorporation of these vessels by inducing the remodeling of glomerular primordia.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Shinya Yuge
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Weibin Zhou
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
34
|
Wang S, Ju Y, Gao L, Miao Y, Qiao H, Wang Y. The fruit fly kidney stone models and their application in drug development. Heliyon 2022; 8:e09232. [PMID: 35399385 PMCID: PMC8987614 DOI: 10.1016/j.heliyon.2022.e09232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.
Collapse
Affiliation(s)
- Shiyao Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yingjie Ju
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Lujuan Gao
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Huanhuan Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiwen Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| |
Collapse
|
35
|
Zhang Y, Xia Q, Wang J, Zhuang K, Jin H, Liu K. Progress in using zebrafish as a toxicological model for traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114638. [PMID: 34530096 DOI: 10.1016/j.jep.2021.114638] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been applied for more than 2000 years. However, modern basic research on the safety of TCMs is limited. Establishing safety evaluation technology in line with the characteristics of TCM and conducting large-scale basic toxicity research are keys to comprehensively understand the toxicity of TCMs. In recent years, zebrafish has been used as a model organism for toxicity assessment and is increasingly utilized for toxicity research of TCMs. Yet, a comprehensive review in using zebrafish as a toxicological model for TCMs is lacked. AIM OF THE STUDY We aim to summarize the progress and limitation in toxicity evaluation of TCMs using zebrafish and put forward the future research ideas. MATERIALS AND METHODS The scientific databases, including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI) were searched using the key words of zebrafish, toxicology, traditional Chinese medicine, acute toxicity, liver injury, cardiotoxicity, kidney toxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, ototoxicity, and osteotoxicity. RESULTS Zebrafish assays are low experimental cost and short cycle, easily achieving high-throughput toxicity screening, and exemption from ethical legislation up to 5 dpf. It has been widely used to evaluate the acute toxicity, liver toxicity, cardiotoxicity, nephrotoxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, and ototoxicity caused by TCMs, although some physiological difference limited its application. CONCLUSIONS Zebrafish is a powerful model for TCMs toxicity evaluation, but it is not flawless. The toxicity testing criterion and high throughput assays are urgent to be established. This review provides references for future studies.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Hongtao Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.
| |
Collapse
|
36
|
Visualizing multiciliated cells in the zebrafish. Methods Cell Biol 2022. [DOI: 10.1016/bs.mcb.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
38
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
39
|
Ren Z, Zhang Z, Liu TM, Ge W. Novel zebrafish polycystic kidney disease models reveal functions of the Hippo pathway in renal cystogenesis. Dis Model Mech 2021; 14:272239. [PMID: 34545930 PMCID: PMC8592019 DOI: 10.1242/dmm.049027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is a kinase cascade that plays an important role in organ size control. As the main effectors of the Hippo pathway, transcription coactivators Yap1/Wwtr1 are regulated by the upstream kinase Stk3. Recent studies in mammals have implicated the Hippo pathway in kidney development and kidney diseases. To further illustrate its roles in vertebrate kidney, we generated a series of zebrafish mutants targeting stk3, yap1 and wwtr1 genes. The stk3−/− mutant exhibited edema, formation of glomerular cysts and pronephric tubule dilation during the larval stage. Interestingly, disruption of wwtr1, but not yap1, significantly alleviated the renal phenotypes of the stk3−/− mutant, and overexpression of Wwtr1 with the CMV promoter also induced pronephric phenotypes, similar to those of the stk3−/− mutant, during larval stage. Notably, adult fish with Wwtr1 overexpression developed phenotypes similar to those of human polycystic kidney disease (PKD). Overall, our analyses revealed roles of Stk3 and Wwtr1 in renal cyst formation. Using a pharmacological approach, we further demonstrated that Stk3-deficient zebrafish could serve as a PKD model for drug development. Summary: A zebrafish stk3 mutant line and Wwtr1 overexpression line provide evidence for functions of the Hippo signaling pathway in renal cyst formation and represent potential models for polycystic kidney disease.
Collapse
Affiliation(s)
- Zhiqin Ren
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Tzu-Ming Liu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
40
|
Adriamycin does not damage podocytes of zebrafish larvae. PLoS One 2020; 15:e0242436. [PMID: 33186381 PMCID: PMC7665694 DOI: 10.1371/journal.pone.0242436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
Podocytes are highly specialized epithelial cells that are essential for an intact glomerular filtration barrier in the kidney. Several glomerular diseases like focal segmental glomerulosclerosis (FSGS) are initially due to podocyte injury and loss. Since causative treatments for FSGS are not available until today, drug screening is of great relevance. In order to test a high number of drugs, FSGS needs to be reliably induced in a suitable animal model. The zebrafish larva is an ideal model for kidney research due to the vast amount of offsprings, the rapid development of a simple kidney and a remarkable homology to the mammalian glomerulus. Zebrafish larvae possess a size-selective glomerular filtration barrier at 4 days post fertilization including podocytes with interdigitating foot processes that are connected by a slit membrane. Adriamycin is an anthracycline which is often used in mice and rats to induce a FSGS-like phenotype. In this study, we aimed to induce a similar phenotype to zebrafish larvae by adding adriamycin to the tank water in different concentrations. Surprisingly, zebrafish larvae did not develop glomerular injury and displayed an intact filtration barrier after treatment with adriamycin. This was shown by (immuno-) histology, our filtration assay, in vivo imaging by 2-photon microcopy, RT-(q)PCR as well as transmission electron microscopy. To summarize, adriamycin is unable to induce a podocyte-related damage in zebrafish larvae and therefore major effort must be made to establish FSGS in zebrafish larvae to identify effective drugs by screenings.
Collapse
|
41
|
New zebrafish model for monitoring proximal tubule physiology in genetic and acquired renal Fanconi syndromes. Kidney Int 2020; 97:1097-1099. [PMID: 32444088 DOI: 10.1016/j.kint.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022]
Abstract
Inherited and acquired disorders that affect proximal tubule endocytosis and lysosomal processing manifest with improper loss of solutes and proteins. The zebrafish pronephros is conserved with humans and is used to model numerous renal conditions, but has few quantitative measures for proximal tubule function. Here, Chen et al. developed a high-throughput assay to quantify proteinuria and lysosomal processing in transgenic zebrafish by labeling vitamin D protein, allowing for precise reporting of proximal tubule function.
Collapse
|
42
|
Chen Z, Luciani A, Mateos JM, Barmettler G, Giles RH, Neuhauss SCF, Devuyst O. Transgenic zebrafish modeling low-molecular-weight proteinuria and lysosomal storage diseases. Kidney Int 2019; 97:1150-1163. [PMID: 32061435 DOI: 10.1016/j.kint.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Epithelial cells lining the proximal tubule of the kidney reabsorb and metabolize most of the filtered low-molecular-weight proteins through receptor-mediated endocytosis and lysosomal processing. Congenital and acquired dysfunctions of the proximal tubule are consistently reflected by the inappropriate loss of solutes including low-molecular-weight proteins in the urine. The zebrafish pronephros shares individual functional segments with the human nephron, including lrp2a/megalin-dependent endocytic transport processes of the proximal tubule. Although the zebrafish has been used as a model organism for toxicological studies and drug discovery, there is no available assay that allows large-scale assessment of proximal tubule function in larval or adult stages. Here we establish a transgenic Tg(lfabp::½vdbp-mCherry) zebrafish line expressing in the liver the N-terminal region of vitamin D-binding protein coupled to the acid-insensitive, red monomeric fluorescent protein mCherry (½vdbp-mCherry). This low-molecular-weight protein construct is secreted into the bloodstream, filtered through the glomerulus, reabsorbed by receptor-mediated endocytosis and processed in the lysosomes of proximal tubule cells of the fish. Thus, our proof-of-concept studies using zebrafish larvae knockout for lrp2a and clcn7 or exposed to known nephrotoxins (gentamicin and cisplatin) demonstrate that this transgenic line is useful to monitor low-molecular-weight proteinuria and lysosomal processing. This represents a powerful new model organism for drug screening and studies of nephrotoxicity.
Collapse
Affiliation(s)
- Zhiyong Chen
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - José María Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Gery Barmettler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Rachel H Giles
- Department of Nephrology and Hypertension, Hubrecht Institute, Utrecht, The Netherlands; University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
44
|
A zebrafish tale of parabiosis, podocytes, and proteinuria. Kidney Int 2019; 96:272-275. [PMID: 31331464 DOI: 10.1016/j.kint.2019.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022]
Abstract
Glomerular damage is a harbinger of kidney dysfunction. Circulating permeability factors are implicated in causing primary and secondary damage to podocytes, leading to proteinuria and eventual progression to the nephrotic syndrome, but the mechanisms are not well understood. Müller-Deile et al. employed parabiosis with zebrafish embryos and found that a damaged glomerulus can impact a healthy one in a shared circulatory system. This methodology shows promise for elucidating kidney injury pathways in response to systemic disease.
Collapse
|
45
|
Abstract
The vertebrate kidney is comprised of functional units known as nephrons. Defects in nephron development or activity are a common feature of kidney disease. Current medical treatments are unable to ameliorate the dire consequences of nephron deficit or injury. Although there have been tremendous advancements in our understanding of nephron ontogeny and the response to damage, many significant knowledge gaps still remain. The zebrafish embryo kidney, or pronephros, is an ideal model for many renal development and regeneration studies because it is comprised of nephrons that share conserved features with the nephron units that comprise the mammalian metanephric kidney. In this chapter, we provide an overview about the benefits of using the zebrafish pronephros to study the mechanisms underlying nephrogenesis as well as epithelial repair and regeneration. We subsequently detail methods for the spatiotemporal assessment of gene and protein expression in zebrafish embryos that can be used to extend the understanding of nephron development and disease, and thereby create new opportunities to identify therapeutic strategies for regenerative medicine.
Collapse
|
46
|
Chambers BE, Gerlach GF, Clark EG, Chen KH, Levesque AE, Leshchiner I, Goessling W, Wingert RA. Tfap2a is a novel gatekeeper of nephron differentiation during kidney development. Development 2019; 146:dev.172387. [PMID: 31160420 DOI: 10.1242/dev.172387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Renal functional units known as nephrons undergo patterning events during development that create a segmental array of cellular compartments with discrete physiological identities. Here, from a forward genetic screen using zebrafish, we report the discovery that transcription factor AP-2 alpha (tfap2a) coordinates a gene regulatory network that activates the terminal differentiation program of distal segments in the pronephros. We found that tfap2a acts downstream of Iroquois homeobox 3b (irx3b), a distal lineage transcription factor, to operate a circuit consisting of tfap2b, irx1a and genes encoding solute transporters that dictate the specialized metabolic functions of distal nephron segments. Interestingly, this regulatory node is distinct from other checkpoints of differentiation, such as polarity establishment and ciliogenesis. Thus, our studies reveal insights into the genetic control of differentiation, where tfap2a is essential for regulating a suite of segment transporter traits at the final tier of zebrafish pronephros ontogeny. These findings have relevance for understanding renal birth defects, as well as efforts to recapitulate nephrogenesis in vivo to facilitate drug discovery and regenerative therapies.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eleanor G Clark
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karen H Chen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anna E Levesque
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
47
|
Chambers BE, Wingert RA. Mechanisms of Nephrogenesis Revealed by Zebrafish Chemical Screen: Prostaglandin Signaling Modulates Nephron Progenitor Fate. Nephron Clin Pract 2019; 143:68-76. [PMID: 31216548 DOI: 10.1159/000501037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Nephron development involves the creation of discrete segment populations that are specialized to fulfill unique physiological roles. As such, renal function is reliant on the proper execution of segment patterning programs. Despite the central importance of nephron segmentation, the genetic mechanisms that regulate this process are far from understood, in large part due to the experimental complexities and cost of interrogating these events in the mammalian metanephros. For this reason, forward genetics utilizing phenotypic screening in the zebrafish pronephros provides an avenue to gain novel insights about the mechanisms of nephron segmentation in the vertebrate kidney. Discoveries from zebrafish can highlight possible conserved pathways and provide a useful starting point for reverse genetic analyses with other animal models or in vitro approaches. In this review, we discuss the results of a novel chemical screen using the zebrafish to identify segmentation regulators. Through this screen, we identified for the first time that prostaglandin signaling can modulate nephron segmentation, and that it is normally requisite during development to mitigate segment fate choice in the embryonic kidney. We briefly discuss how these discoveries relate to current knowledge about nephron segmentation. Finally, we explore the possible implications of these findings for understanding renal ontogeny and disease, and how this knowledge may be useful for ongoing research initiatives that are aimed at deciphering how to build or rebuild the human kidney.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA,
| |
Collapse
|
48
|
Chambers BE, Wingert RA. Nephron repair: powered by anaerobic energy metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S28. [PMID: 31032308 DOI: 10.21037/atm.2019.01.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
49
|
Iroquois transcription factor irx2a is required for multiciliated and transporter cell fate decisions during zebrafish pronephros development. Sci Rep 2019; 9:6454. [PMID: 31015532 PMCID: PMC6478698 DOI: 10.1038/s41598-019-42943-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
The genetic regulation of nephron patterning during kidney organogenesis remains poorly understood. Nephron tubules in zebrafish are composed of segment populations that have unique absorptive and secretory roles, as well as multiciliated cells (MCCs) that govern fluid flow. Here, we report that the transcription factor iroquois 2a (irx2a) is requisite for zebrafish nephrogenesis. irx2a transcripts localized to the developing pronephros and maturing MCCs, and loss of function altered formation of two segment populations and reduced MCC number. Interestingly, irx2a deficient embryos had reduced expression of an essential MCC gene ets variant 5a (etv5a), and were rescued by etv5a overexpression, supporting the conclusion that etv5a acts downstream of irx2a to control MCC ontogeny. Finally, we found that retinoic acid (RA) signaling affects the irx2a expression domain in renal progenitors, positioning irx2a downstream of RA. In sum, this work reveals new roles for irx2a during nephrogenesis, identifying irx2a as a crucial connection between RA signaling, segmentation, and the control of etv5a mediated MCC formation. Further investigation of the genetic players involved in these events will enhance our understanding of the molecular pathways that govern renal development, which can be used help create therapeutics to treat congenital and acquired kidney diseases.
Collapse
|
50
|
Prostaglandin signaling regulates renal multiciliated cell specification and maturation. Proc Natl Acad Sci U S A 2019; 116:8409-8418. [PMID: 30948642 PMCID: PMC6486750 DOI: 10.1073/pnas.1813492116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) have core roles in organ formation and function, where they control fluid flow and particle displacement. MCCs direct fluid movement in the brain and spinal cord, clearance of respiratory mucus, and ovum transport from the ovary to the uterus. Deficiencies in MCC functionality lead to hydrocephalus, chronic respiratory infections, and infertility. Prostaglandins are lipids that are used to coordinate cellular functions. Here, we discovered that prostaglandin signaling is required for MCC development in the embryonic zebrafish kidney. Understanding renal MCC genesis can lend insights into the puzzling origins of MCCs in several chronic kidney diseases, where it is unclear whether MCCs are a cause or phenotypic outcome of the condition. Multiciliated cells (MCCs) are specialized epithelia with apical bundles of motile cilia that direct fluid flow. MCC dysfunction is associated with human diseases of the respiratory, reproductive, and central nervous systems. Further, the appearance of renal MCCs has been cataloged in several kidney conditions, where their function is unknown. Despite their pivotal health importance, many aspects of MCC development remain poorly understood. Here, we utilized a chemical screen to identify molecules that affect MCC ontogeny in the zebrafish embryo kidney, and found prostaglandin signaling is essential both for renal MCC progenitor formation and terminal differentiation. Moreover, we show that prostaglandin activity is required downstream of the transcription factor ets variant 5a (etv5a) during MCC fate choice, where modulating prostaglandin E2 (PGE2) levels rescued MCC number. The discovery that prostaglandin signaling mediates renal MCC development has broad implications for other tissues, and could provide insight into a multitude of pathological states.
Collapse
|