1
|
Wathanavasin W, Thongprayoon C, Kaewput W, Tangpanithandee S, Suppadungsuk S, Cheungpasitporn W. Temporal Trends and Clinical Impact of Malnutrition on In-Hospital Outcomes Among Patients with Advanced Chronic Kidney Disease: A Nationwide Inpatient Analysis. Nutrients 2025; 17:1508. [PMID: 40362823 PMCID: PMC12073202 DOI: 10.3390/nu17091508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Malnutrition is a prevalent yet under-recognized condition in patients with advanced chronic kidney disease (CKD), contributing to increased morbidity, mortality, and healthcare burden. The aim of this study is to determine the prevalence and trends of malnutrition and investigate the impact of malnutrition on in-hospital outcomes, treatments, and resource utilization in hospitalized patients with advanced CKD. METHODS This study utilized the National Inpatient Sample (NIS) database to identify hospitalized patients with advanced CKD from 2016 to 2021. This study investigated temporal trends in the prevalence and in-hospital mortality across different degrees of malnutrition in advanced CKD patients. Multivariable regression models were used to assess the association between malnutrition and in-hospital outcomes. RESULTS Out of 1,244,415 advanced CKD patients, 67,587 (5.4%) had mild to moderate malnutrition, and 63,785 (5.1%) had severe malnutrition. Malnourished patients exhibited significantly higher in-hospital mortality, with adjusted odds ratios of 1.70 (95% confidence interval (CI), 1.64-1.75) for mild to moderate cases and 2.67 (95% CI, 2.60-2.75) for severe cases. Severely malnourished patients were associated with longer mean hospital stay by 7.0 days and higher hospitalization costs by $97,767 compared with non-malnourished patients. The prevalence of severe malnutrition showed a significant uptrend from 4.2% in 2016 to 5.5% in 2021 (p for trend < 0.001). CONCLUSIONS Malnutrition in advanced CKD is an increasingly prevalent condition linked to worsened in-hospital outcomes and heightened healthcare resource utilization. The rising trend of severe malnutrition underscores the need for early nutritional screening and the need for future interventional studies to mitigate adverse clinical outcomes in this high-risk population.
Collapse
Affiliation(s)
- Wannasit Wathanavasin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (S.T.); (S.S.)
- Nephrology Unit, Department of Medicine, Charoenkrung Pracharak Hospital, Bangkok Metropolitan Administration, Bangkok 10120, Thailand
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (S.T.); (S.S.)
| | - Wisit Kaewput
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Supawit Tangpanithandee
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (S.T.); (S.S.)
| | - Supawadee Suppadungsuk
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (S.T.); (S.S.)
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (S.T.); (S.S.)
| |
Collapse
|
2
|
Zhu J, Beaulieu C, Damji K, Stobbe R. Sodium MRI of the skin using a surface coil to investigate and reduce signal loss and bias. Magn Reson Med 2025; 93:1176-1189. [PMID: 39462467 DOI: 10.1002/mrm.30343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE The purpose was to improve sodium MRI of human skin using a surface coil and twisted projection imaging with smaller, reshaped voxels. METHODS Calf skin sodium images were acquired in 14 healthy adults using twisted projection imaging with short TE ˜ 0.1 ms, first with a volume coil and voxels (1.5 × 1.5 × 15 = 34 mm3) reflecting the widely adopted skin imaging protocol (VolPencil). A 5-cm-diameter surface coil then facilitated 5× smaller (0.8 × 0.8 × 10 = 6.4 mm3) voxels with similar signal to noise ratio (SNR) in the same 12-min scan time (SurfPencil). "Pencil-shaped" voxels were then replaced with "pancake-shaped" (0.4 × 4 × 4 = 6.4 mm3) voxels, matching the anatomy of pressed flat skin (SurfPancake). Surface coil B1 was investigated with the novel use of spin-3/2 simulation. Protocol modifications were tested for signal increase (reduced loss) and correlation with (bias by) skin thickness. RESULTS Higher resolution SurfPencil yielded 44% ± 16% greater skin sodium image intensity than VolPencil, whereas SurfPancake yielded an additional 20% ± 9% (p < 1e-8), reflecting reduced signal loss. Over the 1.0 to 1.8 mm skin thickness across participants, sodium intensity significantly increased 56% ± 19% and 44% ± 12% for VolPencil and SurfPencil, respectively (p < 0.003), but not for SurfPancake, reflecting reduced bias. Imaging yielded skin sodium concentration of 34 ± 5 mM for SurfPancake. This is greater than the ˜20 mM measures from the widely adopted protocol, but simulation (matching experimental trends) identified a remaining 64% signal loss; compensation yields 95 ± 15 mM. CONCLUSION Surface coil imaging and "pancake" voxel reshaping increased skin sodium intensity and reduced bias by skin thickness. Simulated loss compensation yields skin sodium concentration similar to that measured by atomic absorption spectroscopy.
Collapse
Affiliation(s)
- Jingxuan Zhu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Karim Damji
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Rob Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Rodrigues CIS, Ferreira-Filho SR, Moura AFDS, Poli-de-Figueiredo CE, da Silva DR, Polacchini FSG, de Almeida FA, Pinheiro ME, Bezerra R, de Paula RB, Peixoto AJ, Figueiredo AEPL, Feitosa ADM, Machado CA, Amodeo C, Mion D, Muxfeldt ES, da Silva GV, Moura-Neto JA, Pazeli JM, Lotaif LD, Drager LF, Martín LC, Bortolotto LA, Bastos MG, Malachias MVB, Moreira MVPC, Canziani MEF, Miranda RD, Franco RJDS, Pecoits R, Mulinari RA, Elias RM, Barroso WKS, Nadruz W. I Brazilian guideline on hypertension in dialysis of the Brazilian Society of Nephrology. J Bras Nefrol 2025; 47:e20240033. [PMID: 40009791 PMCID: PMC11864789 DOI: 10.1590/2175-8239-jbn-2024-0033en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/01/2024] [Indexed: 02/28/2025] Open
Abstract
Hypertension in dialysis patients (HTND) has a high prevalence, affecting at least 80% or more of patients, and its management in the nephrology practice is heterogeneous and often empirical. Knowing how to define, understand the pathophysiology, diagnose, monitor and treat with lifestyle changes, and adjust antihypertensive drugs to achieve the recommended blood pressure (BP) target - to reduce morbidity and mortality - requires specific knowl-edge and approaches within the contexts of hemodialysis (HD) and peritoneal dialysis (PD). This document is the first guideline of the Brazilian Society of Nephrology, developed by the departments of Hypertension and Dialysis. It aims to guide physicians who provide care in dialysis centers on how to manage patients with HTND, in a comprehensive and individualized manner, based on the critical appraisal of the best available scientific evidence. When such evidence is scarce or unavailable, the opinion of specialists should be recommended. The different topics covered include HTND definition (pre-HD BP ≥ 140/90 mmHg and post-HD BP ≥ 130/80 mmHg), epidemiology, and pathophysiology; diagnosis of HTND preferably with BP measurements outside the dialysis setting (BP ≥ 130/80 mmHg); complementary assessment; blood pressure targets; non-pharmacological treatment; use of the most appropriate antihypertensive medications; special situations; and complications of HTND, predominantly cardiovascular ones.
Collapse
Affiliation(s)
- Cibele Isaac Saad Rodrigues
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Pontifícia Universidade Católica de São Paulo, Sorocaba, SP, Brazil
| | | | - Ana Flávia de Souza Moura
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil
| | - Carlos Eduardo Poli-de-Figueiredo
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dirceu Reis da Silva
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Salomão Gorayeb Polacchini
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Hospital de Base de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Fernando Antônio de Almeida
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Pontifícia Universidade Católica de São Paulo, Sorocaba, SP, Brazil
| | - Maria Eliete Pinheiro
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Universidade Federal de Alagoas, Alagoas, AL, Brazil
| | - Rodrigo Bezerra
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rogério Baumgratz de Paula
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | | | | - Carlos Alberto Machado
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
- Secretaria Municipal de Saúde de Campos do Jordão, Campos do Jordão, SP, Brazil
| | - Celso Amodeo
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
| | - Décio Mion
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
- Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elizabeth Silaid Muxfeldt
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Giovanio Vieira da Silva
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Andrade Moura-Neto
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil
| | - José Muniz Pazeli
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Faculdade de Medicina de Barbacena, Barbacena, MG, Brazil
| | - Leda Daud Lotaif
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Hospital do Coração da Associação Beneficente Síria de São Paulo, São Paulo, SP, Brazil
| | - Luciano F. Drager
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis Cuadrado Martín
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luiz Aparecido Bortolotto
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
- Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcus Gomes Bastos
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | | | | - Roberto Dischinger Miranda
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roberto Jorge da Silva Franco
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Roberto Pecoits
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
- Arbor Research Collaborative for Health, Ann Arbor, United States
| | - Rogerio Andrade Mulinari
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Rosilene Motta Elias
- Brazilian Society of Nephrology, São Paulo, SP, Brazil
- Universidade de São Paulo, São Paulo, SP, Brazil
- Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Weimar Kunz Sebba Barroso
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
- Universidade Federal de Goiás, Goiania, GO, Brazil
| | - Wilson Nadruz
- Brazilian Society of Hypertension, São Paulo, SP, Brazil
- Brazilian Society of Cardiology, São Paulo, SP, Brazil
- Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
4
|
Simon SSA, van Vliet AMC, Vogt L, Oppelaar JJ, Lindner G, Olde Engberink RHG. Prediction of plasma sodium changes in the acutely ill patients: the potential role of tissue sodium content. Eur J Intern Med 2024; 129:121-124. [PMID: 39095301 DOI: 10.1016/j.ejim.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Rapid correction of dysnatremias can result in neurological complications. Therefore, various formulas are available to predict changes in plasma sodium concentration ([Na+]) after treatment, but these have been shown to be inaccurate. This could be explained by sodium acumulation in skin and muscle tissue, which is not explicitly considered in these formulas. We assessed the association between clinical and biochemical factors related to tissue sodium accumulation and the discrepancy between predicted and measured plasma [Na+]. METHODS We used data from an intensive care unit (ICU) cohort with complete data on sodium, potassium, and water balance. The predicted plasma [Na+] was calculated using the Barsoum-Levine (BL) and the Nguyen-Kurtz (NK) formula. We calculated the discrepancy between predicted and measured plasma sodium and fitted a linear mixed-effect model to investigate its association with factors related to tissue sodium accumulation. RESULTS We included 594 ICU days of sixty-three patients in our analysis. The mean plasma [Na+] at baseline was 147±6 mmol/L. The median (IQR) discrepancy between predicted and measured plasma [Na+] was 3.14 mmol/L (1.48, 5.55) and 3.53 mmol/L (1.81, 6.44) for the BL and NK formulas, respectively. For both formulas, estimated total body water (p=0.027), initial plasma [Na+] (p<0.001) and plasma [Na+] change (p<0.001) were associated with the discrepancy between predicted and measured plasma [Na+]. CONCLUSION In this ICU cohort, initial plasma [Na+], total body water, and plasma [Na+] changes, all factors that are related to tissue sodium accumulation, were associated with the inaccurateness of plasma [Na+] prediction.
Collapse
Affiliation(s)
- S S A Simon
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine Division of Nephrology, Amsterdam University Medical Centre, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9 PO Box 22660, 1100 DD, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - A M C van Vliet
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine Division of Nephrology, Amsterdam University Medical Centre, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9 PO Box 22660, 1100 DD, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - L Vogt
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine Division of Nephrology, Amsterdam University Medical Centre, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9 PO Box 22660, 1100 DD, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - J J Oppelaar
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine Division of Nephrology, Amsterdam University Medical Centre, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9 PO Box 22660, 1100 DD, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - G Lindner
- Department of Emergency Medicine, Kepler Universitätsklinikum GmbH, Linz, Austria; Department of Emergency Medicine, Inselspital, University Hospital Bern, Switzerland
| | - R H G Olde Engberink
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine Division of Nephrology, Amsterdam University Medical Centre, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9 PO Box 22660, 1100 DD, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Ertuglu LA, Sahinoz M, Alsouqi A, Deger SM, Guide A, Pike M, Robinson‐Cohen C, Akwo E, Pridmore M, Crescenzi R, Madhur MS, Kirabo A, Harrison DG, Luft FC, Titze J, Ikizler TA, Gamboa JL. Intermuscular adipose tissue accumulation is associated with higher tissue sodium in healthy individuals. Physiol Rep 2024; 12:e16127. [PMID: 38960895 PMCID: PMC11222016 DOI: 10.14814/phy2.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND AND AIMS High tissue sodium accumulation and intermuscular adipose tissue (IMAT) are associated with aging, type 2 diabetes, and chronic kidney disease. In this study, we aim to investigate whether high lower-extremity tissue sodium accumulation relates to IMAT quantity and whether systemic inflammatory mediators and adipocytokines contribute to such association. METHODS Tissue sodium content and IMAT accumulation (percentage of IMAT area to muscle area) were measured in 83 healthy individuals using sodium imaging (23Na-MRI) and proton (1H-MRI) imaging of the calf. Insulin sensitivity was assessed by glucose disposal rate (GDR) measured with the hyperinsulinemic-euglycemic clamp. RESULTS Median (interquartile range) muscle and skin sodium contents were 16.6 (14.9, 19.0) and 12.6 (10.9, 16.7) mmol/L, respectively. Median IMAT was 3.69 (2.80, 5.37) %. In models adjusted for age, sex, BMI, GDR, adiponectin, and high-sensitivity C-reactive protein, increasing tissue sodium content was significantly associated with higher IMAT quantity (p = 0.018 and 0.032 for muscle and skin tissue sodium, respectively). In subgroup analysis stratified by sex, skin sodium was significantly associated with IMAT only among men. In interaction analysis, the association between skin sodium and IMAT was greater with increasing levels of high-sensitivity C-reactive protein and interleukin-6 (p for interaction = 0.022 and 0.006, respectively). CONCLUSIONS Leg muscle and skin sodium are associated with IMAT quantity among healthy individuals. The relationship between skin sodium and IMAT may be mediated by systemic inflammation.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Melis Sahinoz
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Aseel Alsouqi
- Now with Division of Hematology and Oncology, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Serpil Muge Deger
- Division of Nephrology, Department of MedicineDokuz Eylul UniversityIzmirTurkey
| | - Andrew Guide
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Mindy Pike
- Division of Epidemiology, Department of MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | - Cassianne Robinson‐Cohen
- Division of Nephrology and Hypertension, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Elvis Akwo
- Division of Nephrology and Hypertension, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Pridmore
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Rachelle Crescenzi
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Jens Titze
- Program in Cardiovascular and Metabolic DisordersDuke NUS Medical SchoolBukit MerahSingapore
| | - T. Alp Ikizler
- Division of Nephrology and Hypertension, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jorge L. Gamboa
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
6
|
Kopp C, Kittler L, Linz P, Kannenkeril D, Horn S, Chazot C, Schiffer M, Uder M, Nagel AM, Dahlmann A. Modification of Dialysate Na + Concentration but not Ultrafiltration or Dialysis Treatment Time Affects Tissue Na + Deposition in Patients on Hemodialysis. Kidney Int Rep 2024; 9:1310-1320. [PMID: 38707813 PMCID: PMC11068953 DOI: 10.1016/j.ekir.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Tissue Na+ overload is present in patients receiving hemodialysis (HD) and is associated with cardiovascular mortality. Strategies to actively modify tissue Na+ amount in these patients by adjusting the HD regimen have not been evaluated. Methods In several substudies, including cross-sectional analyses (n = 75 patients on HD), a cohort study and a cross-over interventional study (n = 10 patients each), we assessed the impact of ultrafiltration (UF) volume, prolongation of dialysis treatment time, and modification of dialysate Na+ concentration on tissue Na+ content using 23Na magnetic resonance imaging (23Na-MRI). Results In the cross-sectional analysis of our patients on HD, differences in dialysate sodium concentration ([Na+]) were associated with changes in tissue Na+ content, whereas neither UF volume nor HD treatment time affected tissue Na+ amount. Skin Na+ content was lower in 17 patients on HD, with dialysate [Na+] of <138 mmol/l compared to 58 patients dialyzing at ≥138 mmol/l (20.7 ± 7.3 vs. 26.0 ± 8.8 arbitrary units [a.u.], P < 0.05). In the cohort study, intraindividual prolongation of HD treatment time was not associated with a reduction in tissue Na+ content. Corresponding to the observational data, intraindividual modification of dialysate [Na+] from 138 to 142 to 135 mmol/l resulted in concordant changes in skin Na+ (24.3 ± 7.6 vs. 26.3 ± 8.0 vs. 20.8 ± 5.6 a.u, P < 0.05 each), whereas no significant change in muscle Na+ occurred. Conclusion Solely adjustment of dialysate [Na+] had a reproducible impact on tissue Na+ content. 23Na-MRI could be utilized to monitor the effectiveness of dialysate [Na+] modifications in randomized-controlled outcome trials.
Collapse
Affiliation(s)
- Christoph Kopp
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Kittler
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Linz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis Kannenkeril
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Abstract
Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism is presented as a prototype.
Collapse
Affiliation(s)
- Domenico Bagordo
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Gian Paolo Rossi
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| |
Collapse
|
8
|
Nakayama M. Why should we use a low sodium dialysis solution for peritoneal dialysis? Perit Dial Int 2024; 44:89-97. [PMID: 38265014 DOI: 10.1177/08968608231222141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Overhydration is highly prevalent in patients on peritoneal dialysis (PD), with inappropriately high sodium load supposedly playing a central role in the pathophysiology of the conditions. Recent studies have revealed the novel role of the interstitium as a buffer system for sodium ions, and it has been reported that patients on dialysis, including PD, present increased levels of sodium in the interstitium, such as in subcutaneous tissue and muscle. Hence, therapy for correction of overhydration should target the excess extracellular volume and the excess sodium storage in the interstitium. The ultrafiltrate obtained using the currently available PD solutions is hypo- to isonatric as compared to serum, which is disadvantageous for prompt and efficient sodium removal from the body in patients with overhydration. In contrast, use of low sodium PD solutions is characterised by iso- to hypernatric ultrafiltrate, which may beneficial for reducing sodium storage in the interstitium. Trials of low sodium PD solutions have reported possible clinical merits, for example, decreased blood pressure, reduced dryness of mouth and decreased body water content as assessed using bioimpedance methods. Given these observations and the high prevalence of overhydration in current PD populations, it makes medical sense that low sodium solutions be positioned as the new standard solution in the future. However, for medical safety, that is, to avoid hyponatremia and excessive decreases in blood pressure, further studies are needed to establish the appropriate compositions and applications of low sodium solutions.
Collapse
|
9
|
Pinter J, Smyth B, Stuard S, Jardine M, Wanner C, Rossignol P, Wheeler DC, Marshall MR, Canaud B, Genser B. Effect of Dialysate and Plasma Sodium on Mortality in a Global Historical Hemodialysis Cohort. J Am Soc Nephrol 2024; 35:167-176. [PMID: 37967469 PMCID: PMC10843362 DOI: 10.1681/asn.0000000000000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
SIGNIFICANCE STATEMENT This large observational cohort study aimed to investigate the relationship between dialysate and plasma sodium concentrations and mortality among maintenance hemodialysis patients. Using a large multinational cohort of 68,196 patients, we found that lower dialysate sodium concentrations (≤138 mmol/L) were independently associated with higher mortality compared with higher dialysate sodium concentrations (>138 mmol/L). The risk of death was lower among patients exposed to higher dialysate sodium concentrations, regardless of plasma sodium levels. These results challenge the prevailing assumption that lower dialysate sodium concentrations improve outcomes in hemodialysis patients. The study confirms that until robust evidence from randomized trials that are underway is available, nephrologists should remain cautious in reconsideration of dialysate sodium prescribing practices to optimize cardiovascular outcomes and reduce mortality in this population. BACKGROUND Excess mortality in hemodialysis (HD) patients is largely due to cardiovascular disease and is associated with abnormal fluid status and plasma sodium concentrations. Ultrafiltration facilitates the removal of fluid and sodium, whereas diffusive exchange of sodium plays a pivotal role in sodium removal and tonicity adjustment. Lower dialysate sodium may increase sodium removal at the expense of hypotonicity, reduced blood volume refilling, and intradialytic hypotension risk. Higher dialysate sodium preserves blood volume and hemodynamic stability but reduces sodium removal. In this retrospective cohort, we aimed to assess whether prescribing a dialysate sodium ≤138 mmol/L has an effect on survival outcomes compared with dialysate sodium >138 mmol/L after adjusting for plasma sodium concentration. METHODS The study population included incident HD patients from 875 Fresenius Medical Care Nephrocare clinics in 25 countries between 2010 and 2019. Baseline dialysate sodium (≤138 or >138 mmol/L) and plasma sodium (<135, 135-142, >142 mmol/L) concentrations defined exposure status. We used multivariable Cox regression model stratified by country to model the association between time-varying dialysate and plasma sodium exposure and all-cause mortality, adjusted for demographic and treatment variables, including bioimpedance measures of fluid status. RESULTS In 2,123,957 patient-months from 68,196 incident HD patients with on average three HD sessions per week dialysate sodium of 138 mmol/L was prescribed in 63.2%, 139 mmol/L in 15.8%, 140 mmol/L in 20.7%, and other concentrations in 0.4% of patients. Most clinical centers (78.6%) used a standardized concentration. During a median follow-up of 40 months, one third of patients ( n =21,644) died. Dialysate sodium ≤138 mmol/L was associated with higher mortality (multivariate hazard ratio for the total population (1.57, 95% confidence interval, 1.25 to 1.98), adjusted for plasma sodium concentrations and other confounding variables. Subgroup analysis did not show any evidence of effect modification by plasma sodium concentrations or other patient-specific variables. CONCLUSIONS These observational findings stress the need for randomized evidence to reliably define optimal standard dialysate sodium prescribing practices.
Collapse
Affiliation(s)
- Jule Pinter
- Department of Medicine, Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - Brendan Smyth
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
- Department of Renal Medicine, St George Hospital, Sydney, Australia
| | - Stefano Stuard
- Global Medical Office, FMC Germany, Bad Homburg, Germany
| | - Meg Jardine
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
- Concord Repatriation General Hospital, Sydney, Australia
| | - Christoph Wanner
- Department of Medicine, Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
- Department of Clinical Research and Epidemiology, Renal Research Unit, Comprehensive Heart Failure Center, Wuerzburg, Germany
| | - Patrick Rossignol
- Université de Lorraine, Centre d’Investigations Cliniques-Plurithématique 1433 CHRU de Nancy, U1116 Inserm and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Princess Grace Hospital, and Monaco Private Hemodialysis Centre, Monaco
| | - David C. Wheeler
- Department of Renal Medicine, University College London, London, United Kingdom
| | | | | | - Bernd Genser
- High5Data GmbH, Heidelberg, Germany
- Department of General Medicine, Center for Preventive Medicine & Digital Health, Mannheim Medical Faculty, Ruprecht Karls University Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Fang HY, Wilund KR. Muscle Sodium Accumulation in Kidney Failure: Physiological Impact and Mitigation Strategies. J Ren Nutr 2023; 33:S93-S102. [PMID: 36965750 DOI: 10.1053/j.jrn.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/27/2023] Open
Abstract
Skeletal muscle has recently been recognized as a nonosmotic sodium reservoir that buffers dietary sodium. The in-vivo quantification of muscle sodium is based on a novel technology, sodium magnetic resonance imaging. Studies using this technology have shown that muscle sodium accumulation may be a clinical complication of chronic kidney disease (CKD). This review aims to summarize existing evidence on muscle sodium accumulation in patients with CKD and to identify knowledge gaps and topics for further research. The literature examined in this review suggests that muscle sodium accumulation is associated with CKD progression and pathological conditions. However, the causalities between muscle sodium accumulation and its related pathological changes are still elusive mainly because it is still uncertain where and how sodium accumulates in the muscle. More research is needed to address these gaps and determine if muscle sodium is a new intervention target in CKD.
Collapse
Affiliation(s)
- Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
11
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
12
|
Muramae N, Matsuda T, Inagaki S, Takahashi H, Abe K, Nakatani S, Takahashi M, Kato K, Sakaguchi K, Ogawa W. Determinants of phase angle in Japanese patients with diabetes. Diabetol Int 2023; 14:339-343. [PMID: 37781466 PMCID: PMC10533457 DOI: 10.1007/s13340-023-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/08/2023] [Indexed: 10/03/2023]
Abstract
Phase angle, obtained using bioelectrical impedance analysis, non-invasively reflects the whole-body cellular condition and nutritional status and may be helpful as a prognostic factor. Patients with diabetes had a smaller phase angle than healthy subjects. However, the clinical significance of phase angle has not yet been elucidated. Therefore, the purpose of this study was to clarify the relationship between phase angle and HbA1c in patients with diabetes and the clinical relevance of phase angle. A retrospective, multicenter, cross-sectional study was conducted with Japanese patients with diabetes. Body composition was determined with bioelectrical impedance analysis, and this was used to obtain phase angle. Phase angle was assessed in relation to clinical parameters, body composition parameters, and HbA1c levels. A total of 655 patients were enrolled (400 men and 255 women, aged 57.1 ± 14.8 years, body mass index 25.6 ± 5.2 kg/m2, HbA1c 8.1 ± 1.9%). Even in patients with diabetes, the phase angle was higher in men than in women and did not differ between the types of diabetes. Multiple regression analysis, performed with phase angle as the objective variable, and age, sex, diabetes type, HbA1c, albumin level, and body mass index as explanatory variables, revealed that phase angle was negatively affected by HbA1c (B = - 0.043, 95% Confidence interval: - 0.07 to - 0.02, p < 0.001). HbA1c, age, sex, albumin level, and body mass index were independent determinants of phase angle in participants with diabetes.
Collapse
Affiliation(s)
- Naokazu Muramae
- Department of General Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Department of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Satoshi Inagaki
- School of Nursing, Kobe City College of Nursing, Kobe, Japan
| | | | - Kozue Abe
- Matsuda Diabetes Clinic, Kobe, Japan
| | - Saki Nakatani
- Department of Nutrition, Kobe University Hospital, Kobe, Japan
| | | | - Kenji Kato
- Faculty of Nursing Science, Kobe Women’s University, Kobe, Japan
| | - Kazuhiko Sakaguchi
- Department of General Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Department of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Department of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Watso JC, Fancher IS, Gomez DH, Hutchison ZJ, Gutiérrez OM, Robinson AT. The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes Rev 2023; 24:e13589. [PMID: 37336641 PMCID: PMC10406397 DOI: 10.1111/obr.13589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Hypertension is a primary risk factor for cardiovascular disease. Cardiovascular disease is the leading cause of death among adults worldwide. In this review, we focus on two of the most critical public health challenges that contribute to hypertension-obesity and excess dietary sodium from salt (i.e., sodium chloride). While the independent effects of these factors have been studied extensively, the interplay of obesity and excess salt overconsumption is not well understood. Here, we discuss both the independent and combined effects of excess obesity and dietary salt given their contributions to vascular dysfunction, autonomic cardiovascular dysregulation, kidney dysfunction, and insulin resistance. We discuss the role of ultra-processed foods-accounting for nearly 60% of energy intake in America-as a major contributor to both obesity and salt overconsumption. We highlight the influence of obesity on elevated blood pressure in the presence of a high-salt diet (i.e., salt sensitivity). Throughout the review, we highlight critical gaps in knowledge that should be filled to inform us of the prevention, management, treatment, and mitigation strategies for addressing these public health challenges.
Collapse
Affiliation(s)
- Joseph C. Watso
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Dulce H. Gomez
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Orlando M. Gutiérrez
- Division of Nephrology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
14
|
Ibrahim KA, Wicaksono R, Baidillah MR, Ito K, Takei M. Free and bound sodium identification by skin dielectric properties separation algorithm of bioelectrical impedance spectroscopy (spa-BIS) in human skin model. Biomed Phys Eng Express 2023; 9:055010. [PMID: 37459837 DOI: 10.1088/2057-1976/ace7d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Free and bound sodium in human skin models have been identified by two proposals: skin's phantom fabrication and skin's dielectric properties separation algorithm of bioelectrical impedance spectroscopy (spa-BIS). Thespa-BIS consist of conductivity-permittivity separation, contact impedance compensation, and a correlation score algorithm based on the vessel with a bipolar electrode. The skin phantom fabrication comprises a recipe combination with temperature-controlled protocol and sodium molarity calculation. In experiments, the human skin models are created to mimic the electrical properties of skin under1MHzwith several different sodium molarities. Based on five types of human skin models with five samples of each group, the free sodium type conductivity and concentration resultsR2=0.9903-following a linear trendline of concentration change in skin tissues theorems with the fRequency range from1kHzto1MHz,while the bound sodium type resultsR2=0.9061-.Thespa-BIS compensate7-16Ωof vessel contact impedance. The dielectric properties of each type have been extracted with less than 10% of the average standard deviation, which is considered an accurate identification method of dermis dielectric properties. The algorithm successfully identifies sodium type: free sodium has a negative, and bound sodium has a positive correlation score trend. As an additional discussion, the different time-dependent effects, the different water content, and different agar content analyses have been provided in this study. As a robust analysis method, thespa-BIS has a prominent performance to replace a23Na-MRI in terms of free and bound sodium identification.
Collapse
Affiliation(s)
- Kiagus A Ibrahim
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 2638522, Japan
| | - Ridwan Wicaksono
- Electrical and Information Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Marlin R Baidillah
- Research Center for Electronics, National Research and Innovation Agency, KST Samaun Samadikun, Bandung 40135, Indonesia
| | - Koichi Ito
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Masahiro Takei
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
15
|
Chattopadhyay A, Tully J, Shan J, Sheikh S, Ohliger M, Gordon JW, Mauro T, Abuabara K. Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clin Exp Dermatol 2023; 48:733-743. [PMID: 36970766 DOI: 10.1093/ced/llad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Indexed: 07/20/2023]
Abstract
A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.
Collapse
Affiliation(s)
- Aheli Chattopadhyay
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Janell Tully
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Judy Shan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sidra Sheikh
- Kaiser Permanente, Department of Physical Medicine & Rehabilitation, Oakland, CA, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Theodora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Akbari A, McIntyre CW. Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease. J Clin Med 2023; 12:4381. [PMID: 37445416 PMCID: PMC10342976 DOI: 10.3390/jcm12134381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Sodium imbalance is a hallmark of chronic kidney disease (CKD). Excess tissue sodium in CKD is associated with hypertension, inflammation, and cardiorenal disease. Sodium magnetic resonance imaging (23Na MRI) has been increasingly utilized in CKD clinical trials especially in the past few years. These studies have demonstrated the association of excess sodium tissue accumulation with declining renal function across whole CKD spectrum (early- to end-stage), biomarkers of systemic inflammation, and cardiovascular dysfunction. In this article, we review recent advances of 23Na MRI in CKD and discuss its future role with a focus on the skin, the heart, and the kidney itself.
Collapse
Affiliation(s)
- Alireza Akbari
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Christopher W. McIntyre
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Departments of Medicine, Pediatrics and Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
17
|
Maduell F, Broseta JJ, Rodríguez-Espinosa D, Casals J, Escudero V, Gomez M, Rodas LM, Arias-Guillén M, Vera M, Fontseré N. Practical implementation and clinical benefits of the new automated dialysate sodium control biosensor. Clin Kidney J 2023; 16:859-867. [PMID: 37151418 PMCID: PMC10157758 DOI: 10.1093/ckj/sfad013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
Background A key feature of dialysis treatment is the prescription of dialysate sodium (Na). This study aimed to describe the practical implementation of a new automated dialysate Na control biosensor and to assess its tolerance and the beneficial clinical effects of isonatraemic dialysis. Methods A prospective study was carried out in 86 patients who, along with their usual parameters, received the following five consecutive phases of treatment for 3 weeks each: phase 0: baseline 5008 machine; phases 1 and 2: 6008 machine without activation of the Na control biosensor and the same fixed individualized Na dialysate prescription or adjusted to obtain similar conductivity to phase 0; phases 3 and 4: activated Na control to isonatraemic dialysis (Na dialysate margins 135-141 or 134-142 mmol/L). Results When the Na control was activated, the few episodes of cramps or hypotension disappeared when the lower dialysate Na margin was increased by 1 or 2 mmol/L. The activated Na control module showed significant differences compared with baseline and the non-activated Na module in final serum Na values, diffusive Na balance, and changes in pre- to postdialysis plasma Na values. The mean predialysis systolic blood pressure value was significantly lower in phase 4 than in phase 1. There were no significant differences in total Na balance in the four 6008 phases evaluated. Conclusions The implementation of the automated dialysate Na control module is a useful new tool, which reduced the diffusive load of Na with good tolerance. The module had the advantages of reducing thirst, interdialytic weight gain and intradialytic plasma Na changes.
Collapse
Affiliation(s)
- Francisco Maduell
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - José J Broseta
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Joaquim Casals
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Victor Escudero
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Miquel Gomez
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Lida M Rodas
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Manel Vera
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Néstor Fontseré
- Department of Nephrology, Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Nakagawa Y, Kaseda R, Suzuki Y, Watanabe H, Otsuka T, Yamamoto S, Kaneko Y, Goto S, Terada Y, Haishi T, Sasaki S, Narita I. Sodium Magnetic Resonance Imaging Shows Impairment of the Counter-current Multiplication System in Diabetic Mice Kidney. KIDNEY360 2023; 4:582-590. [PMID: 36963113 PMCID: PMC10278814 DOI: 10.34067/kid.0000000000000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/17/2023] [Indexed: 03/26/2023]
Abstract
Key Points 23Na MRI allows us to noninvasively assess sodium distribution. We propose the utility of 23Na MRI for evaluating functional changes in diabetic kidney disease and not as a marker reflecting structural damage. 23Na MRI may be an early marker for structures beyond the glomeruli, enabling prompt intervention with novel efficacious tubule-targeting therapies. Background Sodium magnetic resonance imaging can noninvasively assess sodium distribution, specifically sodium concentration in the countercurrent multiplication system in the kidney, which forms a sodium concentration gradient from the cortex to the medulla, enabling efficient water reabsorption. This study aimed to investigate whether sodium magnetic resonance imaging can detect changes in sodium concentrations under normal conditions in mice and in disease models, such as a mouse model with diabetes mellitus. Methods We performed sodium and proton nuclear magnetic resonance imaging using a 9.4-T vertical standard-bore superconducting magnet. Results A condition of deep anesthesia, with widened breath intervals, or furosemide administration in 6-week-old C57BL/6JJcl mice showed a decrease in both tissue sodium concentrations in the medulla and sodium concentration gradients from the cortex to the medulla. Furthermore, sodium magnetic resonance imaging revealed reductions in the sodium concentration in the medulla and in the gradient from the cortex to the medulla in BKS.Cg-Leprdb+/+ Leprdb/Jcl mice at very early type 2 diabetes mellitus stages compared with corresponding control BKS.Cg-m+/m+/Jcl mice. Conclusions The kidneys of BKS.Cg-Leprdb+/+ Leprdb/Jcl mice aged 6 weeks showed impairments in the countercurrent multiplication system. We propose the utility of 23Na MRI for evaluating functional changes in diabetic kidney disease and not as a marker that reflects structural damage. Thus, 23Na MRI may be a potentially very early marker for structures beyond the glomerulus; this may prompt intervention with novel efficacious tubule-targeting therapies.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Yuya Suzuki
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Hirofumi Watanabe
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Tadashi Otsuka
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| | - Yasuhiko Terada
- Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Haishi
- MRTechnology Inc., Tsukuba, Ibaraki, Japan
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Chiba, Japan
| | - Susumu Sasaki
- Faculty of Engineering, Niigata University, Niigata, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University, Niigata, Niigata, Japan
| |
Collapse
|
19
|
Baron P, Potze JH, Sijens PE. Influence of reference tube location on the measured sodium concentrations in calf muscles using a birdcage coil at 3T. Magn Reson Med 2023; 90:624-632. [PMID: 37093829 DOI: 10.1002/mrm.29670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE To investigate the influence of the sodium (Na) reference tube location in a birdcage coil on the quantification of Na in the calf muscle. Two correction methods were also evaluated. METHOD Eight (4 × 20 mM, 4 × 30 mM Na) reference tubes were placed along the inner surface of the coil and one (30 mM Na) tube more centrally near the tibia. In two volunteers, four repeated UTE scans were acquired. In six calf muscles, the Na concentration was calculated based on each reference tube. Flip angle mapping of a homogenous Na phantom was used for correcting intensity values. Alternatively, a normalized intensity map was used for correcting the in vivo signal intensities. Results were given as range or SD of Na concentration measurements over the reference tubes. RESULTS For calf Na measurements, there was limited space for positioning reference tubes away from coil B1 inhomogeneity. In both volunteers, the Na quantification depended greatly on the reference tube used with a range of up to 10 mM. The central tube location gave a Na quantification close to the mean of the other tubes. The flip angle and normalized signal intensity phantom-based correction methods decreased the quantification variation from 14.9% to 5.0% and 10.4% to 2.7%, respectively. Both correction methods had little influence (< 2.3%) on quantification based on the central tube. CONCLUSION Despite use of a birdcage coil, location of the reference tube had a great impact on Na quantification in the calf muscles. Although both correction methods did reduce this variation, placing the reference tube more centrally was found to give the most reliable results.
Collapse
Affiliation(s)
- Paul Baron
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Hendrik Potze
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul E Sijens
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
21
|
Schneditz D, Mussnig S, Krenn S, Hecking M. Revisiting the concept of constant tissue conductivities for volume estimation in dialysis patients using bioimpedance spectroscopy. Int J Artif Organs 2023; 46:67-73. [PMID: 36550616 DOI: 10.1177/03913988221145457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Current estimation of body fluid volumes in hemodialysis patients using bioimpedance analysis assumes constant specific electrical characteristics of biological tissues despite a large variation in plasma Na+ concentrations [Na+], ranging from 130 to 150 mmol/L. Here, we examined the potential effect of variable [Na+] on bioimpedance-derived volume overload. METHOD Volumes were calculated from published whole-body extra- and intracellular resistance data and relationships using either "standard" or "revised" specific electrical characteristics modeled as functions of [Na+]. RESULT With "standard" assumptions, volumes increased with increasing [Na+]. The increase in volume overload was about 0.5 dm3 and 3% of extracellular volume per 10 mmol/dm3 of [Na+] in a 75 kg patient. This increase was abolished when the same bioimpedance data were analyzed under "revised" conditions. DISCUSSION The overestimation in extracellular volume overload in the range of 0.5 dm3 per 10 mmol/dm3 [Na+] perfectly matches the positive relationship determined in a large cohort of hemodialysis patients. The bias may be considered moderate when interpreting data of individual patients, but may become important when comparing data of larger patient groups. The bias disappears when analysis of bioimpedance data accounts for differences in tissue electrical properties, using individual [Na+].
Collapse
Affiliation(s)
- Daniel Schneditz
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Sebastian Mussnig
- Department of Medicine III, Division for Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Simon Krenn
- Department of Medicine III, Division for Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria.,Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Manfred Hecking
- Department of Medicine III, Division for Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Nakazato Y, Shimoyama M, Cohen AA, Watanabe A, Kobayashi H, Shimoyama H, Shimoyama H. Intercorrelated variability in blood and hemodynamic biomarkers reveals physiological network in hemodialysis patients. Sci Rep 2023; 13:1660. [PMID: 36717578 PMCID: PMC9886931 DOI: 10.1038/s41598-023-28345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Increased intra-individual variability of a variety of biomarkers is generally associated with poor health and reflects physiological dysregulation. Correlations among these biomarker variabilities should then represent interactions among heterogeneous biomarker regulatory systems. Herein, in an attempt to elucidate the network structure of physiological systems, we probed the inter-variability correlations of 22 biomarkers. Time series data on 19 blood-based and 3 hemodynamic biomarkers were collected over a one-year period for 334 hemodialysis patients, and their variabilities were evaluated by coefficients of variation. The network diagram exhibited six clusters in the physiological systems, corresponding to the regulatory domains for metabolism, inflammation, circulation, liver, salt, and protein. These domains were captured as latent factors in exploratory and confirmatory factor analyses (CFA). The 6-factor CFA model indicates that dysregulation in each of the domains manifests itself as increased variability in a specific set of biomarkers. Comparison of a diabetic and non-diabetic group within the cohort by multi-group CFA revealed that the diabetic cohort showed reduced capacities in the metabolism and salt domains and higher variabilities of the biomarkers belonging to these domains. The variability-based network analysis visualizes the concept of homeostasis and could be a valuable tool for exploring both healthy and pathological conditions.
Collapse
Affiliation(s)
- Yuichi Nakazato
- Division of Nephrology, Yuai Nisshin Clinic, Hakuyukai Medical Corporation, 2-1914-6 Nisshin-Cho, Kita-Ku, Saitama, Saitama, 331-0823, Japan.
| | - Masahiro Shimoyama
- Division of Nephrology, Yuai Clinic, Hakuyukai Medical Corporation, Saitama, Japan
| | - Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
- Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Akihisa Watanabe
- Division of Nephrology, Yuai Minuma Clinic, Hakuyukai Medical Corporation, Saitama, Japan
| | - Hiroaki Kobayashi
- Division of Nephrology, Yuai Mihashi Clinic, Hakuyukai Medical Corporation, Saitama, Japan
| | - Hirofumi Shimoyama
- Division of Nephrology, Yuai Nisshin Clinic, Hakuyukai Medical Corporation, 2-1914-6 Nisshin-Cho, Kita-Ku, Saitama, Saitama, 331-0823, Japan
| | - Hiromi Shimoyama
- Division of Nephrology, Yuai Clinic, Hakuyukai Medical Corporation, Saitama, Japan
| |
Collapse
|
23
|
Canaud B, Morena-Carrere M, Leray-Moragues H, Cristol JP. Fluid Overload and Tissue Sodium Accumulation as Main Drivers of Protein Energy Malnutrition in Dialysis Patients. Nutrients 2022; 14:4489. [PMID: 36364751 PMCID: PMC9658859 DOI: 10.3390/nu14214489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2024] Open
Abstract
Protein energy malnutrition is recognized as a leading cause of morbidity and mortality in dialysis patients. Protein-energy-wasting process is observed in about 45% of the dialysis population using common biomarkers worldwide. Although several factors are implicated in protein energy wasting, inflammation and oxidative stress mechanisms play a central role in this pathogenic process. In this in-depth review, we analyzed the implication of sodium and water accumulation, as well as the role of fluid overload and fluid management, as major contributors to protein-energy-wasting process. Fluid overload and fluid depletion mimic a tide up and down phenomenon that contributes to inducing hypercatabolism and stimulates oxidation phosphorylation mechanisms at the cellular level in particular muscles. This endogenous metabolic water production may contribute to hyponatremia. In addition, salt tissue accumulation likely contributes to hypercatabolic state through locally inflammatory and immune-mediated mechanisms but also contributes to the perturbation of hormone receptors (i.e., insulin or growth hormone resistance). It is time to act more precisely on sodium and fluid imbalance to mitigate both nutritional and cardiovascular risks. Personalized management of sodium and fluid, using available tools including sodium management tool, has the potential to more adequately restore sodium and water homeostasis and to improve nutritional status and outcomes of dialysis patients.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, Montpellier University, 34000 Montpellier, France
- Global Medical Office, FMC-France, 94260 Fresnes, France
| | - Marion Morena-Carrere
- PhyMedExp, Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of Montpellier, University of Montpellier, 34000 Montpellier, France
| | | | - Jean-Paul Cristol
- PhyMedExp, Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of Montpellier, University of Montpellier, 34000 Montpellier, France
- Charles Mion Foundation, AIDER-Santé, 34000 Montpellier, France
| |
Collapse
|
24
|
Correlation between Blood Oxygen Level-Dependent Magnetic Resonance Imaging Images and Prognosis of Patients with Multicenter Diabetic Nephropathy on account of Artificial Intelligence Segmentation Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5700249. [PMID: 35860185 PMCID: PMC9293502 DOI: 10.1155/2022/5700249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
This study was aimed to analyze the correlation between blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) images and prognosis of patients with diabetic nephropathy (DN) based on artificial intelligence (AI) segmentation algorithm, so as to provide references for diagnosis and treatment as well as prognosis analysis of patients DN. In this study, a kernel function-based fuzzy C-means algorithm (KFCM) model was proposed, and the FCM algorithm based on neighborhood pixel information (BCFCM) and the FCM algorithm based on efficiency improvement (EnFCM) were introduced for comparison to analyze the image segmentation effects of three algorithms. The results showed that the partition coefficient (Vpc) and partition entropy (Vpe) of the KFCM algorithm were 0.801 and 0.602, respectively, which were better than those of the traditional FCM, BCFCM, and EnFCM algorithm. At the same time, the effects of correlation between renal cortex R2∗ (RC-R2∗), renal medulla R2∗ (RM-R2∗), renal cortex D (RC-D), renal medulla D (RM-D) and renal function on the prognosis were compared. The results showed that the correlation coefficients between RC-R2∗, RM-R2∗, RC-D, RM-D and renal function were 0.57, 0.62, 0.49, and 0.38, respectively; among them, RC-R2∗ and RM-R2∗ were negatively correlated to the estimated glomerular filtration rate (eGFR), and the difference between the groups was statistically significant (P <0.05). Among the factors affecting the prognosis of DN patients, the GFR, hemoglobin (Hb), RC-R2∗, RM-R2∗, and RC-D were all related to the prognosis of DN, and the difference between groups was statistically obvious (P <0.05). It suggested that the KFCM algorithm proposed in this study showed the relatively best segmentation effect on BOLD-MRI images for DN patients; an increase in R2∗ indicated a poor prognosis, and an increase in the RC-D value indicated a better prognosis.
Collapse
|
25
|
Canaud B, Kooman J, Maierhofer A, Raimann J, Titze J, Kotanko P. Sodium First Approach, to Reset Our Mind for Improving Management of Sodium, Water, Volume and Pressure in Hemodialysis Patients, and to Reduce Cardiovascular Burden and Improve Outcomes. FRONTIERS IN NEPHROLOGY 2022; 2:935388. [PMID: 37675006 PMCID: PMC10479686 DOI: 10.3389/fneph.2022.935388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 09/08/2023]
Abstract
New physiologic findings related to sodium homeostasis and pathophysiologic associations require a new vision for sodium, fluid and blood pressure management in dialysis-dependent chronic kidney disease patients. The traditional dry weight probing approach that has prevailed for many years must be reviewed in light of these findings and enriched by availability of new tools for monitoring and handling sodium and water imbalances. A comprehensive and integrated approach is needed to improve further cardiac health in hemodialysis (HD) patients. Adequate management of sodium, water, volume and hemodynamic control of HD patients relies on a stepwise approach: the first entails assessment and monitoring of fluid status and relies on clinical judgement supported by specific tools that are online embedded in the HD machine or devices used offline; the second consists of acting on correcting fluid imbalance mainly through dialysis prescription (treatment time, active tools embedded on HD machine) but also on guidance related to diet and thirst management; the third consist of fine tuning treatment prescription to patient responses and tolerance with the support of innovative tools such as artificial intelligence and remote pervasive health trackers. It is time to come back to sodium and water imbalance as the root cause of the problem and not to act primarily on their consequences (fluid overload, hypertension) or organ damage (heart; atherosclerosis, brain). We know the problem and have the tools to assess and manage in a more precise way sodium and fluid in HD patients. We strongly call for a sodium first approach to reduce disease burden and improve cardiac health in dialysis-dependent chronic kidney disease patients.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, Montpellier University, Montpellier, France
- Global Medical Office, Freseenius Medical Care (FMC)-France, Fresnes, France
| | - Jeroen Kooman
- Maastricht University Maastricht Medical Center (UMC), Maastricht University, Maastricht, Netherlands
| | - Andreas Maierhofer
- Global Research Development, Fresenius Medical Care (FMC) Deutschland GmbH, Bad Homburg, Germany
| | - Jochen Raimann
- Research Division, Renal Research Institute, New York, NY, United States
| | - Jens Titze
- Cardiovascular and Metabolic Disease Programme, Duke-National University Singapore (NUS) Medical School, Singapore, Singapore
| | - Peter Kotanko
- Research Division, Renal Research Institute, New York, NY, United States
- Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Hanson P, Arkill KP, Merry CL, Hussain MS, Meersmann T, Randeva HS, Pavlovskaya GE, O'Hare P, Barber TM. Novel perspectives of sodium handling in type 2 diabetes mellitus. Expert Rev Endocrinol Metab 2022; 17:333-341. [PMID: 35729865 DOI: 10.1080/17446651.2022.2092094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/16/2022] [Indexed: 12/07/2022]
Abstract
INTRODUCTION As a key regulator of body water, sodium homeostasis forms an essential component of human physiology. Type 2 Diabetes Mellitus (T2D)-associated sodium overload stems from chronic renal retention of sodium, contributing toward the development of adverse cardiovascular sequelae. AREAS COVERED Our traditional model of sodium regulation invokes two compartments: extracellular fluid (ECF [plasma and interstitial fluid]) and intracellular fluid (ICF). Data from the Mars program reveal inconsistencies with this two-space model, including mismatches between net body sodium and water. Recent data utilizing 23Na magnetic resonance imaging (MRI) show a preponderance of bound sodium within human dermis, consistent with a third space repository and providing compelling evidence to support a three-space model in which dermal sodium binding facilitates sodium homeostasis within the ECF and ICF. This buffer is impaired in T2D, with diminishment of dermal bound sodium that may promote deleterious sequelae of sodium overload within the ECF and ICF. EXPERT OPINION Future studies should focus on novel therapeutic opportunities for sodium regulation in T2D and other conditions of sodium dysregulation. The ratio of free:bound dermal sodium (reflecting sodium storage capacity) could be utilized as a clinical biomarker for salt and water balance, to improve diagnostic accuracy and facilitate clinical decision-making.
Collapse
Affiliation(s)
- Petra Hanson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Kenton P Arkill
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | | | - Mohammed S Hussain
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Thomas Meersmann
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, UK
| | - Harpal S Randeva
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Galina E Pavlovskaya
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, UK
| | - Paul O'Hare
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Thomas M Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, UK
| |
Collapse
|
27
|
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55:e13250. [PMID: 35747936 PMCID: PMC9436908 DOI: 10.1111/cpr.13250] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.
Collapse
Affiliation(s)
- Xian Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Thowsen IM, Karlsen TV, Nikpey E, Haslene‐Hox H, Skogstrand T, Randolph GJ, Zinselmeyer BH, Tenstad O, Wiig H. Na + is shifted from the extracellular to the intracellular compartment and is not inactivated by glycosaminoglycans during high salt conditions in rats. J Physiol 2022; 600:2293-2309. [PMID: 35377950 PMCID: PMC9324226 DOI: 10.1113/jp282715] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, studies have emerged suggesting that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. We investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. Na+ accumulation was induced in rats by a high salt diet (HSD) (8% NaCl and 1% saline to drink) or by implantation of a deoxycorticosterone acetate (DOCA) tablet (1% saline to drink) using rats on a low salt diet (LSD) (0.1% NaCl) on tap water as control. Na+ and K+ were assessed by ion chromatography in tissue eluates, and the extracellular volume by equilibration of 51 Cr-EDTA. By tangential sectioning of the skin, we found a low Na+ content and extracellular volume in epidermis, both parameters rising by ∼30% and 100%, respectively, in LSD and even more in HSD and DOCA when entering dermis. We found evidence for an extracellular Na+ gradient from epidermis to dermis shown by an estimated concentration in epidermis ∼2 and 4-5 times that of dermis in HSD and DOCA-salt. There was intracellular storage of Na+ in skin, muscle, and myocardium without a concomitant increase in hydration. Our data suggest that there is a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. Salt stress results in intracellular storage of Na+ in exchange with K+ in skeletal muscle and myocardium that may have electromechanical consequences. KEY POINTS: Studies have suggested that Na+ can be retained or removed without commensurate water retention or loss, and that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. In the present study, we investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. We used two common models for salt-sensitive hypertension: high salt and a deoxycorticosterone salt diet. We found a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. There was intracellular Na+ storage in muscle and myocardium without a concomitant increase in hydration, comprising storage that may have electromechanical consequences in salt stress.
Collapse
Affiliation(s)
| | | | - Elham Nikpey
- Department of BiomedicineUniversity of BergenBergenNorway,Department of MedicineHaukeland University HospitalBergenNorway
| | - Hanne Haslene‐Hox
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | | | - Gwendalyn J. Randolph
- Department of Pathology & ImmunologyDivision of ImmunobiologyWashington UniversitySt LouisMOUSA
| | - Bernd H. Zinselmeyer
- Department of Pathology & ImmunologyDivision of ImmunobiologyWashington UniversitySt LouisMOUSA
| | - Olav Tenstad
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Helge Wiig
- Department of BiomedicineUniversity of BergenBergenNorway
| |
Collapse
|
29
|
Alsouqi A, Deger SM, Sahinoz M, Mambungu C, Clagett AR, Bian A, Guide A, Stewart TG, Pike M, Robinson‐Cohen C, Crescenzi R, Madhur MS, Harrison DG, Ikizler TA. Tissue Sodium in Patients With Early Stage Hypertension: A Randomized Controlled Trial. J Am Heart Assoc 2022; 11:e022723. [PMID: 35435017 PMCID: PMC9238458 DOI: 10.1161/jaha.121.022723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Sodium (Na+) stored in skin and muscle tissue is associated with essential hypertension. Sodium magnetic resonance imaging is a validated method of quantifying tissue stores of Na+. In this study, we evaluated tissue Na+ in patients with elevated blood pressure or stage I hypertension in response to diuretic therapy or low Na+ diet. Methods and Results In a double‐blinded, placebo‐controlled trial, patients with systolic blood pressure 120 to 139 mm Hg were randomized to low sodium diet (<2 g of sodium), chlorthalidone, spironolactone, or placebo for 8 weeks. Muscle and skin Na+ using sodium magnetic resonance imaging and pulse wave velocity were assessed at the beginning and end of the study. Ninety‐eight patients were enrolled to undergo baseline measurements and 54 completed randomization. Median baseline muscle and skin Na+ in 98 patients were 16.4 mmol/L (14.9, 18.9) and 13.1 mmol/L (11.1, 16.1), respectively. After 8 weeks, muscle Na+ increased in the diet and chlorthalidone arms compared with placebo. Skin sodium was decreased only in the diet arm compared with placebo. These associations remained significant after adjustment for age, sex, body mass index, systolic blood pressure, and urinary sodium. No changes were observed in pulse wave velocity among the different groups when compared with placebo. Conclusions Diuretic therapy for 8 weeks did not decrease muscle or skin sodium or improve pulse wave velocity in patients with elevated blood pressure or stage I hypertension. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02236520.
Collapse
Affiliation(s)
- Aseel Alsouqi
- Now with Division of Hematology and Oncology Department of Medicine University of Pittsburgh Medical Center Pittsburgh PA
- Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Serpil Muge Deger
- Division of Nephrology Department of Medicine Dokuz Eylul University Izmir Turkey
| | - Melis Sahinoz
- Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Cindy Mambungu
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Adrienne R. Clagett
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Aihua Bian
- Department of Biostatistics Vanderbilt University Medical Center Nashville TN
| | - Andrew Guide
- Department of Biostatistics Vanderbilt University Medical Center Nashville TN
| | - Thomas G. Stewart
- Department of Biostatistics Vanderbilt University Medical Center Nashville TN
| | - Mindy Pike
- Division of Epidemiology Department of Medicine Vanderbilt University Nashville TN
| | - Cassianne Robinson‐Cohen
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Rachelle Crescenzi
- Department of Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville TN
| | - Meena S. Madhur
- Division of Clinical Pharmacology Department of Medicine Vanderbilt University Medical Center Nashville TN
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center Nashville TN
| | - David G. Harrison
- Division of Clinical Pharmacology Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Talat Alp Ikizler
- Division of Nephrology and Hypertension Department of Medicine Vanderbilt University Medical Center Nashville TN
| |
Collapse
|
30
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
31
|
Jhee JH, Park HC, Choi HY. Skin Sodium and Blood Pressure Regulation. Electrolyte Blood Press 2022; 20:1-9. [DOI: 10.5049/ebp.2022.20.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jong Hyun Jhee
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Cheon Park
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Mauro TM. Ode to Salt: Commentary on "Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity". J Invest Dermatol 2022; 142:16-17. [PMID: 34565562 PMCID: PMC8740904 DOI: 10.1016/j.jid.2021.08.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
"Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity" (Maifeld et al., 2021) showed that skin sodium ion (Na+) is increased in patients with a PASI > 5. Na+ concentration as well as its content were increased in these patients, supporting the proposed mechanism that increased Na+ concentrations enhance IL-17 expression from CD4+ cells. These data initially were generated using a noninvasive technique, sodium (23Na) magnetic resonance imaging, and then were verified using 23Na spectroscopy and atomic absorption spectrometry in ashed-skin biopsies in humans and also using mouse models of psoriasis. These findings suggest a novel pathologic mechanism for psoriasis development and target for treatment.
Collapse
Affiliation(s)
- Theodora M Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Dermatology Service, Veterans Affairs Health Care System, San Francisco, California, USA.
| |
Collapse
|
33
|
Ma Z, Hummel SL, Sun N, Chen Y. From salt to hypertension, what is missed? J Clin Hypertens (Greenwich) 2021; 23:2033-2041. [PMID: 34846798 PMCID: PMC8696232 DOI: 10.1111/jch.14402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023]
Abstract
Excess salt intake is viewed as a major contributor to hypertension and cardiovascular disease, and dietary salt restriction is broadly recommended by public health guidelines. However, individuals can have widely varying physiological responses to salt intake, and a tailored approach to evaluation and intervention may be needed. The traditional sodium related concepts are challenging to assess clinically for two reasons: (1) spot and 24-hour urine sodium are frequently used to evaluate salt intake, but are more suitable for population study, and (2) some adverse effects of salt may be blood pressure-independent. In recent years, previously unknown mechanisms of sodium absorption and storage have been discovered. This review will outline the limitations of current methods to assess sodium balance and discuss new potential evaluation methods and treatment targets.
Collapse
Affiliation(s)
- Zhiyi Ma
- Cardiology DepartmentBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Scott L. Hummel
- Ann Arbor Veterans Affairs Health SystemUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Ningling Sun
- Cardiology DepartmentHeart CenterPeking University People's HospitalBeijingChina
| | - Yuanyuan Chen
- Cardiology DepartmentHeart CenterPeking University People's HospitalBeijingChina
| |
Collapse
|
34
|
Kannenkeril D, Jung S, Harazny J, Striepe K, Ott C, Dahlmann A, Kopp C, Schiffer M, Linz P, Nagel AM, Uder M, Schmieder RE. Tissue sodium content correlates with hypertrophic vascular remodeling in type 2 diabetes. J Diabetes Complications 2021; 35:108055. [PMID: 34620556 DOI: 10.1016/j.jdiacomp.2021.108055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/16/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prospective studies describe a linkage between increased sodium intake and higher incidence of cardiovascular organ damage and end points. We analyzed whether tissue sodium content in the skin and muscles correlate with vascular hypertrophic remodeling, a risk factor for cardiovascular disease. METHODS In patients with type 2 diabetes we assessed tissue sodium content and vascular structural parameters of the retinal arterioles. The structural parameters of retinal arterioles assessed by Scanning Laser Doppler Flowmetry were vessel (VD) and lumen diameter (LD), wall thickness (WT), wall-to-lumen ratio (WLR) and wall cross sectional area (WCSA). Tissue sodium content was measured with a 3.0 T clinical 23Sodium-Magnetic Resonance Imaging (23Na-MRI) system. RESULTS In patients with type 2 diabetes (N = 52) we observed a significant correlation between muscle sodium content and VD (p = 0.005), WT (p = 0.003), WCSA (p = 0.002) and WLR (p = 0.013). With respect to skin sodium content a significant correlation has been found with VD (p = 0.042), WT (p = 0.023) and WCSA (p = 0.019). Further analysis demonstrated that tissue sodium content of skin and muscle is a significant determinant of hypertrophic vascular remodeling independent of age, gender, diuretic use and 24-hour ambulatory BP. CONCLUSION With the 23Na-MRI technology we could demonstrate that high tissue sodium content is independently linked to hypertrophic vascular remodeling in type 2 diabetes. TRIAL REGISTRATION Trial registration number: NCT02383238 Date of registration: March 9, 2015.
Collapse
Affiliation(s)
- Dennis Kannenkeril
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Susanne Jung
- Department of Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Joanna Harazny
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany; Department of Human Physiology and Pathophysiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Kristina Striepe
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
35
|
Borrelli S, De Nicola L, De Gregorio I, Polese L, Pennino L, Elefante C, Carbone A, Rappa T, Minutolo R, Garofalo C. Volume-Independent Sodium Toxicity in Peritoneal Dialysis: New Insights from Bench to Bed. Int J Mol Sci 2021; 22:ijms222312804. [PMID: 34884617 PMCID: PMC8657906 DOI: 10.3390/ijms222312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Sodium overload is common in end-stage kidney disease (ESKD) and is associated with increased cardiovascular mortality that is traditionally considered a result of extracellular volume expansion. Recently, sodium storage was detected by Na23 magnetic resonance imaging in the interstitial tissue of the skin and other tissues. This amount of sodium is osmotically active, regulated by immune cells and the lymphatic system, escapes renal control, and, more importantly, is associated with salt-sensitive hypertension. In chronic kidney disease, the interstitial sodium storage increases as the glomerular filtration rate declines and is related to cardiovascular damage, regardless of the fluid overload. This sodium accumulation in the interstitial tissues becomes more significant in ESKD, especially in older and African American patients. The possible negative effects of interstitial sodium are still under study, though a higher sodium intake might induce abnormal structural and functional changes in the peritoneal wall. Interestingly, sodium stored in the interstial tissue is not unmodifiable, since it is removable by dialysis. Nevertheless, the sodium removal by peritoneal dialysis (PD) remains challenging, and new PD solutions are desirable. In this narrative review, we carried out an update on the pathophysiological mechanisms of volume-independent sodium toxicity and possible future strategies to improve sodium removal by PD.
Collapse
|
36
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Krampert L, Bauer K, Ebner S, Neubert P, Ossner T, Weigert A, Schatz V, Toelge M, Schröder A, Herrmann M, Schnare M, Dorhoi A, Jantsch J. High Na + Environments Impair Phagocyte Oxidase-Dependent Antibacterial Activity of Neutrophils. Front Immunol 2021; 12:712948. [PMID: 34566968 PMCID: PMC8461097 DOI: 10.3389/fimmu.2021.712948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 01/21/2023] Open
Abstract
Infection and inflammation can augment local Na+ abundance. These increases in local Na+ levels boost proinflammatory and antimicrobial macrophage activity and can favor polarization of T cells towards a proinflammatory Th17 phenotype. Although neutrophils play an important role in fighting intruding invaders, the impact of increased Na+ on the antimicrobial activity of neutrophils remains elusive. Here we show that, in neutrophils, increases in Na+ (high salt, HS) impair the ability of human and murine neutrophils to eliminate Escherichia coli and Staphylococcus aureus. High salt caused reduced spontaneous movement, degranulation and impaired production of reactive oxygen species (ROS) while leaving neutrophil viability unchanged. High salt enhanced the activity of the p38 mitogen-activated protein kinase (p38/MAPK) and increased the interleukin (IL)-8 release in a p38/MAPK-dependent manner. Whereas inhibition of p38/MAPK did not result in improved neutrophil defense, pharmacological blockade of the phagocyte oxidase (PHOX) or its genetic ablation mimicked the impaired antimicrobial activity detected under high salt conditions. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) overcame high salt-induced impairment in ROS production and restored antimicrobial activity of neutrophils. Hence, we conclude that high salt-impaired PHOX activity results in diminished antimicrobial activity. Our findings suggest that increases in local Na+ represent an ionic checkpoint that prevents excessive ROS production of neutrophils, which decreases their antimicrobial potential and could potentially curtail ROS-mediated tissue damage.
Collapse
Affiliation(s)
- Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Katharina Bauer
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Stefan Ebner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany.,Max Planck Institute (MPI) of Biochemistry, Martinsried, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Thomas Ossner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Anna Weigert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Institute of Orthodontics, University Hospital of Regensburg, Regensburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Markus Schnare
- Department of Immunology, Philipps University Marburg, Marburg, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler Institut, Greifswald, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Filler G, Salerno F, McIntyre CW, de Ferris MEDG. Animal, Human, and 23Na MRI Imaging Evidence for the Negative Impact of High Dietary Salt in Children. CURRENT PEDIATRICS REPORTS 2021; 9:110-117. [PMID: 34567839 PMCID: PMC8449209 DOI: 10.1007/s40124-021-00249-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF THE REVIEW Conditions typically prevalent in adults such as hypertension, kidney stones, osteoporosis, and chronic kidney disease are increasing among adolescents and young adults (AYA). The purpose of this review is to describe the association of these conditions to a high salt diet among pediatric patients. RECENT FINDINGS We present animal, human, and 23Na MRI evidence associated with the negative impact of high dietary salt in children. Special focus is placed on novel 23Na MRI imaging which reveals the important concept of a third compartment for sodium storage in soft tissue. Finally, we make recommendations on who should not be on a low salt diet. SUMMARY A high salt intake predisposes children and AYA to considerable morbidity. We exhort the reader to engage in advocacy efforts to curve the incidence and prevalence of high salt-related life-limiting conditions.
Collapse
Affiliation(s)
- Guido Filler
- Departments of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 800 Commissioners Road East, London, ON E3-206N6A 5W9 Canada
- Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
- Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
- Children’s Health Research Institute, University of Western Ontario, London, Canada
- Lilibeth Caberto Kidney Clinical Research Unit, London, ON Canada
| | - Fabio Salerno
- Lilibeth Caberto Kidney Clinical Research Unit, London, ON Canada
- Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Christopher William McIntyre
- Departments of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 800 Commissioners Road East, London, ON E3-206N6A 5W9 Canada
- Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
- Children’s Health Research Institute, University of Western Ontario, London, Canada
- Lilibeth Caberto Kidney Clinical Research Unit, London, ON Canada
- Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
39
|
Reduction of Tissue Na + Accumulation After Renal Transplantation. Kidney Int Rep 2021; 6:2338-2347. [PMID: 34514195 PMCID: PMC8418983 DOI: 10.1016/j.ekir.2021.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Chronic kidney disease (CKD) engenders salt-sensitive hypertension. Whether or not tissue Na+ accumulation is increased in CKD patients remains uncertain. How tissue Na+ is affected after renal transplantation has not been assessed. Methods We measured tissue Na+ amount in 31 CKD patients (stage 5) and prospectively evaluated tissue Na+ content at 3 and 6 months, following living-donor kidney transplantation. Additionally, pre- and post-transplantation data were compared to 31 age- and sex-matched control subjects. 23Na-magnetic resonance imaging (23Na-MRI) was used to quantify muscle and skin Na+ of the lower leg and water distribution was assessed by bioimpedance spectroscopy. Results Compared to control subjects, CKD patients showed increased muscle (20.7 ± 5.0 vs. 15.5 ± 1.8 arbitrary units [a.u.], P < 0.001) and skin Na+ content (21.4 ± 7.7 vs. 15.0 ± 2.3 a.u., P < 0.001), whereas plasma Na+ concentration did not differ between groups. Restoration of kidney function by successful renal transplantation was accompanied by mobilization of tissue Na+ from muscle (20.7 ± 5.0 vs. 16.8 ± 2.8 a.u., P < 0.001) and skin tissue (21.4 ± 7.7 vs. 16.8 ± 5.2 a.u., P < 0.001). The reduction of tissue Na+ after transplantation was associated with improved renal function, normalization of blood pressure as well as an increase in lymphatic growth-factor concentration (vascular endothelial growth factor C [VEGF-C] 4.5 ± 1.8 vs. 6.7 ± 2.7 ng/ml, P < 0.01). Conclusions Tissue Na+ accumulation in predialysis patients with CKD was almost completely reversed to the level of healthy controls after successful kidney transplantation.
Collapse
|
40
|
Huhn K, Linz P, Pemsel F, Michalke B, Seyferth S, Kopp C, Chaudri MA, Rothhammer V, Dörfler A, Uder M, Nagel AM, Müller DN, Waschbisch A, Lee DH, Bäuerle T, Linker RA, Haase S. Skin sodium is increased in male patients with multiple sclerosis and related animal models. Proc Natl Acad Sci U S A 2021; 118:e2102549118. [PMID: 34260395 PMCID: PMC8285971 DOI: 10.1073/pnas.2102549118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel MRI techniques allow a noninvasive quantification of tissue sodium and reveal the skin as a prominent compartment of sodium storage in health and disease. Since multiple sclerosis (MS) immunopathology is initiated in the periphery and increased sodium concentrations induce proinflammatory immune cells, the skin represents a promising compartment linking high sodium concentrations and MS immunopathology. We used a 7-T sodium MRI (23Na-MRI) and inductively coupled plasma mass spectrometry to investigate the skin sodium content in two mouse models of MS. We additionally performed 3-T 23Na-MRI of calf skin and muscles in 29 male relapsing-remitting MS (RRMS) patients and 29 matched healthy controls. Demographic and clinical information was collected from interviews, and disease activity was assessed by expanded disability status scale scoring. 23Na-MRI and chemical analysis demonstrated a significantly increased sodium content in the skin during experimental autoimmune encephalomyelitis independent of active immunization. In male patients with RRMS, 23Na-MRI demonstrated a higher sodium signal in the area of the skin compared to age- and biological sex-matched healthy controls with higher sodium, predicting future disease activity in cranial MRI. In both studies, the sodium enrichment was specific to the skin, as we found no alterations of sodium signals in the muscle or other tissues. Our data add to the recently identified importance of the skin as a storage compartment of sodium and may further represent an important organ for future investigations on salt as a proinflammatory agent driving autoimmune neuroinflammation such as that in MS.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Franziska Pemsel
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
- Department of Radiation Therapy, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München German Research Center for Environmental Health, 85764 Munich, Germany
| | - Stefan Seyferth
- Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Mohammad Anwar Chaudri
- Institute of Corrosion and Surface Science, Department of Material Science, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health, 13125 Berlin, Germany
| | - Anne Waschbisch
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Bäuerle
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stefanie Haase
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
41
|
Maifeld A, Wild J, Karlsen TV, Rakova N, Wistorf E, Linz P, Jung R, Birukov A, Gimenez-Rivera VA, Wilck N, Bartolomaeus T, Dechend R, Kleinewietfeld M, Forslund SK, Krause A, Kokolakis G, Philipp S, Clausen BE, Brand A, Waisman A, Kurschus FC, Wegner J, Schultheis M, Luft FC, Boschmann M, Kelm M, Wiig H, Kuehne T, Müller DN, Karbach S, Markó L. Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity. J Invest Dermatol 2021; 142:166-178.e8. [PMID: 34237339 DOI: 10.1016/j.jid.2021.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Sodium can accumulate in the skin at concentrations exceeding serum levels. A high sodium environment can lead to pathogenic T helper 17 cell expansion. Psoriasis is a chronic inflammatory skin disease in which IL-17‒producing T helper 17 cells play a crucial role. In an observational study, we measured skin sodium content in patients with psoriasis and in age-matched healthy controls by Sodium-23 magnetic resonance imaging. Patients with PASI > 5 showed significantly higher sodium and water content in the skin but not in other tissues than those with lower PASI or healthy controls. Skin sodium concentrations measured by Sodium-23 spectroscopy or by atomic absorption spectrometry in ashed-skin biopsies verified the findings with Sodium-23 magnetic resonance imaging. In vitro T helper 17 cell differentiation of naive CD4+ cells from patients with psoriasis markedly induced IL-17A expression under increased sodium chloride concentrations. The imiquimod-induced psoriasis mouse model replicated the human findings. Extracellular tracer Chromium-51-EDTA measurements in imiquimod- and sham-treated skin showed similar extracellular volumes, rendering excessive water of intracellular origin. Chronic genetic IL-17A‒driven psoriasis mouse models underlined the role of IL-17A in dermal sodium accumulation and inflammation. Our data describe skin sodium as a pathophysiological feature of psoriasis, which could open new avenues for its treatment.
Collapse
Affiliation(s)
- András Maifeld
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Wild
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Natalia Rakova
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Elisa Wistorf
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Linz
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Birukov
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Nicola Wilck
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theda Bartolomaeus
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Helios Clinic Berlin-Buch, Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University Campus Diepenbeek, Hasselt, Belgium
| | - Sofia K Forslund
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Krause
- Medical Centre for Rheumatology and Clinical Immunology, Immanuel Krankenhaus Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Philipp
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Björn E Clausen
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Brand
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ari Waisman
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joanna Wegner
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Schultheis
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Kelm
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Titus Kuehne
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Berlin, Germany
| | - Susanne Karbach
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Hanson P, Philp CJ, Randeva HS, James S, O’Hare JP, Meersmann T, Pavlovskaya GE, Barber TM. Sodium in the dermis colocates to glycosaminoglycan scaffold, with diminishment in type 2 diabetes mellitus. JCI Insight 2021; 6:145470. [PMID: 34003801 PMCID: PMC8262470 DOI: 10.1172/jci.insight.145470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/13/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Dietary sodium intake mismatches urinary sodium excretion over prolonged periods. Our aims were to localize and quantify electrostatically bound sodium within human skin using triple-quantum-filtered (TQF) protocols for MRI and magnetic resonance spectroscopy (MRS) and to explore dermal sodium in type 2 diabetes mellitus (T2D). METHODS We recruited adult participants with T2D (n = 9) and euglycemic participants with no history of diabetes mellitus (n = 8). All had undergone lower limb amputations or abdominal skin reduction surgery for clinical purposes. We used 20 μm in-plane resolution 1H MRI to visualize anatomical skin regions ex vivo from skin biopsies taken intraoperatively, 23Na TQF MRI/MRS to explore distribution and quantification of freely dissolved and bound sodium, and inductively coupled plasma mass spectrometry to quantify sodium in selected skin samples. RESULTS Human dermis has a preponderance (>90%) of bound sodium that colocalizes with the glycosaminoglycan (GAG) scaffold. Bound and free sodium have similar anatomical locations. T2D associates with a severely reduced dermal bound sodium capacity. CONCLUSION We provide the first evidence to our knowledge for high levels of bound sodium within human dermis, colocating to the GAG scaffold, consistent with a dermal "third space repository" for sodium. T2D associates with diminished dermal electrostatic binding capacity for sodium.
Collapse
Affiliation(s)
- Petra Hanson
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | | | - Harpal S. Randeva
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | - Sean James
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | - J. Paul O’Hare
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | - Thomas Meersmann
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Medicine, and
- Nottingham NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Medicine, and
- Nottingham NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Thomas M. Barber
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| |
Collapse
|
43
|
Mok NMY, Fan N, Finney H, Fan SLS. Relationship between sodium removal, hydration and outcomes in peritoneal dialysis patients. Nephrology (Carlton) 2021; 26:676-683. [PMID: 33893694 DOI: 10.1111/nep.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Fluid overload (FO) in peritoneal dialysis (PD) patients is associated with mortality. We explore if low daily sodium removal is an independent risk factor for mortality. We examined severely FO PD patients established for >1 year in expectation that PD prescription would have been optimized for solute clearance and ultrafiltration. We also wish to determine the relationship between kt/v and sodium removal. METHODS Retrospective analysis of 231 PD patients with FO ≥2.0 L and compared with 218 PD patients who were euvolaemic throughout their PD treatment. Patients were followed up until death censored for transplantation. RESULTS Mean daily sodium removal in overhydrated patients was only 75 mmoles (=1.7 g). CAPD usage was more common in patients with the highest sodium removal. Achievement of UK guidelines for solute clearance and daily fluid removal were not independent predictors of mortality. Markers of sarcopenia (low serum albumin and high CRP) were associated with increased mortality, but these parameters were not independent predictors in a model that included functional assessment (Karnofsky score). Daily sodium removal was not predictive of mortality but the imprecision of clinically used sodium assay should be noted. The correlation between Na and kt/v is statistically significant but R2 was weak at .07. CONCLUSION While diabetic males were more likely to become overhydrated, these factors did not increase mortality further. Traditional targets of 'dialysis adequacy' did not predict survival. Kt/v is not a good indicator of sodium removal which can be surprisingly low. Measuring sodium clearance may help clinicians optimize PD modality (CAPD vs. APD).
Collapse
Affiliation(s)
- Natalie M-Y Mok
- Departments of Renal Medicine and Transplantation, Barts Health NHS Trust, London, United Kingdom
| | - Nicholas Fan
- Departments of Renal Medicine and Transplantation, Barts Health NHS Trust, London, United Kingdom
| | - Hazel Finney
- Department of Clinical Biochemistry, Barts Health NHS Trust, London, United Kingdom
| | - Stanley L-S Fan
- Departments of Renal Medicine and Transplantation, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
44
|
Ruggeri Barbaro N, Van Beusecum J, Xiao L, do Carmo L, Pitzer A, Loperena R, Foss JD, Elijovich F, Laffer CL, Montaniel KR, Galindo CL, Chen W, Ao M, Mernaugh RL, Alsouqi A, Ikizler TA, Fogo AB, Moreno H, Zhao S, Davies SS, Harrison DG, Kirabo A. Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. Cardiovasc Res 2021; 117:1358-1371. [PMID: 33038226 PMCID: PMC8064439 DOI: 10.1093/cvr/cvaa207] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Prior studies have focused on the role of the kidney and vasculature in salt-induced modulation of blood pressure; however, recent data indicate that sodium accumulates in tissues and can activate immune cells. We sought to examine mechanisms by which salt causes activation of human monocytes both in vivo and in vitro. METHODS AND RESULTS To study the effect of salt in human monocytes, monocytes were isolated from volunteers to perform several in vitro experiments. Exposure of human monocytes to elevated Na+ex vivo caused a co-ordinated response involving isolevuglandin (IsoLG)-adduct formation, acquisition of a dendritic cell (DC)-like morphology, expression of activation markers CD83 and CD16, and increased production of pro-inflammatory cytokines tumour necrosis factor-α, interleukin (IL)-6, and IL-1β. High salt also caused a marked change in monocyte gene expression as detected by RNA sequencing and enhanced monocyte migration to the chemokine CC motif chemokine ligand 5. NADPH-oxidase inhibition attenuated monocyte activation and IsoLG-adduct formation. The increase in IsoLG-adducts correlated with risk factors including body mass index, pulse pressure. Monocytes exposed to high salt stimulated IL-17A production from autologous CD4+ and CD8+ T cells. In addition, to evaluate the effect of salt in vivo, monocytes and T cells isolated from humans were adoptively transferred to immunodeficient NSG mice. Salt feeding of humanized mice caused monocyte-dependent activation of human T cells reflected by proliferation and accumulation of T cells in the bone marrow. Moreover, we performed a cross-sectional study in 70 prehypertensive subjects. Blood was collected for flow cytometric analysis and 23Na magnetic resonance imaging was performed for tissue sodium measurements. Monocytes from humans with high skin Na+ exhibited increased IsoLG-adduct accumulation and CD83 expression. CONCLUSION Human monocytes exhibit co-ordinated increases in parameters of activation, conversion to a DC-like phenotype and ability to activate T cells upon both in vitro and in vivo sodium exposure. The ability of monocytes to be activated by sodium is related to in vivo cardiovascular disease risk factors. We therefore propose that in addition to the kidney and vasculature, immune cells like monocytes convey salt-induced cardiovascular risk in humans.
Collapse
Affiliation(s)
- Natalia Ruggeri Barbaro
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Justin Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Liang Xiao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Luciana do Carmo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Roxana Loperena
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jason D Foss
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Kim R Montaniel
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Cristi L Galindo
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | | | - Aseel Alsouqi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Talat A Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes B Fogo
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heitor Moreno
- Department of Intern Medicine, Faculty of Medical Sciences, Cardiovascular Pharmacology Laboratory, University of Campinas, Campinas, Brazil
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean S Davies
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
45
|
Moosmann J, Toka O, Linz P, Dahlmann A, Nagel AM, Schiffer M, Uder M, Cesnjevar R, Dittrich S, Kopp C. Tolvaptan treatment in an adult Fontan patient with protein-losing enteropathy: a serial 23Na-MRI investigation. Ther Adv Chronic Dis 2021; 12:20406223211004005. [PMID: 33948157 PMCID: PMC8053834 DOI: 10.1177/20406223211004005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Protein-losing enteropathy (PLE) is a severe complication of the univentricular Fontan circulation and associated with disturbances in salt and water homeostasis. Fontan patients with PLE have a poor prognosis, with increased morbidity and mortality. Due to limited therapeutic strategies, patients are often treated only symptomatically. Methods: We report our first experience of Tolvaptan (TLV) treatment in a Fontan patient with PLE, severe volume retention and hyponatraemia, refractory to conventional diuretic therapy. In addition to clinical parameters, we monitored drug effects including tissue sodium and volume status via serial 23Na-magnetic resonance imaging (23Na-MRI) and bioimpedance spectroscopy compared with age-matched controls. Results: 23Na-MRI identified elevated tissue sodium, which decreased under TLV treatment, as well as volume status, while serum sodium increased and the patient’s symptoms improved. During long-term treatment, we were able to differentiate between sodium and volume status in our patient, suggesting that TLV uncoupled body sodium from water. Conclusion: TLV in addition to loop diuretics improved clinical symptoms of PLE and lowered tissue sodium overload. Long-term effects should be further evaluated in Fontan patients.
Collapse
Affiliation(s)
- Julia Moosmann
- Department of Paediatric Cardiology, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestraße 15, Erlangen, 91054, Germany
| | - Okan Toka
- Paediatric and Adolescent Practice, Fürth, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Bayern, Erlangen, Germany/Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen, Erlangen, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen, Erlangen, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen, Erlangen, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Cesnjevar
- Department of Paediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen, Erlangen, Germany
| | - Sven Dittrich
- Department of Paediatric Cardiology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen, Erlangen, Germany
| |
Collapse
|
46
|
Cardiovascular benefits of sodium-glucose cotransporter 2 inhibitors in diabetic and nondiabetic patients. Cardiovasc Diabetol 2021; 20:78. [PMID: 33827579 PMCID: PMC8028072 DOI: 10.1186/s12933-021-01266-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were developed as antidiabetic agents, but accumulating evidence has shown their beneficial effects on the cardiovascular system. Analyses of the EMPA-REG OUTCOME trial (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) suggested that these benefits are independent of glycemic control. Several large-scale outcome trials of SGLT2i also showed cardiovascular benefits in nondiabetic patients, strengthening this perspective. Extensive animal and clinical studies have likewise shown that mechanisms other than the antihyperglycemic effect underlie the cardiovascular benefits. Recent clinical guidelines recommend the use of SGLT2i in patients with type 2 diabetes mellitus and cardiovascular diseases because of the proven cardiovascular protective effects. Since the cardiovascular benefits are independent of glycemic control, the therapeutic spectrum of SGLT2i will likely be extended to nondiabetic patients.
Collapse
|
47
|
Tabbassum S, Cheng P, Yanko FM, Balachandran R, Aschner M, Bowman AB, Nie LH. Whole body potassium as a biomarker for potassium uptake using a mouse model. Sci Rep 2021; 11:6385. [PMID: 33737537 PMCID: PMC7973570 DOI: 10.1038/s41598-021-85233-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Potassium is known for its effect on modifiable chronic diseases like hypertension, cardiac disease, diabetes (type-2), and bone health. In this study, a new method, neutron generator based neutron activation analysis (NAA), was utilized to measure potassium (K) in mouse carcasses. A DD110 neutron generator based NAA assembly was used for irradiation.Thirty-two postmortem mice (n= 16 males and 16 females, average weight [Formula: see text] and [Formula: see text] g) were employed for this study. Soft-tissue equivalent mouse phantoms were prepared for the calibration. All mice were irradiated for 10 minutes, and the gamma spectrum with 42K was collected using a high efficiency, high purity germanium (HPGe) detector. A lead shielding assembly was designed and developed around the HPGe detector to obtain an improved detection limit. Each mouse sample was irradiated and measured twice to reduce uncertainty. The average potassium concentration was found to be significantly higher in males [Formula: see text] compared to females [Formula: see text]. We also observed a significant correlation between potassium concentration and the weight of the mice. The detection limit for potassium quantification with the NAA system was 46 ppm. The radiation dose to the mouse was approximately 56 [Formula: see text] mSv for 10-min irradiation. In conclusion, this method is suitable for estimating individual potassium concentration in small animals. The direct evaluation of total body potassium in small animals provides a new way to estimate potassium uptake in animal models. This method can be adapted later to quantify potassium in the human hand and small animals in vivo. When used in vivo, it is also expected to be a valuable tool for longitudinal assessment, kinetics, and health outcomes.
Collapse
Affiliation(s)
- Sana Tabbassum
- School of Health Sciences, Purdue University, West Lafayette, 47906, USA.
| | - Pinjing Cheng
- School of Health Sciences, Purdue University, West Lafayette, 47906, USA
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Frank M Yanko
- School of Health Sciences, Purdue University, West Lafayette, 47906, USA
| | - Rekha Balachandran
- School of Health Sciences, Purdue University, West Lafayette, 47906, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, 47906, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, 47906, USA.
| |
Collapse
|
48
|
Wenstedt EFE, Oppelaar JJ, Besseling S, Rorije NMG, Olde Engberink RHG, Oosterhof A, van Kuppevelt TH, van den Born BJH, Aten J, Vogt L. Distinct osmoregulatory responses to sodium loading in patients with altered glycosaminoglycan structure: a randomized cross-over trial. J Transl Med 2021; 19:38. [PMID: 33472641 PMCID: PMC7816310 DOI: 10.1186/s12967-021-02700-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis. Methods We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses. Results Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed. Conclusion DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis. Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 (https://www.trialregister.nl/trial/3933 at 2013-07-29) and NTR4788 (https://www.trialregister.nl/trial/4645 at 2014-09-12).
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stijn Besseling
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nienke M G Rorije
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rik H G Olde Engberink
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arie Oosterhof
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Bert-Jan H van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, Room D3-324, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Lemoine S, Salerno FR, Akbari A, McIntyre CW. Influence of Dialysate Sodium Prescription on Skin and Muscle Sodium Concentration. Am J Kidney Dis 2021; 78:156-159. [PMID: 33428998 DOI: 10.1053/j.ajkd.2020.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Sandrine Lemoine
- Lilibeth Caberto Kidney Clinical Research Unit, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Fabio R Salerno
- Lilibeth Caberto Kidney Clinical Research Unit, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Alireza Akbari
- Lilibeth Caberto Kidney Clinical Research Unit, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Christopher W McIntyre
- Lilibeth Caberto Kidney Clinical Research Unit, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Division of Nephrology, London Health Sciences Centre, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
50
|
Sahinoz M, Tintara S, Deger SM, Alsouqi A, Crescenzi RL, Mambungu C, Vincz A, Mason OJ, Prigmore HL, Guide A, Stewart TG, Harrison DG, Luft FC, Titze J, Ikizler TA. Tissue sodium stores in peritoneal dialysis and hemodialysis patients determined by 23-sodium magnetic resonance imaging. Nephrol Dial Transplant 2020; 36:gfaa350. [PMID: 33351140 PMCID: PMC8237985 DOI: 10.1093/ndt/gfaa350] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tissue sodium content in patients on maintenance hemodialysis (MHD) and peritoneal dialysis (PD) were previously explored using 23Sodium magnetic resonance imaging (23NaMRI). Larger studies would provide a better understanding of sodium stores in patients on dialysis as well as the factors influencing this sodium accumulation. METHODS In this cross-sectional study, we quantified the calf muscle and skin sodium content in 162 subjects (10 PD, 33 MHD patients, and 119 controls) using 23NaMRI. Plasma levels of interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hsCRP) were measured to assess systemic inflammation. Sixty-four subjects had repeat 23NaMRI scans that were analyzed to assess the repeatability of the 23NaMRI measurements. RESULTS Patients on MHD and PD exhibited significantly higher muscle and skin sodium accumulation compared to controls. African American patients on dialysis exhibited greater muscle and skin sodium content compared to non-African Americans. Multivariable analysis showed that older age was associated with both higher muscle and skin sodium. Male sex was also associated with increased skin sodium deposition. Greater ultrafiltration was associated with lower skin sodium in patients on PD (Spearman's rho=-0.68, P = 0.035). Higher plasma IL-6 and hsCRP levels correlated with increased muscle and skin sodium content in the overall study population. Patients with higher baseline tissue sodium content exhibited greater variability in tissue sodium stores on repeat measurements. CONCLUSIONS Our findings highlight greater muscle and skin sodium content in dialysis patients compared to controls without kidney disease. Tissue sodium deposition and systemic inflammation seen in dialysis patients might influence one another bidirectionally.
Collapse
Affiliation(s)
- Melis Sahinoz
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Supisara Tintara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Serpil Muge Deger
- Department of Nephrology, Yuksek Ihtisas University, Koru Ankara Hospital, Ankara, Turkey
| | - Aseel Alsouqi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle L Crescenzi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Mambungu
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Andrew Vincz
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Olivia J Mason
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather L Prigmore
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Guide
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas G Stewart
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G Harrison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité Medical Faculty, Berlin, Germany
| | - Jens Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany
- Division of Nephrology, Duke University School of Medicine, Durham, NC, USA
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center Nashville, TN, USA
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|