1
|
Zhang ZJ, Casiraghi F, Perkins GB, Baldwin WM, Fairchild RL. Can mouse kidney transplant models inform mechanisms of injury and acceptance in clinical kidney transplantation? Am J Transplant 2025:S1600-6135(25)00172-8. [PMID: 40209906 DOI: 10.1016/j.ajt.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Despite standard-of-care immunosuppression, acute rejection remains commonly observed in kidney transplants and leads to chronic graft injury and failure in many transplanted patients. Mechanisms underlying acute and chronic kidney graft injury are incompletely understood, undermining the development and implementation of therapeutic strategies to improve outcomes. This compels the use of preclinical kidney transplant models to identify components and mechanisms mediating acute and chronic graft injury. Mouse models have been instrumental in establishing basic principles of alloimmune responses and the rejection of heart allografts. There is increasing use of mouse models to extend these studies to kidney transplantation, but the relevance of the findings to clinical kidney transplants remains under scrutiny. Here, we discuss the strengths and weaknesses of mouse models of kidney allograft responses and injury. Although obvious weaknesses arise when considering the relevance to clinical kidney transplants, there are new models that recapitulate many features of kidney graft injury in the clinical scenario and have much to contribute to understanding innate and donor alloantigen-specific mechanisms underlying kidney allograft injury. As in most preclinical studies, the pertinent use of kidney allogeneic transplants in mice comes down to the judicious choice of test questions and the choice of appropriate donors and recipients for the chosen model.
Collapse
Affiliation(s)
- Zheng Jenny Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy
| | - Griffith Boord Perkins
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Diebold M, Mayer KA, Hidalgo L, Kozakowski N, Budde K, Böhmig GA. Chronic Rejection After Kidney Transplantation. Transplantation 2025; 109:610-621. [PMID: 39192468 PMCID: PMC11927446 DOI: 10.1097/tp.0000000000005187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
In kidney transplantation, ongoing alloimmune processes-commonly triggered by HLA incompatibilities-can trigger chronic transplant rejection, affecting the microcirculation and the tubulointerstitium. Continuous inflammation may lead to progressive, irreversible graft injury, culminating in graft dysfunction and accelerated transplant failure. Numerous experimental and translational studies have delineated a complex interplay of different immune mechanisms driving rejection, with antibody-mediated rejection (AMR) being an extensively studied rejection variant. In microvascular inflammation, a hallmark lesion of AMR, natural killer (NK) cells have emerged as pivotal effector cells. Their essential role is supported by immunohistologic evidence, bulk and spatial transcriptomics, and functional genetics. Despite significant research efforts, a substantial unmet need for approved rejection therapies persists, with many trials yielding negative outcomes. However, several promising therapies are currently under investigation, including felzartamab, a monoclonal antibody targeting the surface molecule CD38, which is highly expressed in NK cells and antibody-producing plasma cells. In an exploratory phase 2 trial in late AMR, this compound has demonstrated potential in resolving molecular and morphologic rejection activity and injury, predominantly by targeting NK cell effector function. These findings inspire hope for effective treatments and emphasize the necessity of further pivotal trials focusing on chronic transplant rejection.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina A. Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Luis Hidalgo
- HLA Laboratory, Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Chutani A, Guevara-Pineda D, Lerner GB, Menon MC. Re-Evaluating the Transplant Glomerulopathy Lesion-Beyond Donor-Specific Antibodies. Transpl Int 2024; 37:13365. [PMID: 39640250 PMCID: PMC11617188 DOI: 10.3389/ti.2024.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
There have been significant advances in short-term outcomes in renal transplantation. However, longer-term graft survival has improved only minimally. After the first post-transplant year, it has been estimated that chronic allograft damage is responsible for 5% of graft loss per year. Transplant glomerulopathy (TG), a unique morphologic lesion, is reported to accompany progressive chronic allograft dysfunction in many cases. While not constituting a specific etiologic diagnosis, TG is primarily considered as a histologic manifestation of ongoing allo-immune damage from donor-specific anti-HLA alloantibodies (DSA). In this review article, we re-evaluate the existing literature on TG, with particular emphasis on the role of non-HLA-antibodies and complement-mediated injury, cell-mediated immune mechanisms, and early podocyte stress in the pathogenesis of Transplant Glomerulopathy.
Collapse
Affiliation(s)
- Arun Chutani
- Transplant Nephrology, Yale University of School of Medicine, New Haven, CT, United States
| | | | | | - Madhav C. Menon
- Nephrology, Medicine, Research in Kidney Transplantation, Faculty in Human Translational Immunology and Translational Biomedicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Diebold M, Farkash EA, Barnes J, Regele H, Kozakowski N, Schatzl M, Mayer KA, Haindl S, Vietzen H, Hidalgo LG, Halloran PF, Eskandary F, Böhmig GA. Natural Killer Cell Presence in Antibody-Mediated Rejection. Transpl Int 2024; 37:13209. [PMID: 38979120 PMCID: PMC11228143 DOI: 10.3389/ti.2024.13209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
Transcript analyses highlight an important contribution of natural killer (NK) cells to microvascular inflammation (MVI) in antibody-mediated rejection (ABMR), but only few immunohistologic studies have quantified their spatial distribution within graft tissue. This study included 86 kidney transplant recipients who underwent allograft biopsies for a positive donor-specific antibody (DSA) result. NK cells were visualized and quantified within glomeruli and peritubular capillaries (PTC), using immunohistochemistry for CD34 alongside CD16/T-bet double-staining. Staining results were analyzed in relation to histomorphology, microarray analysis utilizing the Molecular Microscope Diagnostic System, functional NK cell genetics, and clinical outcomes. The number of NK cells in glomeruli per mm2 glomerular area (NKglom) and PTC per mm2 cortical area (NKPTC) was substantially higher in biopsies with ABMR compared to those without rejection, and correlated with MVI scores (NKglom Spearman's correlation coefficient [SCC] = 0.55, p < 0.001, NKPTC 0.69, p < 0.001). In parallel, NK cell counts correlated with molecular classifiers reflecting ABMR activity (ABMRprob: NKglom 0.59, NKPTC 0.75) and showed a trend towards higher levels in association with high functional FCGR3A and KLRC2 gene variants. Only NKPTC showed a marginally significant association with allograft function and survival. Our immunohistochemical results support the abundance of NK cells in DSA-positive ABMR.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Evan A Farkash
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Jenna Barnes
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Heinz Regele
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Martina Schatzl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Susanne Haindl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Luis G Hidalgo
- Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Manook M, Olaso D, Anwar I, DeLaura I, Yoon J, Bae Y, Barbas A, Shaw B, Moris D, Song M, Farris AB, Stiede K, Youd M, Knechtle S, Kwun J. Prolonged xenokidney graft survival in sensitized NHP recipients by expression of multiple human transgenes in a triple knockout pig. Sci Transl Med 2024; 16:eadk6152. [PMID: 38865482 PMCID: PMC11328991 DOI: 10.1126/scitranslmed.adk6152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Genetic modification of porcine donors, combined with optimized immunosuppression, has been shown to improve outcomes of experimental xenotransplant. However, little is known about outcomes in sensitized recipients, a population that could potentially benefit the most from the clinical implementation of xenotransplantation. Here, five highly allosensitized rhesus macaques received a porcine kidney from GGTA1 (α1,3-galactosyltransferase) knockout pigs expressing the human CD55 transgene (1KO.1TG) and were maintained on an anti-CD154 monoclonal antibody (mAb)-based immunosuppressive regimen. These recipients developed de novo xenoreactive antibodies and experienced xenograft rejection with evidence of thrombotic microangiopathy and antibody-mediated rejection (AMR). In comparison, three highly allosensitized rhesus macaques receiving a kidney from GGTA1, CMAH (cytidine monophospho-N-acetylneuraminic acid hydroxylase), and b4GNT2/b4GALNT2 (β-1,4-N-acetyl-galactosaminyltransferase 2) knockout pigs expressing seven human transgenes including human CD46, CD55, CD47, THBD (thrombomodulin), PROCR (protein C receptor), TNFAIP3 (tumor necrosis factor-α-induced protein 3), and HMOX1 (heme oxygenase 1) (3KO.7TG) experienced significantly prolonged graft survival and reduced AMR, associated with dampened post-transplant humoral responses, early monocyte and neutrophil activation, and T cell repopulation. After withdrawal of all immunosuppression, recipients who received kidneys from 3KO.7TG pigs rejected the xenografts via AMR. These data suggest that allosensitized recipients may be suitable candidates for xenografts from genetically modified porcine donors and could benefit from an optimized immunosuppression regimen designed to target the post-transplant humoral response, thereby avoiding AMR.
Collapse
Affiliation(s)
- Miriam Manook
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Danae Olaso
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Imran Anwar
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Isabel DeLaura
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Janghoon Yoon
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yeeun Bae
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew Barbas
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brian Shaw
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dimitrios Moris
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mingqing Song
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alton B. Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Stuart Knechtle
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jean Kwun
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Diebold M, Vietzen H, Heinzel A, Haindl S, Herz CT, Mayer K, Doberer K, Kainz A, Faé I, Wenda S, Kühner LM, Berger SM, Puchhammer-Stöckl E, Kozakowski N, Schaub S, Halloran PF, Böhmig GA. Natural killer cell functional genetics and donor-specific antibody-triggered microvascular inflammation. Am J Transplant 2024; 24:743-754. [PMID: 38097018 DOI: 10.1016/j.ajt.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 12/02/2023] [Indexed: 12/31/2023]
Abstract
Antibody-mediated rejection (ABMR) is a leading cause of graft failure. Emerging evidence suggests a significant contribution of natural killer (NK) cells to microvascular inflammation (MVI). We investigated the influence of genetically determined NK cell functionality on ABMR development and activity. The study included 86 kidney transplant recipients subjected to systematic biopsies triggered by donor-specific antibody detection. We performed killer immunoglobulin-like receptor typing to predict missing self and genotyped polymorphisms determining NK cell functionality (FCGR3AV/F158 [rs396991], KLRC2wt/del, KLRK1HNK/LNK [rs1049174], rs9916629-C/T). Fifty patients had ABMR with considerable MVI and elevated NK cell transcripts. Missing self was not related to MVI. Only KLRC2wt/wt showed an association (MVI score: 2 [median; interquartile range: 0-3] vs 0 [0-1] in KLRC2wt/del recipients; P = .001) and remained significant in a proportional odds multivariable model (odds ratio, 7.84; 95% confidence interval, 2.37-30.47; P = .001). A sum score incorporating all polymorphisms and missing self did not outperform a score including only KLRC2 and FCGR3A variants, which were predictive in univariable analysis. NK cell genetics did not affect graft functional decline and survival. In conclusion, a functional KLRC2 polymorphism emerged as an independent determinant of ABMR activity, without a considerable contribution of missing self and other NK cell gene polymorphisms.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Susanne Haindl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Carsten T Herz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Katharina Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander Kainz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ingrid Faé
- Department of Blood Group Serology and Transfusion Medicine, Medical University Vienna, Vienna, Austria
| | - Sabine Wenda
- Department of Blood Group Serology and Transfusion Medicine, Medical University Vienna, Vienna, Austria
| | - Laura M Kühner
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Sarah M Berger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, ATAGC, University of Alberta, Edmonton, Alberta, Canada
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Satoskar A, Abdel-Rasoul M, Uwase H, Breuer CK, Bumgardner GL. Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1504-1518. [PMID: 38517294 PMCID: PMC11047759 DOI: 10.4049/jimmunol.2300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Hope Uwase
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
8
|
Heeger PS, Haro MC, Jordan S. Translating B cell immunology to the treatment of antibody-mediated allograft rejection. Nat Rev Nephrol 2024; 20:218-232. [PMID: 38168662 DOI: 10.1038/s41581-023-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Antibody-mediated rejection (AMR), including chronic AMR (cAMR), causes ~50% of kidney allograft losses each year. Despite attempts to develop well-tolerated and effective therapeutics for the management of AMR, to date, none has obtained FDA approval, thereby highlighting an urgent unmet medical need. Discoveries over the past decade from basic, translational and clinical studies of transplant recipients have provided a foundation for developing novel therapeutic approaches to preventing and treating AMR and cAMR. These interventions are aimed at reducing donor-specific antibody levels, decreasing graft injury and fibrosis, and preserving kidney function. Innovative approaches emerging from basic science findings include targeting interactions between alloreactive T cells and B cells, and depleting alloreactive memory B cells, as well as donor-specific antibody-producing plasmablasts and plasma cells. Therapies aimed at reducing the cytotoxic antibody effector functions mediated by natural killer cells and the complement system, and their associated pro-inflammatory cytokines, are also undergoing evaluation. The complexity of the pathogenesis of AMR and cAMR suggest that multiple approaches will probably be required to treat these disease processes effectively. Definitive answers await results from large, double-blind, multicentre, randomized controlled clinical trials.
Collapse
Affiliation(s)
- Peter S Heeger
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA
| | - Maria Carrera Haro
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA
| | - Stanley Jordan
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Hart M, Satoskar AA, Abdel-Rasoul M, Breuer CK, Bumgardner GL. CXCR5 + CD8 + T Cell-mediated Suppression of Humoral Alloimmunity and AMR in Mice Is Optimized With mTOR and Impaired With Calcineurin Inhibition. Transplantation 2024; 108:679-692. [PMID: 37872660 PMCID: PMC10922067 DOI: 10.1097/tp.0000000000004828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Adoptive cellular therapy (ACT) with antibody-suppressor CXCR5 + CD8 + T cells (CD8 + T Ab-supp ) inhibits alloantibody production, antibody-mediated rejection (AMR), and prolongs graft survival in multiple transplant mouse models. However, it is not known how conventional immunosuppressive agents impact the efficacy of CD8 + T Ab-supp ACT. METHODS We investigated the efficacy of CD8 + T Ab-supp cell ACT when combined with calcineurin inhibitor (CNi) or mammalian target of rapamycin inhibitor (mTORi) in a murine model of kidney transplant. RESULTS ACT-mediated decrease in germinal center B cells, posttransplant alloantibody titer, and amelioration of AMR in high alloantibody-producing CCR5 knockout kidney transplant recipients were impaired when ACT was combined with CNi and enhanced when combined with mTORi. CNi (but not mTORi) reduced ACT-mediated in vivo cytotoxicity of IgG + B cells and was associated with increased quantity of germinal center B cells. Neither CNi nor mTORi treatment impacted the expression of cytotoxic effector molecules (FasL, Lamp1, perforin, granzyme B) by CD8 + T Ab-supp after ACT. Concurrent treatment with CNi (but not mTORi) reduced in vivo proliferation of CD8 + T Ab-supp after ACT. The increase in quantity of splenic CD44 + CXCR5 + CD8 + T cells that occurs after ACT was reduced by concurrent treatment with CNi but not by concurrent treatment with mTORi (dose-dependent). CONCLUSIONS Impaired efficacy of ACT by CNi is attributed to reduced persistence and/or expansion of CD8 + T Ab-supp cells after ACT. In contrast, concurrent immunosuppression with mTORi preserves CD8 + T Ab-supp cells quantity, in vivo proliferation, and in vivo cytotoxic effector function after ACT and enhances suppression of humoral alloimmunity and AMR.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Madison Hart
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | | | | | - Ginny L. Bumgardner
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
10
|
Zhang X, Wang J, Wang M, Du M, Chen J, Wang L, Wu J. IFN-β Pretreatment Alleviates Allogeneic Renal Tubular Epithelial Cell-Induced NK Cell Responses via the IRF7/HLA-E/NKG2A Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:715-722. [PMID: 38149913 DOI: 10.4049/jimmunol.2200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-β could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process. Upregulation of both HLA-E and PD-L1 was fully abrogated by the JAK1/2 inhibitor ruxolitinib. Signaling pathway molecules, including STAT1, STAT2, mTOR, Tyk2, and p38 MAPK, were involved in HLA-E and PD-L1 upregulation. IRF7 is the key transcription factor responsible for the activation of HLA-E and PD-L1 promoters. Through screening an epigenetic regulation library, we found a natural compound, bisdemethoxycurcumin, enhanced IFN-β-induced HLA-E and PD-L1 expression in vitro and in vivo. In PBMC-derived CD56+ NK cells, we found that NKG2A but not PD1 was constitutively expressed, indicating HLA-E/NKG2A as a more potent target to induce tolerance to innate immune cells. Pretreating HK-2 cells by IFN-β significantly attenuated the degranulation of their coincubated NK cells and protected cells from NK-mediated lysis. In conclusion, IFN-β pretreatment could activate HLA-E and PD-L1 transcription through the JAK/STAT/IRF7 pathway and then could protect renal tubular epithelial cells from allogeneic immune attack mediated by NK cells.
Collapse
Affiliation(s)
- Xing Zhang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengbao Du
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
11
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Ahuja HK, Azim S, Maluf D, Mas VR. Immune landscape of the kidney allograft in response to rejection. Clin Sci (Lond) 2023; 137:1823-1838. [PMID: 38126208 DOI: 10.1042/cs20230493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Preventing kidney graft dysfunction and rejection is a critical step in addressing the nationwide organ shortage and improving patient outcomes. While kidney transplants (KT) are performed more frequently, the overall number of patients on the waitlist consistently exceeds organ availability. Despite improved short-term outcomes in KT, comparable progress in long-term allograft survival has not been achieved. Major cause of graft loss at 5 years post-KT is chronic allograft dysfunction (CAD) characterized by interstitial fibrosis and tubular atrophy (IFTA). Accordingly, proactive prevention of CAD requires a comprehensive understanding of the immune mechanisms associated with either further dysfunction or impaired repair. Allograft rejection is primed by innate immune cells and carried out by adaptive immune cells. The rejection process is primarily facilitated by antibody-mediated rejection (ABMR) and T cell-mediated rejection (TCMR). It is essential to better elucidate the actions of individual immune cell subclasses (e.g. B memory, Tregs, Macrophage type 1 and 2) throughout the rejection process, rather than limiting our understanding to broad classes of immune cells. Embracing multi-omic approaches may be the solution in acknowledging these intricacies and decoding these enigmatic pathways. A transition alongside advancing technology will better allow organ biology to find its place in this era of precision and personalized medicine.
Collapse
Affiliation(s)
- Harsimar Kaur Ahuja
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Shafquat Azim
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Daniel Maluf
- Program of Transplantation, School of Medicine, 29S Greene St, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| |
Collapse
|
13
|
Perkins GB, Fairchild RL. Linking donor-specific antibody generation with natural killer cells in antibody-mediated kidney graft rejection. Kidney Int 2023; 104:644-646. [PMID: 37739612 DOI: 10.1016/j.kint.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 09/24/2023]
Abstract
Natural killer (NK) cell infiltration of kidney allografts is a distinguishing feature of antibody-mediated rejection. Bailly et al. identify a distinct population of cytotoxic CD160+ interleukin-21 receptor+ CD56dimCD16bright NK cells that are uniquely found in the peripheral blood of donor-specific antibody-positive kidney transplant recipients and are present in kidney allografts with active antibody-mediated rejection. This population is implicated in a T follicular helper/interleukin-21/NK cell axis that links donor-specific antibody generation with graft-infiltrating NK cells in antibody-mediated rejection.
Collapse
Affiliation(s)
- Griffith B Perkins
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Immunology Directorate, SA Pathology, Adelaide, South Australia, Australia.
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
14
|
Qu J, Jin J, Zhang M, Ng LG. Neutrophil diversity and plasticity: Implications for organ transplantation. Cell Mol Immunol 2023; 20:993-1001. [PMID: 37386174 PMCID: PMC10468536 DOI: 10.1038/s41423-023-01058-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophils, as the first defenders against external microbes and stimuli, are highly active and finely regulated innate immune cells. Emerging evidence has challenged the conventional dogma that neutrophils are a homogeneous population with a short lifespan that promotes tissue damage. Recent findings on neutrophil diversity and plasticity in homeostatic and disease states have centered on neutrophils in the circulation. In contrast, a comprehensive understanding of tissue-specialized neutrophils in health and disease is still lacking. This article will first discuss how multiomics advances have contributed to our understanding of neutrophil heterogeneity and diversification in resting and pathological settings. This discussion will be followed by a focus on the heterogeneity and role of neutrophils in solid organ transplantation and how neutrophils may contribute to transplant-related complications. The goal of this article is to provide an overview of the research on the involvement of neutrophils in transplantation, with the aim that this may draw attention to an underappreciated area of neutrophil research.
Collapse
Affiliation(s)
- Junwen Qu
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingsi Jin
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
15
|
Buxeda A, Llinàs-Mallol L, Gimeno J, Redondo-Pachón D, Arias-Cabrales C, Burballa C, Puche A, López-Botet M, Yélamos J, Vilches C, Naesens M, Pérez-Sáez MJ, Pascual J, Crespo M. Microvascular inflammation in the absence of human leukocyte antigen-donor-specific antibody and C4d: An orphan category in Banff classification with cytotoxic T and natural killer cell infiltration. Am J Transplant 2023; 23:464-474. [PMID: 36710135 DOI: 10.1016/j.ajt.2022.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
Isolated microvascular inflammation (iMVI) without HLA donor-specific antibodies or C4d deposition in peritubular capillaries remains an enigmatic phenotype that cannot be categorized as antibody-mediated rejection (ABMR) in recent Banff classifications. We included 221 kidney transplant recipients with biopsies with ABMR (n = 73), iMVI (n = 32), and normal (n = 116) diagnoses. We compared peripheral blood leukocyte distribution by flow cytometry and inflammatory infiltrates in kidney transplant biopsies among groups. Flow cytometry showed fewer lymphocytes and total, CD4+, and CD8+ peripheral T cells in iMVI compared with ABMR and normal cases. ABMR and iMVI had fewer total natural Killer (NK) cells but more NKG2A+ NK cells. Immunohistochemistry indicated that ABMR and iMVI had greater CD3+ and CD68+ glomerular infiltration than normal biopsies, whereas CD8+ and TIA1+ cells showed only increased iMVI, suggesting they are cytotoxic T cells. Peritubular capillaries displayed more CD3+, CD56+, TIA1+, and CD68+ cells in both ABMR and iMVI. In contrast, iMVI had less plasma cell infiltration in peritubular capillaries and interstitial aggregates than ABMR. iMVI displayed decreased circulating T and NK cells mirrored by T cell and NK cell infiltration in the renal allograft, similar to ABMR. However, the lesser plasma cell infiltration in iMVI may suggest an antibody-independent underlying stimulus.
Collapse
Affiliation(s)
- Anna Buxeda
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Laura Llinàs-Mallol
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Javier Gimeno
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Dolores Redondo-Pachón
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carlos Arias-Cabrales
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carla Burballa
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Adrián Puche
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - José Yélamos
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Immunology, Hospital del Mar, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics-HLA, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - María José Pérez-Sáez
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
16
|
Llinàs-Mallol L, Raïch-Regué D, Pascual J, Crespo M. Alloimmune risk assessment for antibody-mediated rejection in kidney transplantation: A practical proposal. Transplant Rev (Orlando) 2023; 37:100745. [PMID: 36572001 DOI: 10.1016/j.trre.2022.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease. Although an improvement in graft survival has been observed in the last decades with the use of different immunosuppressive drugs, this is still limited in time with antibody-mediated rejection being a main cause of graft-loss. Immune monitoring and risk assessment of antibody-mediated rejection before and after kidney transplantation with useful biomarkers is key to tailoring treatments to achieve the best outcomes. Here, we provide a review of the rationale and several accessible tools for immune monitoring, from the most classic to the modern ones. Finally, we end up discussing a practical proposal for alloimmune risk assessment in kidney transplantation, including histocompatibility leukocyte antigen (HLA) and non-HLA antibodies, HLA molecular mismatch analysis and characterization of peripheral blood immune cells.
Collapse
Affiliation(s)
- Laura Llinàs-Mallol
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Dàlia Raïch-Regué
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
17
|
Shepherd HM, Gauthier JM, Terada Y, Li W, Krupnick AS, Gelman AE, Kreisel D. Updated Views on Neutrophil Responses in Ischemia-Reperfusion Injury. Transplantation 2022; 106:2314-2324. [PMID: 35749228 PMCID: PMC9712152 DOI: 10.1097/tp.0000000000004221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemia-reperfusion injury is an inevitable event during organ transplantation and represents a primary risk factor for the development of early graft dysfunction in lung, heart, liver, and kidney transplant recipients. Recent studies have implicated recipient neutrophils as key mediators of this process and also have found that early innate immune responses after transplantation can ultimately augment adaptive alloimmunity and affect late graft outcomes. Here, we discuss signaling pathways involved in neutrophil recruitment and activation after ischemia-mediated graft injury in solid organ transplantation with an emphasis on lung allografts, which have been the focus of recent studies. These findings suggest novel therapeutic interventions that target ischemia-reperfusion injury-mediated graft dysfunction in transplant recipients.
Collapse
Affiliation(s)
- Hailey M. Shepherd
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Jason M. Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Yuriko Terada
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | | | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
18
|
He A, Sarwar A, Thole LML, Siegle J, Sattler A, Ashraf MI, Proß V, Stahl C, Dornieden T, Bergmann Y, Ritschl PV, Ebner S, Hublitz KW, Stamatiades EG, Bülow RD, Boor P, Kotsch K. Renal inflamm-aging provokes intra-graft inflammation following experimental kidney transplantation. Am J Transplant 2022; 22:2529-2547. [PMID: 35851547 DOI: 10.1111/ajt.17154] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 01/25/2023]
Abstract
Donor age is a major risk factor for allograft outcome in kidney transplantation. The underlying cellular mechanisms and the recipient's immune response within an aged allograft have yet not been analyzed. A comprehensive immunophenotyping of naïve and transplanted young versus aged kidneys revealed that naïve aged murine kidneys harbor significantly higher frequencies of effector/memory T cells, whereas regulatory T cells were reduced. Aged kidney-derived CD8+ T cells produced more IFNγ than their young counterparts. Senescent renal CD8+ T and NK cells upregulated the cytotoxicity receptor NKG2D and the enrichment of memory-like CD49a+ CXCR6+ NK cells was documented in aged naïve kidneys. In the C57BL/6 to BALB/c kidney transplantation model, recipient-derived T cells infiltrating an aged graft produced significantly more IFNγ, granzyme B and perforin on day 7 post-transplantation, indicating an enhanced inflammatory, cytotoxic response towards the graft. Pre-treatment of aged kidney donors with the senolytic drug ABT-263 changed the recipient-derived effector molecule profile to significantly reduced levels of IFNγ and IL-10 compared to controls. Graft function after ABT-263 pre-treatment was significantly improved 28 days post kidney transplantation. In conclusion, renal senescence also occurs at the immunological level (inflamm-aging) and aged organs provoke an altered recipient-dominated immune response in the graft.
Collapse
Affiliation(s)
- An He
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Attia Sarwar
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Linda Marie Laura Thole
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Janine Siegle
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Arne Sattler
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Vanessa Proß
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carolin Stahl
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Theresa Dornieden
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Yasmin Bergmann
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Paul Viktor Ritschl
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Susanne Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Karolin Wiebke Hublitz
- Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Efstathios Gregorios Stamatiades
- Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roman David Bülow
- Institute of Pathology & Department of Nephrology, University Clinic of RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology & Department of Nephrology, University Clinic of RWTH Aachen, Aachen, Germany
| | - Katja Kotsch
- Department of General- and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
19
|
Gill RG. Bringing Clarity to the Murky Problem of Cardiac Allograft Vasculopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:986-989. [PMID: 35577009 PMCID: PMC9253909 DOI: 10.1016/j.ajpath.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ronald G Gill
- Department of Surgery, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
20
|
Zimmerer JM, Han JL, Peterson CM, Zeng Q, Ringwald BA, Cassol C, Chaudhari S, Hart M, Hemminger J, Satoskar A, Abdel-Rasoul M, Wang JJ, Warren RT, Zhang ZJ, Breuer CK, Bumgardner GL. Antibody-suppressor CXCR5 + CD8 + T cellular therapy ameliorates antibody-mediated rejection following kidney transplant in CCR5 KO mice. Am J Transplant 2022; 22:1550-1563. [PMID: 35114045 PMCID: PMC9177711 DOI: 10.1111/ajt.16988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
CCR5 KO kidney transplant (KTx) recipients are extraordinarily high alloantibody producers and develop pathology that mimics human antibody-mediated rejection (AMR). C57BL/6 and CCR5 KO mice (H-2b ) were transplanted with A/J kidneys (H-2a ); select cohorts received adoptive cell therapy (ACT) with alloprimed CXCR5+ CD8+ T cells (or control cells) on day 5 after KTx. ACT efficacy was evaluated by measuring posttransplant alloantibody, pathology, and allograft survival. Recipients were assessed for the quantity of CXCR5+ CD8+ T cells and CD8-mediated cytotoxicity to alloprimed IgG+ B cells. Alloantibody titer in CCR5 KO recipients was four-fold higher than in C57BL/6 recipients. The proportion of alloprimed CXCR5+ CD8+ T cells 7 days after KTx in peripheral blood, lymph node, and spleen was substantially lower in CCR5 KO compared to C57BL/6 recipients. In vivo cytotoxicity towards alloprimed IgG+ B cells was also reduced six-fold in CCR5 KO recipients. ACT with alloprimed CXCR5+ CD8+ T cells (but not alloprimed CXCR5- CD8+ or third-party primed CXCR5+ CD8+ T cells) substantially reduced alloantibody titer, ameliorated AMR pathology, and prolonged allograft survival. These results indicate that a deficiency in quantity and function of alloprimed CXCR5+ CD8+ T cells contributes to high alloantibody and AMR in CCR5 KO recipient mice, which can be rescued with ACT.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Chelsea M. Peterson
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Clarissa Cassol
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Madison Hart
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Zheng J. Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
21
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
22
|
Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int 2021; 101:692-710. [PMID: 34915041 DOI: 10.1016/j.kint.2021.11.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Detection of mismatched human leukocyte antigens by adaptive immune cells is considered as the main cause of transplant rejection, leading to either T-cell mediated rejection or antibody-mediated rejection. This canonical view guided the successful development of immunosuppressive therapies and shaped the diagnostic Banff classification for kidney transplant rejection that is used in clinics worldwide. However, several observations have recently emerged that question this dichotomization between T-cell mediated rejection and antibody-mediated rejection, related to heterogeneity in the serology, histology, and prognosis of the rejection phenotypes. In parallel, novel insights were obtained concerning the dynamics of donor-specific anti-human leukocyte antigen antibodies, the immunogenicity of donor-recipient non-human leukocyte antigen mismatches, and the autoreactivity against self-antigens. Moreover, the potential of innate allorecognition was uncovered, as exemplified by natural killer cell-mediated microvascular inflammation through missing self, and by the emerging evidence on monocyte-driven allorecognition. In this review, we highlight the gaps in the current classification of rejection, provide an overview of the expanding insights into the mechanisms of allorecognition, and critically appraise how these could improve our understanding and clinical approach to kidney transplant rejection. We argue that consideration of the complex interplay of various allorecognition mechanisms can foster a more integrated view of kidney transplant rejection and can lead to improved risk stratification, targeted therapies, and better outcome after kidney transplantation.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Necker-Enfants Malades Institute, French National Institute of Health and Medical Research (INSERM) Unit 1151, Paris, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Priyanka Koshy
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
24
|
Callemeyn J, Senev A, Coemans M, Lerut E, Sprangers B, Kuypers D, Koenig A, Thaunat O, Emonds MP, Naesens M. Missing Self-Induced Microvascular Rejection of Kidney Allografts: A Population-Based Study. J Am Soc Nephrol 2021; 32:2070-2082. [PMID: 34301794 PMCID: PMC8455279 DOI: 10.1681/asn.2020111558] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/29/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Circulating anti-HLA donor-specific antibodies (HLA-DSA) are often absent in kidney transplant recipients with microvascular inflammation (MVI). Missing self, the inability of donor endothelial cells to provide HLA I-mediated signals to inhibitory killer cell Ig-like receptors (KIRs) on recipient natural killer cells, can cause endothelial damage in vitro, and has been associated with HLA-DSA-negative MVI. However, missing self's clinical importance as a nonhumoral trigger of allograft rejection remains unclear. METHODS In a population-based study of 924 consecutive kidney transplantations between March 2004 and February 2013, we performed high-resolution donor and recipient HLA typing and recipient KIR genotyping. Missing self was defined as the absence of A3/A11, Bw4, C1, or C2 donor genotype, with the presence of the corresponding educated recipient inhibitory KIR gene. RESULTS We identified missing self in 399 of 924 transplantations. Co-occurrence of missing self types had an additive effect in increasing MVI risk, with a threshold at two concurrent types (hazard ratio [HR], 1.78; 95% confidence interval [95% CI], 1.26 to 2.53), independent of HLA-DSA (HR, 5.65; 95% CI, 4.01 to 7.96). Missing self and lesions of cellular rejection were not associated. No HLA-DSAs were detectable in 146 of 222 recipients with MVI; 28 of the 146 had at least two missing self types. Missing self associated with transplant glomerulopathy after MVI (HR, 2.51; 95% CI, 1.12 to 5.62), although allograft survival was better than with HLA-DSA-associated MVI. CONCLUSION Missing self specifically and cumulatively increases MVI risk after kidney transplantation, independent of HLA-DSA. Systematic evaluation of missing self improves understanding of HLA-DSA-negative MVI and might be relevant for improved diagnostic classification and patient risk stratification.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross‐Flanders, Mechelen, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium,Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, KU Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Alice Koenig
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Lyon, France
| | - Olivier Thaunat
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Lyon, France
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross‐Flanders, Mechelen, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Integrative Analysis of Prognostic Biomarkers for Acute Rejection in Kidney Transplant Recipients. Transplantation 2021; 105:1225-1237. [PMID: 33148975 DOI: 10.1097/tp.0000000000003516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Noninvasive biomarkers may predict adverse events such as acute rejection after kidney transplantation and may be preferable to existing methods because of superior accuracy and convenience. It is uncertain how these biomarkers, often derived from a single study, perform across different cohorts of recipients. METHODS Using a cross-validation framework that evaluates the performance of biomarkers, the aim of this study was to devise an integrated gene signature set that predicts acute rejection in kidney transplant recipients. Inclusion criteria were publicly available datasets of gene signatures that reported acute rejection episodes after kidney transplantation. We tested the predictive probability for acute rejection using gene signatures within individual datasets and validated the set using other datasets. Eight eligible studies of 1454 participants, with a total of 512 acute rejections episodes were included. RESULTS All sets of gene signatures had good positive and negative predictive values (79%-96%) for acute rejection within their own cohorts, but the predictability reduced to <50% when tested in other independent datasets. By integrating signature sets with high specificity scores across all studies, a set of 150 genes (included CXCL6, CXCL11, OLFM4, and PSG9) which are known to be associated with immune responses, had reasonable predictive values (varied between 69% and 90%). CONCLUSIONS A set of gene signatures for acute rejection derived from a specific cohort of kidney transplant recipients do not appear to provide adequate prediction in an independent cohort of transplant recipients. However, the integration of gene signature sets with high specificity scores may improve the prediction performance of these markers.
Collapse
|
26
|
Miyairi S, Ueda D, Yagisawa T, Okada D, Keslar KS, Tanabe K, Dvorina N, Valujskikh A, Baldwin WM, Hazen SL, Fairchild RL. Recipient myeloperoxidase-producing cells regulate antibody-mediated acute versus chronic kidney allograft rejection. JCI Insight 2021; 6:148747. [PMID: 34081629 PMCID: PMC8410093 DOI: 10.1172/jci.insight.148747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Antibody-mediated rejection (ABMR) continues to be a major problem undermining the success of kidney transplantation. Acute ABMR of kidney grafts is characterized by neutrophil and monocyte margination in the tubular capillaries and by graft transcripts indicating NK cell activation, but the myeloid cell mechanisms required for acute ABMR have remained unclear. Dysregulated donor-specific antibody (DSA) responses with high antibody titers are induced in B6.CCR5-/- mice transplanted with complete MHC-mismatched A/J kidneys and are required for rejection of the grafts. This study tested the role of recipient myeloid cell production of myeloperoxidase (MPO) in the cellular and molecular components of acute ABMR. Despite induction of equivalent DSA titers, B6.CCR5-/- recipients rejected A/J kidneys between days 18 and 25, with acute ABMR, whereas B6.CCR5-/-MPO-/- recipients rejected the grafts between days 46 and 54, with histopathological features of chronic graft injury. On day 15, myeloid cells infiltrating grafts from B6.CCR5-/- and B6.CCR5-/-MPO-/- recipients expressed marked phenotypic and functional transcript differences that correlated with the development of acute versus chronic allograft injury, respectively. Near the time of peak DSA titers, activation of NK cells to proliferate and express CD107a was decreased within allografts in B6.CCR5-/-MPO-/- recipients. Despite high titers of DSA, depletion of neutrophils reproduced the inhibition of NK cell activation and decreased macrophage infiltration but increased monocytes producing MPO. Overall, recipient myeloid cells producing MPO regulate graft-infiltrating monocyte/macrophage function and NK cell activation that are required for DSA-mediated acute kidney allograft injury, and their absence switches DSA-mediated acute pathology and graft outcomes to chronic ABMR.
Collapse
Affiliation(s)
- Satoshi Miyairi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Daisuke Ueda
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Takafumi Yagisawa
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Daigo Okada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Karen S. Keslar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M. Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Barreiro LB, Chervonsky A. My Old World chap, this α-gal is not for you. Cell Host Microbe 2021; 29:315-317. [PMID: 33705699 DOI: 10.1016/j.chom.2021.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
30 million years ago, ancestors of Old World primates lost the ability to produce α-gal. In this issue of Cell Host & Microbe, Singh et al. (2021) show that the loss is associated with increased resistance to sepsis, but that this advantage comes alongside a cost of accelerated reproductive senescence.
Collapse
Affiliation(s)
- Luis B Barreiro
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| | - Alexander Chervonsky
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Lu J, Zhang Y, Sun J, Huang S, Wu W, Tan J. The Immune Cell Landscape in Renal Allografts. Cell Transplant 2021; 30:963689721995458. [PMID: 33593079 PMCID: PMC7894583 DOI: 10.1177/0963689721995458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune cell infiltration plays an important role in the pathophysiology of kidney grafts, but the composition of immune cells is ill-defined. Here, we aimed at evaluating the levels and composition of infiltrating immune cells in kidney grafts. We used CIBERSORT, an established algorithm, to estimate the proportions of 22 immune cell types based on gene expression profiles. We found that non-rejecting kidney grafts were characteristic with high rates of M2 macrophages and resting mast cells. The proportion of M1 macrophages and activated NK cells were increased in antibody-mediated rejection (ABMR). In T cell-mediated rejection (TCMR), a significant increase in CD8 T cell and γδT cell infiltration was observed. CD8 positive T cells were dramatically increased in mixed-ABMR/TCMR. Then, the function of ABMR and TCMR prognostic molecular biomarkers were identified. Finally, we described the gene expression of molecular markers for ABMR diagnosis was elevated and related to the ratio of monocytes and M1 macrophages in ABMR biopsies, while the expression of TCMR diagnosis markers was increased too and positively correlated with γδT cells and activated CD4 memory T cells in TCMR biopsies. Our data suggest that CIBERSORT’s deconvolution analysis of gene expression data provides valuable information on the composition of immune cells in renal allografts.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900th Hospital of the Joint Logistics Team), Xiamen University, China.,Laboratory of Basic Medicine, Fuzhou General Clinical College, Fujian Medical University, China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900th Hospital of the Joint Logistics Team), Xiamen University, China
| | - Jingjing Sun
- Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900th Hospital of the Joint Logistics Team), Xiamen University, China
| | | | - Weizhen Wu
- Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900th Hospital of the Joint Logistics Team), Xiamen University, China.,Department of Urology, 900th Hospital of the Joint Logistics Team, Fujian, China
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital (900th Hospital of the Joint Logistics Team), Xiamen University, China.,Department of Urology, 900th Hospital of the Joint Logistics Team, Fujian, China
| |
Collapse
|
29
|
Gokhale A, Chancay J, Shapiro R, Randhawa P, Menon MC. Chronic transplant glomerulopathy: New insights into pathogenesis. Clin Transplant 2021; 35:e14214. [PMID: 33389755 DOI: 10.1111/ctr.14214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023]
Abstract
There have been recent significant advances in short-term outcomes in renal transplantation, however, long-term allograft survival remains a challenge. With reported incidences as high of 74.5% of chronic graft loss in patients with biopsies showing transplant glomerulopathy (TG), this syndrome represents an important factor for chronic allograft complications. In this review we show an overview of the novel mechanistic insights into pathogenesis of TG, as well as a brief description of the pathology, diagnosis and newer prognostic indices within TG diagnosis. These data raise intriguing roles for cell-mediated immunity and podocyte stress in TG as well as reinforce previous associations of TG with ABMR. We also delve into management strategies for TG and report the paucity of existing clinical trial data for this prevalent condition in renal transplants.
Collapse
Affiliation(s)
- Avantee Gokhale
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Chancay
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Shapiro
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Parmjeet Randhawa
- The Thomas E. Starzl Transplantation Institute, Division of Transplantation Pathology at University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Koenig A, Mezaache S, Callemeyn J, Barba T, Mathias V, Sicard A, Charreau B, Rabeyrin M, Dijoud F, Picard C, Meas-Yedid V, Olivo-Marin JC, Morelon E, Naesens M, Dubois V, Thaunat O. Missing Self-Induced Activation of NK Cells Combines with Non-Complement-Fixing Donor-Specific Antibodies to Accelerate Kidney Transplant Loss in Chronic Antibody-Mediated Rejection. J Am Soc Nephrol 2021; 32:479-494. [PMID: 33239394 PMCID: PMC8054908 DOI: 10.1681/asn.2020040433] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Binding of donor-specific antibodies (DSAs) to kidney allograft endothelial cells that does not activate the classic complement cascade can trigger the recruitment of innate immune effectors, including NK cells. Activated NK cells contribute to microvascular inflammation leading to chronic antibody-mediated rejection (AMR). Recipient NK cells can also trigger antibody-independent microvascular inflammation by sensing the absence of self HLA class I molecules ("missing self") on allograft endothelial cells. This translational study investigated whether the condition of missing self amplifies DSA-dependent NK cell activation to worsen chronic AMR. METHODS AND RESULTS Among 1682 kidney transplant recipients who underwent an allograft biopsy at Lyon University Hospital between 2004 and 2017, 135 fulfilled the diagnostic criteria for AMR and were enrolled in the study. Patients with complement-fixing DSAs identified by a positive C3d binding assay (n=73, 54%) had a higher risk of transplant failure (P=0.002). Among the remaining patients with complement-independent chronic AMR (n=62, 46%), those in whom missing self was identified through donor and recipient genotyping exhibited worse allograft survival (P=0.02). In multivariable analysis, only proteinuria (HR: 7.24; P=0.01) and the presence of missing self (HR: 3.57; P=0.04) were independent predictors for transplant failure following diagnosis of chronic AMR. Cocultures of human NK cells and endothelial cells confirmed that addition of missing self to DSA-induced NK cell activation increased endothelial damage. CONCLUSIONS The assessment of missing self at the time of diagnosis of chronic AMR identifies patients at higher risk for kidney transplant failure.
Collapse
Affiliation(s)
- Alice Koenig
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Sarah Mezaache
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Catholic University (KU) Leuven, University of Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Barba
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Virginie Mathias
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Human Leukocyte Antigen (HLA) Laboratory, French National Blood Service (EFS), Décines-Charpieu, France
| | - Antoine Sicard
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Béatrice Charreau
- Centre de Recherche en Transplantation et Immunologie (CRTI), University Hospital Center (CHU) Nantes, Université de Nantes, National Institute for Health and Medical Research (INSERM), Mixed University Unit (UMR) 1064, Transplantation Urology Nephrology Institute (ITUN), Nantes, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Bron, France
| | | | - Cécile Picard
- Department of Pathology, Hospices Civils de Lyon, Bron, France
| | | | | | - Emmanuel Morelon
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Catholic University (KU) Leuven, University of Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Valérie Dubois
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Human Leukocyte Antigen (HLA) Laboratory, French National Blood Service (EFS), Décines-Charpieu, France
| | - Olivier Thaunat
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
31
|
Miyairi S, Baldwin WM, Valujskikh A, Fairchild RL. Natural Killer Cells: Critical Effectors During Antibody-mediated Rejection of Solid Organ Allografts. Transplantation 2021; 105:284-290. [PMID: 32384380 DOI: 10.1097/tp.0000000000003298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antibody-mediated rejection (AMR) is an important cause of graft loss and continues to present a formidable obstacle to successful transplantation. Unresolved problems continue to be the absence of effective strategies to ablate the donor-specific antibody (DSA) response as well as to attenuate the antibody-mediated graft tissue injury. While the properties of DSA that cause greater graft tissue injury and the characteristic microvascular pathology of the graft injury are well documented, the mechanisms underlying the injury mediated by the antibodies remains unclear. Recent transcriptome interrogation of kidney and heart biopsies procured during ongoing AMR has indicated the expression of genes associated with natural killer (NK) cell activation that is absent during T cell-mediated rejection. The expression of NK cell transcripts during AMR correlates with the presence of CD56+ cells in the microcirculation inflammation observed during AMR. Several mouse models have recently demonstrated the role of NK cells in antibody-mediated chronic vasculopathy in heart allografts and the requirement for NK cell activation during acute AMR of kidney allografts. In the latter model, NK cell activation within kidney allografts is regulated by the activation of myeloid cells producing myeloperoxidase. Overall, the studies to date indicate that AMR constitutes a complex series of DSA-induced interactions with components of the innate immune response. The innate immune participants and their expressed effector functions resulting in the rejection are beginning to be identified. The identification of these components should uncover novel targets that can be used to attenuate acute graft tissue injury in the presence of DSA.
Collapse
Affiliation(s)
- Satoshi Miyairi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | | | | |
Collapse
|
32
|
Elevated serum IL-21 levels are associated with stable immune status in kidney transplant recipients and a mouse model of kidney transplantation. Aging (Albany NY) 2020; 12:18396-18414. [PMID: 32991326 PMCID: PMC7585127 DOI: 10.18632/aging.103713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Allograft rejection after renal transplantation remains a challenge to overcome. Interleukin (IL)-21, a cytokine with pleiotropic effects, maintains immune homeostasis post-transplantation. Here, we report higher levels of IL-21 in kidney transplant recipients with non-rejection (NR) than in recipients with T cell-mediated rejection (TCMR, P < 0.001) and antibody-mediated rejection (ABMR, P = 0.005). We observed a negative correlation between IL-21 and creatinine (Cr) levels (P = 0.016). The receiving operating characteristic (ROC) curve showed a promising diagnostic value of IL-21 to identify acute rejection with an area under the curve (AUC) of 0.822 (P < 0.001). In contrast, exogenous administration of IL-21 accelerated acute rejection in a comparative translational kidney transplant (KT) mouse model. Reduced IL-21 levels in the peripheral blood were observed in KT mice after IL-21 injection. Further analysis revealed that increased IL-21 levels in the spleen induced proliferation of CD4+ T cells and CD19+ B cells after IL-21 treatment. Our findings suggest a critical function of IL-21 in kidney transplantation and the potential involvement of the IL-21/IL-21R pathway in acute rejection management.
Collapse
|
33
|
Siu JH, Motallebzadeh R, Pettigrew GJ. Humoral autoimmunity after solid organ transplantation: Germinal ideas may not be natural. Cell Immunol 2020; 354:104131. [DOI: 10.1016/j.cellimm.2020.104131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
34
|
Callemeyn J, Lerut E, de Loor H, Arijs I, Thaunat O, Koenig A, Meas-Yedid V, Olivo-Marin JC, Halloran P, Chang J, Thorrez L, Kuypers D, Sprangers B, Van Lommel L, Schuit F, Essig M, Gwinner W, Anglicheau D, Marquet P, Naesens M. Transcriptional Changes in Kidney Allografts with Histology of Antibody-Mediated Rejection without Anti-HLA Donor-Specific Antibodies. J Am Soc Nephrol 2020; 31:2168-2183. [PMID: 32641395 DOI: 10.1681/asn.2020030306] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circulating donor-specific anti-HLA antibodies (HLA-DSAs) are often absent in serum of kidney allograft recipients whose biopsy specimens demonstrate histology of antibody-mediated rejection (ABMR). It is unclear whether cases involving ABMR histology without detectable HLA-DSAs represent a distinct clinical and molecular phenotype. METHODS In this multicenter cohort study, we integrated allograft microarray analysis with extensive clinical and histologic phenotyping from 224 kidney transplant recipients between 2011 and 2017. We used the term ABMR histology for biopsy specimens that fulfill the first two Banff 2017 criteria for ABMR, irrespective of HLA-DSA status. RESULTS Of 224 biopsy specimens, 56 had ABMR histology; 26 of these (46.4%) lacked detectable serum HLA-DSAs. Biopsy specimens with ABMR histology showed overexpression of transcripts mostly related to IFNγ-induced pathways and activation of natural killer cells and endothelial cells. HLA-DSA-positive and HLA-DSA-negative biopsy specimens with ABMR histology displayed similar upregulation of pathways and enrichment of infiltrating leukocytes. Transcriptional heterogeneity observed in biopsy specimens with ABMR histology was not associated with HLA-DSA status but was caused by concomitant T cell-mediated rejection. Compared with cases lacking ABMR histology, those with ABMR histology and HLA-DSA had higher allograft failure risk (hazard ratio [HR], 7.24; 95% confidence interval [95% CI], 3.04 to 17.20) than cases without HLA-DSA (HR, 2.33; 95% CI, 0.85 to 6.33), despite the absence of transcriptional differences. CONCLUSIONS ABMR histology corresponds to a robust intragraft transcriptional signature, irrespective of HLA-DSA status. Outcome after ABMR histology is not solely determined by the histomolecular presentation but is predicted by the underlying etiologic factor. It is important to consider this heterogeneity in further research and in treatment decisions for patients with ABMR histology.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Henriette de Loor
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium.,Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Olivier Thaunat
- Center for Research in Infectious Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Claude Bernard University Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University Lyon I, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Alice Koenig
- Center for Research in Infectious Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Claude Bernard University Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University Lyon I, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Vannary Meas-Yedid
- Biological Image Analysis Unit, Pasteur Institute, CNRS Unité de Recherche Associée (URA) 2582, Paris, France
| | - Jean-Christophe Olivo-Marin
- Biological Image Analysis Unit, Pasteur Institute, CNRS Unité de Recherche Associée (URA) 2582, Paris, France
| | - Philip Halloran
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica Chang
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven, Kortrijk, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Leentje Van Lommel
- Department of Cellular and Molecular Medicine, Gene Expression Unit, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Department of Cellular and Molecular Medicine, Gene Expression Unit, KU Leuven, Leuven, Belgium
| | - Marie Essig
- Department of Nephrology, Dialysis and Transplantation, University of Limoges, Limoges, France
| | - Wilfried Gwinner
- Department of Nephrology and Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Dany Anglicheau
- Paris Descartes University, Sorbonne Paris Cité University, Paris, France.,INSERM U1151, Paris, France.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique--Hôpitaux de Paris, Paris, France
| | - Pierre Marquet
- INSERM U1248, Limoges, France.,Department of Pharmacology and Toxicology, University Hospitals Limoges, Limoges, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium .,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Chong AS. Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. Am J Transplant 2020; 20 Suppl 4:23-32. [PMID: 32538534 PMCID: PMC7482418 DOI: 10.1111/ajt.15844] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Recent adjustments to the histological diagnosis and the introduction of molecular classification are providing renewed support for the paradigm that antibody-mediated rejection (ABMR) is an important clinical problem for which there is an urgent need for better therapies. Acute ABMR is observed when the graft is exposed to rapid increases in high-titer donor-specific antibodies (DSA) that are most often generated as anamnestic responses in sensitized recipients or de novo responses in nonsensitized patients who are nonadherent. Chronic ABMR is associated with slower increases in DSA, which may be high or low titer and transient or persistent. These DSA elicit cycles of injury and repair that manifest as multilamination of the peritubular capillary basement membrane or arteriopathy manifesting as intimal fibrosis. Mitigating the problem of AMBR requires the anamnestic and de novo DSA responses to be prevented and established DSA responses to be reversed. To this end, a better understanding of the immunobiology of DSA production is necessary and also the development of assays capable of detecting early humoral immune responses.Recent advances in understanding the immunobiology of B cells and areas requiring further investigation that might lead to new therapies or better diagnosis are discussed in this review.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
36
|
Gill RG, Lin CM. Linking innate immunity and chronic antibody-mediated allograft rejection. Curr Opin Organ Transplant 2020; 24:694-698. [PMID: 31599762 DOI: 10.1097/mot.0000000000000708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To summarize recent findings linking donor-specific antibodies with innate immunity resulting in chronic allograft rejection. RECENT FINDINGS Studies in recent years highlight the significance of donor-specific antibodies (DSA) in both acute and chronic allograft rejection. Since chronic rejection is the leading cause of graft failure, this review centers on the contribution of three areas of innate immunity of particular recent focus: complement, NK cells, and macrophages. Recent advances indicate the diverse roles that complement components play both in directly initiating allograft injury and indirectly by contributing to enhanced alloreactivity. NK cells also have emerged as an additional innate response that directly links DSA with chronic graft injury. Finally, recent studies identify alternatively activated macrophages as an additional arm of innate immunity contributing to chronic allograft rejection. SUMMARY Chronic allograft rejection involves a significant contribution of DSA and differing pathways of the innate immune system. However, key issues remain unresolved. First, it is not always clear which of these varied sources of innate immunity contributing to chronic rejection may be antibody dependent. Moreover, it is not yet clear if these innate pathways represent independent routes that contribute to chronic rejection or rather act in concert to mediate allograft injury.
Collapse
Affiliation(s)
- Ronald G Gill
- Department of Surgery, Division of Transplant, University of Colorado Aurora, Denver, Colorado
| | - Christine M Lin
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
37
|
Shim YJ, Khedraki R, Dhar J, Fan R, Dvorina N, Valujskikh A, Fairchild RL, Baldwin WM. Early T cell infiltration is modulated by programed cell death-1 protein and its ligand (PD-1/PD-L1) interactions in murine kidney transplants. Kidney Int 2020; 98:897-905. [PMID: 32763116 DOI: 10.1016/j.kint.2020.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 11/16/2022]
Abstract
Allogeneic transplants elicit dynamic T cell responses that are modulated by positive and negative co-stimulatory receptors. Understanding mechanisms that intrinsically modulate the immune responses to transplants is vital to develop rational treatment for rejection. Here, we have investigated the impact of programed cell death-1 (PD-1) protein, a negative co-stimulatory receptor, on the rejection of MHC incompatible kidney transplants in mice. T cells were found to rapidly infiltrate the kidneys of A/J mice transplanted to C57BL/6 mice, which peaked at six days and decline by day 14. The T cells primarily encircled tubules with limited infiltration of the tubular epithelium. Lipocalin 2 (LCN2), a marker of tubular injury, also peaked in the urine at day six and then declined. Notably, flow cytometry demonstrated that most of the T cells expressed PD-1 (over 90% of CD8 and about 75% of CD4 cells) at day six. Administration of blocking antibody to PD-L1, the ligand for PD-1, before day six increased T cell infiltrates and urinary LCN2, causing terminal acute rejection. In contrast, blocking PD-1/PD-L1 interactions after day six caused only a transient increase in urinary LCN2. Depleting CD4 and CD8 T cells virtually eliminated LCN2 in the urine in support of T cells injuring tubules. Thus, our data indicate that PD-1/PD-L1 interactions are not just related to chronic antigenic stimulation of T cells but are critical for the regulation of acute T cell responses to renal transplants.
Collapse
Affiliation(s)
- Young Jun Shim
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Raneem Khedraki
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Jayeeta Dhar
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Ran Fan
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nina Dvorina
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - William M Baldwin
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
38
|
Platelets: Mechanistic and Diagnostic Significance in Transplantation. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
In addition to their function in coagulation, platelets recently have been recognized as an important component of innate immune responses. This review relates salient immune functions of platelets to transplants.
Recent Findings
Platelets are critical bridges between vascular endothelium and leukocytes. Real-time imaging of platelets has demonstrated that platelets rapidly adhere to vascular endothelium and form a nidus for attachment of neutrophils and then monocytes. However, the majority of platelets subsequently release from endothelium and return to the circulation in an activated state. These recycled platelets have the potential to transport proteins and RNA from the graft to the recipient. Some of the platelets that return to the circulation are attached to leukocytes.
Summary
Platelets have the potential to modulate many elements of the graft and the immune response from the time of organ retrieval through ischemia-reperfusion to acute and chronic rejection. Beyond mechanistic considerations, assays that detect changes in platelet protein or RNA expression could be used to monitor early inflammatory responses in transplants.
Collapse
|
39
|
Zimmerer JM, Ringwald BA, Elzein SM, Avila CL, Warren RT, Abdel-Rasoul M, Bumgardner GL. Antibody-suppressor CD8+ T Cells Require CXCR5. Transplantation 2019; 103:1809-1820. [PMID: 30830040 PMCID: PMC6713619 DOI: 10.1097/tp.0000000000002683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We previously reported the novel activity of alloprimed CD8 T cells that suppress posttransplant alloantibody production. The purpose of the study is to investigate the expression and role of CXCR5 on antibody-suppressor CD8 T-cell function. METHODS C57BL/6 mice were transplanted with FVB/N hepatocytes. Alloprimed CD8 T cells were retrieved on day 7 from hepatocyte transplant recipients. Unsorted or flow-sorted (CXCR5CXCR3 and CXCR3CXCR5) alloprimed CD8 T-cell subsets were analyzed for in vitro cytotoxicity and capacity to inhibit in vivo alloantibody production following adoptive transfer into C57BL/6 or high alloantibody-producing CD8 knock out (KO) hepatocyte transplant recipients. Alloantibody titer was assessed in CD8 KO mice reconstituted with naive CD8 T cells retrieved from C57BL/6, CXCR5 KO, or CXCR3 KO mice. Antibody suppression by ovalbumin (OVA)-primed monoclonal OVA-specific t-cell receptor transgenic CD8+ T cells (OT-I) CXCR5 or CXCR3 CD8 T-cell subsets was also investigated. RESULTS Alloprimed CXCR5CXCR3CD8 T cells mediated in vitro cytotoxicity of alloprimed "self" B cells, while CXCR3CXCR5CD8 T cells did not. Only flow-sorted alloprimed CXCR5CXCR3CD8 T cells (not flow-sorted alloprimed CXCR3CXCR5CD8 T cells) suppressed alloantibody production and enhanced graft survival when transferred into transplant recipients. Unlike CD8 T cells from wild-type or CXCR3 KO mice, CD8 T cells from CXCR5 KO mice do not develop alloantibody-suppressor function. Similarly, only flow-sorted CXCR5CXCR3 (and not CXCR3CXCR5) OVA-primed OT-I CD8 T cells mediated in vivo suppression of anti-OVA antibody production. CONCLUSIONS These data support the conclusion that expression of CXCR5 by antigen-primed CD8 T cells is critical for the function of antibody-suppressor CD8 T cells.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Steven M. Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Christina L. Avila
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
40
|
Kildey K, Francis RS, Hultin S, Harfield M, Giuliani K, Law BMP, Wang X, See EJ, John G, Ungerer J, Wilkinson R, Kassianos AJ, Healy H. Specialized Roles of Human Natural Killer Cell Subsets in Kidney Transplant Rejection. Front Immunol 2019; 10:1877. [PMID: 31440252 PMCID: PMC6693357 DOI: 10.3389/fimmu.2019.01877] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Human natural killer (NK) cells are key functional players in kidney transplant rejection. However, the respective contributions of the two functionally distinct human NK cell subsets (CD56bright cytokine-producing vs. CD56dim cytotoxic effector) in episodes of allograft rejection remain uncertain, with current immunohistochemical methods unable to differentiate these discrete populations. We report the outcomes of an innovative multi-color flow cytometric-based approach to unequivocally define and evaluate NK cell subsets in human kidney allograft rejection. Methods: We extracted renal lymphocytes from human kidney transplant biopsies. NK cell subsets were identified, enumerated, and phenotyped by multi-color flow cytometry. Dissociation supernatants were harvested and levels of soluble proteins were determined using a multiplex bead-based assay. Results were correlated with the histopathological patterns in biopsies-no rejection, borderline cellular rejection, T cell-mediated rejection (TCMR), and antibody-mediated rejection (AMR). Results: Absolute numbers of only CD56bright NK cells were significantly elevated in TCMR biopsies. In contrast, both CD56bright and CD56dim NK cell numbers were significantly increased in biopsies with histopathological evidence of AMR. Notably, expression of the activation marker CD69 was only significantly elevated on CD56dim NK cells in AMR biopsies compared with no rejection biopsies, indicative of a pathogenic phenotype for this cytotoxic NK cell subset. In line with this, we detected significantly elevated levels of cytotoxic effector molecules (perforin, granzyme A, and granulysin) in the dissociation supernatants of biopsies with a histopathological pattern of AMR. Conclusions: Our results indicate that human NK cell subsets are differentially recruited and activated during distinct types of rejection, suggestive of specialized functional roles.
Collapse
Affiliation(s)
- Katrina Kildey
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Sebastian Hultin
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | | | - Kurt Giuliani
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
| | - Becker M. P. Law
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiangju Wang
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Emily J. See
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - George John
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jacobus Ungerer
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
| | - Ray Wilkinson
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
41
|
Carroll RP, Deayton S, Emery T, Munasinghe W, Tsiopelas E, Fleet A, Lake M, Humphreys I, Jalalonmuhali M, Coates P. Proactive treatment of angiotensin receptor antibodies in kidney transplantation with plasma exchange and/or candesartan is safe and associated with excellent graft survival at 4 years: A single centre Australian experience. Hum Immunol 2019; 80:573-578. [DOI: 10.1016/j.humimm.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
|
42
|
Turner JE, Rickassel C, Healy H, Kassianos AJ. Natural Killer Cells in Kidney Health and Disease. Front Immunol 2019; 10:587. [PMID: 30972076 PMCID: PMC6443628 DOI: 10.3389/fimmu.2019.00587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2019] [Indexed: 02/02/2023] Open
Abstract
Natural killer (NK) cells are a specialized population of innate lymphocytes that have a major effector function in local immune responses. While their immunological functions in many inflammatory diseases are well established, comparatively little is still known about their roles in kidney homeostasis and disease. Our understanding of kidney NK cells is rapidly evolving, with murine studies highlighting the functional significance of NK cells in acute and chronic forms of renal disease. Recent progress has been made in translating these murine findings to human kidneys, with indications of NK cell subset-specific roles in disease progression in both native and allograft kidneys. Clearly, a better understanding of the molecular mechanisms driving NK cell activation and importantly, their downstream interactions with intrinsic renal cells and infiltrating immune cells is necessary for the development of targeted therapeutics to halt disease progression. In this review, we discuss the properties and potential functions of kidney NK cells.
Collapse
Affiliation(s)
- Jan-Eric Turner
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Rickassel
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Chhabra M, Alsughayyir J, Qureshi MS, Mallik M, Ali JM, Gamper I, Moseley EL, Peacock S, Kosmoliaptsis V, Goddard MJ, Linterman MA, Motallebzadeh R, Pettigrew GJ. Germinal Center Alloantibody Responses Mediate Progression of Chronic Allograft Injury. Front Immunol 2019; 9:3038. [PMID: 30728823 PMCID: PMC6351502 DOI: 10.3389/fimmu.2018.03038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/07/2018] [Indexed: 02/02/2023] Open
Abstract
Different profiles of alloantibody responses are observed in the clinic, with those that persist, often despite targeted treatment, associated with poorer long-term transplant outcomes. Although such responses would suggest an underlying germinal center (GC) response, the relationship to cellular events within the allospecific B cell population is unclear. Here we examine the contribution of germinal center (GC) humoral alloimmunity to chronic antibody mediated rejection (AMR). A murine model of chronic AMR was developed in which T cell deficient (Tcrbd-/-) C57BL/6 recipients were challenged with MHC-mismatched BALB/c heart allografts and T cell help provided by reconstituting with 103 "TCR75" CD4 T cells that recognize self-restricted allopeptide derived from the H-2Kd MHC class I alloantigen. Reconstituted recipients developed Ig-switched anti-Kd alloantibody responses that were slow to develop, but long-lived, with confocal immunofluorescence and flow cytometric characterization of responding H-2Kd-allospecific B cells confirming persistent splenic GC activity. This was associated with T follicular helper (TFH) cell differentiation of the transferred TCR75 CD4 T cells. Heart grafts developed progressive allograft vasculopathy, and were rejected chronically (MST 50 days), with explanted allografts displaying features of humoral vascular rejection. Critically, late alloantibody responses were abolished, and heart grafts survived indefinitely, in recipients reconstituted with Sh2d1a-/- TCR75 CD4 T cells that were genetically incapable of providing TFH cell function. The GC response was associated with affinity maturation of the anti-Kd alloantibody response, and its contribution to progression of allograft vasculopathy related principally to secretion of alloantibody, rather than to enhanced alloreactive T cell priming, because grafts survived long-term when B cells could present alloantigen, but not secrete alloantibody. Similarly, sera sampled at late time points from chronically-rejecting recipients induced more vigorous donor endothelial responses in vitro than sera sampled earlier after transplantation. In summary, our results suggest that chronic AMR and progression of allograft vasculopathy is dependent upon allospecific GC activity, with critical help provided by TFH cells. Clinical strategies that target the TFH cell subset may hold therapeutic potential. This work is composed of two parts, of which this is Part II. Please read also Part I: Alsughayyir et al., 2019.
Collapse
Affiliation(s)
- Manu Chhabra
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Saeed Qureshi
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mekhola Mallik
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jason M. Ali
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ivonne Gamper
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ellen L. Moseley
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Sarah Peacock
- Histocompatibility and Immunogenetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Martin J. Goddard
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Michelle A. Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Centre for Transplantation, Department of Renal Medicine, University College London, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Gavin J. Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Haas M. The relationship between pathologic lesions of active and chronic antibody-mediated rejection in renal allografts. Am J Transplant 2018; 18:2849-2856. [PMID: 30133953 DOI: 10.1111/ajt.15088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/25/2023]
Abstract
The Banff classification of renal allograft pathology defines specific morphologic lesions that are used in the diagnosis of active (glomerulitis, peritubular capillaritis, endarteritis) and chronic (transplant glomerulopathy, peritubular capillary basement membrane multilayering, transplant arteriopathy) antibody-mediated rejection (ABMR). However, none of these individual lesions are specific for ABMR, and for this reason Banff requires 1 or more additional findings, including C4d deposition in peritubular capillaries, presence of circulating donor-specific antibodies (DSAs), and/or expression in the tissue of transcripts strongly associated with ABMR, for a definitive diagnosis of ABMR to be made. In addition, while animal studies examining serial biopsies have established the progression of morphologic lesions of active to chronic ABMR as well as intermediate forms (chronic active ABMR) exhibiting features of both, clear documentation that lesions of chronic ABMR require the earlier presence of corresponding active and intermediate lesions is less well established in human renal allografts. This review examines temporal relationships between key morphologic lesions of active and chronic ABMR in biopsies of human grafts, likely intermediate forms, and findings for and possibly against direct and potentially interruptible progression from active to chronic lesions.
Collapse
Affiliation(s)
- Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
45
|
In the absence of natural killer cell activation donor-specific antibody mediates chronic, but not acute, kidney allograft rejection. Kidney Int 2018; 95:350-362. [PMID: 30503624 DOI: 10.1016/j.kint.2018.08.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 11/20/2022]
Abstract
Antibody mediated rejection (ABMR) is a major barrier to long-term kidney graft survival. Dysregulated donor-specific antibody (DSA) responses are induced in CCR5-deficient mice transplanted with complete major histocompatibility complex (MHC)-mismatched kidney allografts, and natural killer (NK) cells play a critical role in graft injury and rejection. We investigated the consequence of high DSA titers on kidney graft outcomes in the presence or absence of NK cell activation within the graft. Equivalent serum DSA titers were induced in CCR5-deficient B6 recipients of complete MHC mismatched A/J allografts and semi-allogeneic (A/J x B6) F1 kidney grafts, peaking by day 14 post-transplant. A/J allografts were rejected between days 16-28, whereas B6 isografts and semi-allogeneic grafts survived past day 65. On day 7 post-transplant, NK cell infiltration into A/J allografts was composed of distinct populations expressing high and low levels of the surface antigen NK1.1, with NK1.1low cells reflecting the highest level of activation. These NK cell populations increased with time post-transplant. In contrast, NK cell infiltration into semi-allogeneic grafts on day 7 was composed entirely of NK1.1high cells that decreased thereafter. On day 65 post-transplant the semi-allogeneic grafts had severe interstitial fibrosis, glomerulopathy, and arteriopathy, accompanied by expression of pro-fibrogenic genes. These results suggest that NK cells synergize with DSA to cause acute kidney allograft rejection, whereas high DSA titers in the absence of NK cell activation cannot provoke acute ABMR but instead induce the indolent development of interstitial fibrosis and glomerular injury that leads to late graft failure.
Collapse
|
46
|
Yazdani S, Callemeyn J, Gazut S, Lerut E, de Loor H, Wevers M, Heylen L, Saison C, Koenig A, Thaunat O, Thorrez L, Kuypers D, Sprangers B, Noël LH, Van Lommel L, Schuit F, Essig M, Gwinner W, Anglicheau D, Marquet P, Naesens M. Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney Int 2018; 95:188-198. [PMID: 30396694 DOI: 10.1016/j.kint.2018.08.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
Despite partial elucidation of the pathophysiology of antibody-mediated rejection (ABMR) after kidney transplantation, it remains largely unclear which of the involved immune cell types determine disease activity and outcome. We used microarray transcriptomic data from a case-control study (n=95) to identify genes that are differentially expressed in ABMR. Given the co-occurrence of ABMR and T-cell-mediated rejection (TCMR), we built a bioinformatics pipeline to distinguish ABMR-specific mRNA markers. Differential expression of 503 unique genes was identified in ABMR, with significant enrichment of natural killer (NK) cell pathways. CIBERSORT (Cell type Identification By Estimating Relative Subsets Of known RNA Transcripts) deconvolution analysis was performed to elucidate the corresponding cell subtypes and showed increased NK cell infiltration in ABMR in comparison to TCMR and normal biopsies. Other leukocyte types (including monocytes/macrophages, CD4 and CD8 T cells, and dendritic cells) were increased in rejection, but could not discriminate ABMR from TCMR. Deconvolution-based estimation of NK cell infiltration was validated using computerized morphometry, and specifically associated with glomerulitis and peritubular capillaritis. In an external data set of kidney transplant biopsies, activated NK cell infiltration best predicted graft failure amongst all immune cell subtypes and even outperformed a histologic diagnosis of acute rejection. These data suggest that NK cells play a central role in the pathophysiology of ABMR and graft failure after kidney transplantation.
Collapse
Affiliation(s)
- Saleh Yazdani
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Jasper Callemeyn
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Stéphane Gazut
- CEA, LIST, Laboratory for Data Analysis and Systems' Intelligence, Gif-sur-Yvette, France
| | - Evelyne Lerut
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Henriette de Loor
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Max Wevers
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Line Heylen
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Carole Saison
- U1111 INSERM, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot University Hospital, Lyon, France
| | - Alice Koenig
- U1111 INSERM, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot University Hospital, Lyon, France; Claude Bernard University (Lyon-1), Lyon, France
| | - Olivier Thaunat
- U1111 INSERM, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot University Hospital, Lyon, France; Claude Bernard University (Lyon-1), Lyon, France
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Laure-Hélène Noël
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marie Essig
- CHU Limoges, Department of Nephrology, Dialysis and Transplantation, University of Limoges, Limoges, France
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France; Paris Descartes, Sorbonne Paris Cité University, Paris, France; Department of Nephrology and Kidney Transplantation, RTRS Centaure, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Marquet
- U850 INSERM, University of Limoges, CHU Limoges, Limoges, France
| | - Maarten Naesens
- Laboratory of Nephrology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
A porcine model to study the effect of brain death on kidney genomic responses. J Clin Transl Sci 2018; 2:208-216. [PMID: 30800478 PMCID: PMC6374499 DOI: 10.1017/cts.2018.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Accepted: 05/26/2018] [Indexed: 11/16/2022] Open
Abstract
Introduction A majority of transplanted organs come from donors after brain death (BD). Renal grafts from these donors have higher delayed graft function and lower long-term survival rates compared to living donors. We designed a novel porcine BD model to better delineate the incompletely understood inflammatory response to BD, hypothesizing that adhesion molecule pathways would be upregulated in BD. Methods Animals were anesthetized and instrumented with monitors and a balloon catheter, then randomized to control and BD groups. BD was induced by inflating the balloon catheter and animals were maintained for 6 hours. RNA was extracted from kidneys, and gene expression pattern was determined. Results In total, 902 gene pairs were differently expressed between groups. Eleven selected pathways were upregulated after BD, including cell adhesion molecules. Conclusions These results should be confirmed in human organ donors. Treatment strategies should target involved pathways and lessen the negative effects of BD on transplantable organs.
Collapse
|
48
|
New Answers to Old Conundrums: What Antibodies, Exosomes and Inflammasomes Bring to the Conversation. Canadian National Transplant Research Program International Summit Report. Transplantation 2018; 102:209-214. [PMID: 28731910 PMCID: PMC5802265 DOI: 10.1097/tp.0000000000001872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibody-mediated injury is a major cause of allograft dysfunction and loss. Antibodies to ABH(O) blood group antigens are classic mediators of ABO-incompatible graft rejection, whereas donor-specific anti-HLA antibodies and, more recently, autoantibodies are appreciated as important contributors to allograft inflammation and dysfunction. In August 2016, the International Summit of the Canadian National Transplant Research Program focused on recent advances in the field of antibody-mediated rejection. Here, we describe work presented and discussed at the meeting, with a focus on 3 major themes: the importance of (1) natural antibodies and autoantibodies, (2) tissue injury-derived exosomes and autoimmunity, (3) inflammasome activation and innate immune responses in regulating allograft inflammation and dysfunction. Finally, we explore novel areas of therapeutic intervention that have recently emerged from these 3 major and overlapping fields of transplantation research.
Collapse
|
49
|
Chong AS, Ansari MJ. Heterogeneity of memory B cells. Am J Transplant 2018; 18:779-784. [PMID: 29359404 PMCID: PMC5962275 DOI: 10.1111/ajt.14669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 01/25/2023]
Abstract
Potential solid organ transplant recipients broadly sensitized to HLA have long wait times, low transplant rates and poor outcomes. The new kidney allocation system has improved access to the most highly sensitized recipients; however, their long-term outcomes are unknown. Emerging data suggest that memory B cell repertoire is broader than the plasma cell repertoire, therefore, despite refinements in anti-HLA antibody detection technology, donor-specific HLA- specific memory B cells may in fact be present in some, if not most, highly sensitized recipients with no detectable donor-specific antibodies. In addition, new findings have underscored the heterogeneity in memory B cell generation, and in the signals that determine memory versus plasma cell fate during primary antigen encounter, as well as memory B cell differentiation upon antigen reencounter into plasma cells or reentry into germinal centers to subsequently emerge as higher affinity and class-switched plasma cells. Thus, heterogeneity memory B cells generation may affect the efficacy of specific immunomodulation during the recall response. We propose that the ability to quantify donor-specific B cell in transplant recipients is urgently required to provide insights into the mechanisms of sensitization and recall, and for the early detection of acute and chronic AMR.
Collapse
Affiliation(s)
- Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, IL, USA
- Division of Nephrology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M Javeed Ansari
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, IL, USA
- Division of Nephrology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
50
|
Rabbit anti-human thymocyte immunoglobulin for the rescue treatment of chronic antibody-mediated rejection after pediatric kidney transplantation. Pediatr Nephrol 2017; 32:2133-2142. [PMID: 28717935 DOI: 10.1007/s00467-017-3725-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/29/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic antibody-mediated rejection (cAMR) is the leading cause of late kidney graft loss, but current therapies are often ineffective. Rabbit anti-human thymocyte immunoglobulin (rATG) may be helpful, but its use is virtually undocumented. METHODS Data were analyzed retrospectively from nine pediatric kidney transplant patients with cAMR were treated with rATG (1.5 mg/kg × 5 days) at our center after non-response to pulsed prednisolone, intravenous immunoglobulin, rituximab, and increased immunosuppressive intensity (including switching to belatacept in some cases), with or without bortezomib. RESULTS The median time from diagnosis to cAMR was 179 days. rATG was started 5-741 days after diagnosis. Median estimated glomerular filtration rate (eGFR) increased from 40 mL/min/1.73 m2 when rATG was started to 62 mL/min/1.73 m2 9 months later (p = 0.039). Four patients showed substantially higher eGFR after 9 months and 2 patients showed a small improvement; eGFR continued to decline in 3 patients after starting rATG. No grafts were lost during follow-up. At last follow-up, donor-specific antibodies (DSAs) were no longer detectable in 4 out of 8 patients for whom data were available, median fluorescence intensity had decreased substantially in 1 out of 8 patients; anti-HLA DQ DSAs persisted in 2 out of 8 patients. No adverse events with a suspected relation to rATG, including allergic reactions, leukocytopenia or infections, were observed in any of the patients. CONCLUSIONS In this small series of patients, rATG appears a promising treatment for unresponsive cAMR. Further evaluation, including earlier introduction of rATG, is warranted.
Collapse
|